Skip to content

Instantly share code, notes, and snippets.

@rabernat
Created May 10, 2021 20:52
Show Gist options
  • Save rabernat/4dedd891ff847c55e5becca449a5c601 to your computer and use it in GitHub Desktop.
Save rabernat/4dedd891ff847c55e5becca449a5c601 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "752a2e7b",
"metadata": {
"cell_style": "center"
},
"outputs": [],
"source": [
"import xarray as xr\n",
"import zarr\n",
"import numpy as np\n",
"import pyvista as pv\n",
"import ipywidgets as widgets\n",
"import pyvistaqt as pvqt\n",
"import time\n",
"\n",
"pv.set_plot_theme(\"document\")\n",
"#pv.rcParams['use_ipyvtk'] = True\n",
"pv.rcParams['window_size'] = [1920, 1080]\n",
"#pv.rcParams['window_size'] = [1280, 720]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9f7efcd1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: (XC_agg: 20, XG_agg: 20, YC_agg: 20, YG_agg: 20, Z: 40, Zl: 40, time: 396)\n",
"Coordinates: (12/23)\n",
" PHrefC (Z) float32 dask.array&lt;chunksize=(40,), meta=np.ndarray&gt;\n",
" * XC_agg (XC_agg) float32 5e+04 1.5e+05 2.5e+05 ... 1.85e+06 1.95e+06\n",
" * XG_agg (XG_agg) float32 0.0 1e+05 2e+05 ... 1.7e+06 1.8e+06 1.9e+06\n",
" * YC_agg (YC_agg) float32 5e+04 1.5e+05 2.5e+05 ... 1.85e+06 1.95e+06\n",
" * YG_agg (YG_agg) float32 0.0 1e+05 2e+05 ... 1.7e+06 1.8e+06 1.9e+06\n",
" * Z (Z) float32 -5.0 -15.0 -25.0 ... -2.728e+03 -2.83e+03 -2.934e+03\n",
" ... ...\n",
" mask2 (Zl, YC_agg, XC_agg) float32 dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;\n",
" maskc3 (Zl, YC_agg, XC_agg) float32 dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;\n",
" masks (Z, YG_agg, XC_agg) float32 dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;\n",
" masktb (Zl, XC_agg, YC_agg) float64 dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;\n",
" maskw (Z, XG_agg, YC_agg) float32 dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;\n",
" * time (time) timedelta64[ns] 61023 days 61038 days ... 66948 days\n",
"Data variables: (12/18)\n",
" T (time, Z, XC_agg, YC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" eddyV (time, Z, XC_agg, YC_agg) float64 dask.array&lt;chunksize=(99, 10, 10, 10), meta=np.ndarray&gt;\n",
" eddy_a1 (Z, time, XC_agg, YC_agg) float64 dask.array&lt;chunksize=(10, 99, 10, 10), meta=np.ndarray&gt;\n",
" eddy_a2 (time, Z, XC_agg, YC_agg) float64 dask.array&lt;chunksize=(99, 10, 10, 10), meta=np.ndarray&gt;\n",
" gmredi_07 (time, Z, XC_agg, YC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" temp (time, Z, XC_agg, YC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" ... ...\n",
" v_th_trans (time, Z, YG_agg, XC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" v_trans (time, Z, YG_agg, XC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" vtFlux_GM (time, Z, XC_agg, YG_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" w_th_trans (time, Zl, XC_agg, YC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" w_trans (time, Zl, XC_agg, YC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;\n",
" wtFlux_GM (time, Zl, XC_agg, YC_agg) float32 dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-131363c1-9053-4d43-b309-62bb8441e0d4' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-131363c1-9053-4d43-b309-62bb8441e0d4' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>XC_agg</span>: 20</li><li><span class='xr-has-index'>XG_agg</span>: 20</li><li><span class='xr-has-index'>YC_agg</span>: 20</li><li><span class='xr-has-index'>YG_agg</span>: 20</li><li><span class='xr-has-index'>Z</span>: 40</li><li><span class='xr-has-index'>Zl</span>: 40</li><li><span class='xr-has-index'>time</span>: 396</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-f7703086-7d90-49b4-a624-fc440f58f50b' class='xr-section-summary-in' type='checkbox' checked><label for='section-f7703086-7d90-49b4-a624-fc440f58f50b' class='xr-section-summary' >Coordinates: <span>(23)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>PHrefC</span></div><div class='xr-var-dims'>(Z)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40,), meta=np.ndarray&gt;</div><input id='attrs-66f91f65-c32e-4833-a1ee-ace022b8df68' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-66f91f65-c32e-4833-a1ee-ace022b8df68' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-12e33f1c-9732-4bb8-a31e-f0fe383bac18' class='xr-var-data-in' type='checkbox'><label for='data-12e33f1c-9732-4bb8-a31e-f0fe383bac18' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Reference Hydrostatic Pressure</dd><dt><span>standard_name :</span></dt><dd>cell_reference_pressure</dd><dt><span>units :</span></dt><dd>m2 s-2</dd></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 160 B </td> <td> 160 B </td></tr>\n",
" <tr><th> Shape </th><td> (40,) </td> <td> (40,) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"170\" height=\"80\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"30\" x2=\"120\" y2=\"30\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"30\" style=\"stroke-width:2\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"30\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,30.311399683662877 0.0,30.311399683662877\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"50.311400\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >40</text>\n",
" <text x=\"140.000000\" y=\"15.155700\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,15.155700)\">1</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>XC_agg</span></div><div class='xr-var-dims'>(XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>5e+04 1.5e+05 ... 1.85e+06 1.95e+06</div><input id='attrs-c2a70a78-9b43-4bc2-a476-7b9f58fac1fb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c2a70a78-9b43-4bc2-a476-7b9f58fac1fb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b216a5fe-3e77-40f3-a25f-16379bf24f80' class='xr-var-data-in' type='checkbox'><label for='data-b216a5fe-3e77-40f3-a25f-16379bf24f80' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 50000., 150000., 250000., 350000., 450000., 550000., 650000.,\n",
" 750000., 850000., 950000., 1050000., 1150000., 1250000., 1350000.,\n",
" 1450000., 1550000., 1650000., 1750000., 1850000., 1950000.],\n",
" dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>XG_agg</span></div><div class='xr-var-dims'>(XG_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.0 1e+05 2e+05 ... 1.8e+06 1.9e+06</div><input id='attrs-20f3029f-040a-46d6-9ba5-ec5f936edf70' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-20f3029f-040a-46d6-9ba5-ec5f936edf70' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f3612130-2c84-4cdb-ad43-9fa42557d5f6' class='xr-var-data-in' type='checkbox'><label for='data-f3612130-2c84-4cdb-ad43-9fa42557d5f6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>X</dd><dt><span>c_grid_axis_shift :</span></dt><dd>-0.5</dd><dt><span>coordinate :</span></dt><dd>YG XG</dd><dt><span>long_name :</span></dt><dd>x coordinate</dd><dt><span>standard_name :</span></dt><dd>plane_x_coordinate_at_f_location</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([ 0., 100000., 200000., 300000., 400000., 500000., 600000.,\n",
" 700000., 800000., 900000., 1000000., 1100000., 1200000., 1300000.,\n",
" 1400000., 1500000., 1600000., 1700000., 1800000., 1900000.],\n",
" dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>YC_agg</span></div><div class='xr-var-dims'>(YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>5e+04 1.5e+05 ... 1.85e+06 1.95e+06</div><input id='attrs-b38af9f2-1c65-4bf1-9ef8-7a362dd15556' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b38af9f2-1c65-4bf1-9ef8-7a362dd15556' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c6a10c69-1842-4d83-8f74-c81ef7cbbc4b' class='xr-var-data-in' type='checkbox'><label for='data-c6a10c69-1842-4d83-8f74-c81ef7cbbc4b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 50000., 150000., 250000., 350000., 450000., 550000., 650000.,\n",
" 750000., 850000., 950000., 1050000., 1150000., 1250000., 1350000.,\n",
" 1450000., 1550000., 1650000., 1750000., 1850000., 1950000.],\n",
" dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>YG_agg</span></div><div class='xr-var-dims'>(YG_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.0 1e+05 2e+05 ... 1.8e+06 1.9e+06</div><input id='attrs-747cf3c8-4017-41e3-828d-dc3653e5db15' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-747cf3c8-4017-41e3-828d-dc3653e5db15' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e5600c81-deeb-4fe1-95e0-85bd2b17382f' class='xr-var-data-in' type='checkbox'><label for='data-e5600c81-deeb-4fe1-95e0-85bd2b17382f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Y</dd><dt><span>c_grid_axis_shift :</span></dt><dd>-0.5</dd><dt><span>long_name :</span></dt><dd>y coordinate</dd><dt><span>standard_name :</span></dt><dd>plane_y_coordinate_at_f_location</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([ 0., 100000., 200000., 300000., 400000., 500000., 600000.,\n",
" 700000., 800000., 900000., 1000000., 1100000., 1200000., 1300000.,\n",
" 1400000., 1500000., 1600000., 1700000., 1800000., 1900000.],\n",
" dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>Z</span></div><div class='xr-var-dims'>(Z)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>-5.0 -15.0 ... -2.83e+03 -2.934e+03</div><input id='attrs-2cc0f9e7-7838-4f40-9c18-c32f8185fc9e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2cc0f9e7-7838-4f40-9c18-c32f8185fc9e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4616a9e6-c5f0-488f-b2ab-ca47b4f33c4b' class='xr-var-data-in' type='checkbox'><label for='data-4616a9e6-c5f0-488f-b2ab-ca47b4f33c4b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>long_name :</span></dt><dd>vertical coordinate of cell center</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>standard_name :</span></dt><dd>depth</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([ -5. , -15. , -25. , -36. , -49. , -64. , -81.5, -102. ,\n",
" -126. , -154. , -187. , -226. , -272. , -327. , -393. , -471.5,\n",
" -565. , -667.5, -770.5, -873.5, -976.5, -1079.5, -1182.5, -1285.5,\n",
" -1388.5, -1491.5, -1594.5, -1697.5, -1800.5, -1903.5, -2006.5, -2109.5,\n",
" -2212.5, -2315.5, -2418.5, -2521.5, -2624.5, -2727.5, -2830.5, -2933.5],\n",
" dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>Zl</span></div><div class='xr-var-dims'>(Zl)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.0 -10.0 ... -2.779e+03 -2.882e+03</div><input id='attrs-3ee615e9-27ce-4982-8b74-9f00825a1ffc' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3ee615e9-27ce-4982-8b74-9f00825a1ffc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b6677431-28d7-4dfe-8668-a87c2c494fdb' class='xr-var-data-in' type='checkbox'><label for='data-b6677431-28d7-4dfe-8668-a87c2c494fdb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>c_grid_axis_shift :</span></dt><dd>-0.5</dd><dt><span>long_name :</span></dt><dd>vertical coordinate of upper cell interface</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>standard_name :</span></dt><dd>depth_at_upper_w_location</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([ 0., -10., -20., -30., -42., -56., -72., -91., -113.,\n",
" -139., -169., -205., -247., -297., -357., -429., -514., -616.,\n",
" -719., -822., -925., -1028., -1131., -1234., -1337., -1440., -1543.,\n",
" -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470.,\n",
" -2573., -2676., -2779., -2882.], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>drCl</span></div><div class='xr-var-dims'>(Zl)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40,), meta=np.ndarray&gt;</div><input id='attrs-2c766c2d-8970-4a6c-b440-c9176acb51be' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2c766c2d-8970-4a6c-b440-c9176acb51be' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e0f2ac7d-5f15-40ef-a04b-d9ec643e9889' class='xr-var-data-in' type='checkbox'><label for='data-e0f2ac7d-5f15-40ef-a04b-d9ec643e9889' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 160 B </td> <td> 160 B </td></tr>\n",
" <tr><th> Shape </th><td> (40,) </td> <td> (40,) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"170\" height=\"80\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"30\" x2=\"120\" y2=\"30\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"30\" style=\"stroke-width:2\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"30\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,30.311399683662877 0.0,30.311399683662877\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"50.311400\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >40</text>\n",
" <text x=\"140.000000\" y=\"15.155700\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,15.155700)\">1</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>drF</span></div><div class='xr-var-dims'>(Z)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40,), meta=np.ndarray&gt;</div><input id='attrs-6773809b-b93f-469a-8098-9326b57ff26f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6773809b-b93f-469a-8098-9326b57ff26f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7778bb8a-4907-4884-99cb-37ad7b6b15e2' class='xr-var-data-in' type='checkbox'><label for='data-7778bb8a-4907-4884-99cb-37ad7b6b15e2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 160 B </td> <td> 160 B </td></tr>\n",
" <tr><th> Shape </th><td> (40,) </td> <td> (40,) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"170\" height=\"80\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"30\" x2=\"120\" y2=\"30\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"30\" style=\"stroke-width:2\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"30\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,30.311399683662877 0.0,30.311399683662877\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"50.311400\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >40</text>\n",
" <text x=\"140.000000\" y=\"15.155700\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,15.155700)\">1</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dxC</span></div><div class='xr-var-dims'>(XG_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(20, 20), meta=np.ndarray&gt;</div><input id='attrs-aa47a298-9064-40fb-bb7a-9a031f37bad6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-aa47a298-9064-40fb-bb7a-9a031f37bad6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9f2d9ef0-8273-4e8f-8f7f-ca2cb646127e' class='xr-var-data-in' type='checkbox'><label for='data-9f2d9ef0-8273-4e8f-8f7f-ca2cb646127e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 1.56 kiB </td> <td> 1.56 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (20, 20) </td> <td> (20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"170\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"120\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"140.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,60.000000)\">20</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dxCc</span></div><div class='xr-var-dims'>(YC_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(20, 20), meta=np.ndarray&gt;</div><input id='attrs-81750009-9e36-497c-9513-a17851fdfd7d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-81750009-9e36-497c-9513-a17851fdfd7d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ea5c57b7-8f57-44dd-9654-fed595073ead' class='xr-var-data-in' type='checkbox'><label for='data-ea5c57b7-8f57-44dd-9654-fed595073ead' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 1.56 kiB </td> <td> 1.56 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (20, 20) </td> <td> (20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"170\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"120\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"140.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,60.000000)\">20</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dyC</span></div><div class='xr-var-dims'>(YG_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(20, 20), meta=np.ndarray&gt;</div><input id='attrs-f5660c49-82d2-4f58-9f23-718614734c67' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f5660c49-82d2-4f58-9f23-718614734c67' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1c56ed92-b6e7-46f1-b532-0782f70305e2' class='xr-var-data-in' type='checkbox'><label for='data-1c56ed92-b6e7-46f1-b532-0782f70305e2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 1.56 kiB </td> <td> 1.56 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (20, 20) </td> <td> (20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"170\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"120\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"140.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,60.000000)\">20</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dyCc</span></div><div class='xr-var-dims'>(YC_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(20, 20), meta=np.ndarray&gt;</div><input id='attrs-00d7aba2-eebd-4003-b3f3-f75e3d99aa3a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-00d7aba2-eebd-4003-b3f3-f75e3d99aa3a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-50a20f5d-210b-46f3-8894-92acc3ffdbf1' class='xr-var-data-in' type='checkbox'><label for='data-50a20f5d-210b-46f3-8894-92acc3ffdbf1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 1.56 kiB </td> <td> 1.56 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (20, 20) </td> <td> (20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"170\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"120\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"140.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,60.000000)\">20</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hFacC</span></div><div class='xr-var-dims'>(Z, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-a4c5f954-76c0-43ac-a3a1-838b144df4c3' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a4c5f954-76c0-43ac-a3a1-838b144df4c3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-537ad80a-0b9b-4260-b55f-121e0807d7b9' class='xr-var-data-in' type='checkbox'><label for='data-537ad80a-0b9b-4260-b55f-121e0807d7b9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hFacCl</span></div><div class='xr-var-dims'>(Zl, YC_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-9da1c5bf-e452-4cf9-931f-f7b971dcddb3' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9da1c5bf-e452-4cf9-931f-f7b971dcddb3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-45cc62e5-3662-4395-817a-c93e3af830f7' class='xr-var-data-in' type='checkbox'><label for='data-45cc62e5-3662-4395-817a-c93e3af830f7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hFacS</span></div><div class='xr-var-dims'>(Z, YG_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-8041781b-1ec7-47c9-b9ba-1d07f76db317' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8041781b-1ec7-47c9-b9ba-1d07f76db317' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-56533875-50eb-4968-9ccb-655df2b39149' class='xr-var-data-in' type='checkbox'><label for='data-56533875-50eb-4968-9ccb-655df2b39149' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hFacW</span></div><div class='xr-var-dims'>(Z, XG_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-8056d6a3-c944-4433-b760-f914506fe447' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8056d6a3-c944-4433-b760-f914506fe447' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ab08c76a-6d20-4116-a8d1-ce1b2fde846d' class='xr-var-data-in' type='checkbox'><label for='data-ab08c76a-6d20-4116-a8d1-ce1b2fde846d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>mask2</span></div><div class='xr-var-dims'>(Zl, YC_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-45a6f6c0-27c3-4064-86fc-9be436055f7b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-45a6f6c0-27c3-4064-86fc-9be436055f7b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8bbcad3d-d302-4b7d-8a0d-d6e6ce48eb5a' class='xr-var-data-in' type='checkbox'><label for='data-8bbcad3d-d302-4b7d-8a0d-d6e6ce48eb5a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>maskc3</span></div><div class='xr-var-dims'>(Zl, YC_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-4e63954c-ce16-42d9-9872-90eef586faf0' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4e63954c-ce16-42d9-9872-90eef586faf0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0950a73a-496f-432e-bd0d-2ebc07513b05' class='xr-var-data-in' type='checkbox'><label for='data-0950a73a-496f-432e-bd0d-2ebc07513b05' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>masks</span></div><div class='xr-var-dims'>(Z, YG_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-a978e623-b8b5-4d8b-a69b-1cdbbaf10d2c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a978e623-b8b5-4d8b-a69b-1cdbbaf10d2c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-09df3b52-99a0-4ef3-9349-2d239b40deee' class='xr-var-data-in' type='checkbox'><label for='data-09df3b52-99a0-4ef3-9349-2d239b40deee' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>masktb</span></div><div class='xr-var-dims'>(Zl, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-b6f5a2ea-0cca-46ce-bd26-971ea33822e4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b6f5a2ea-0cca-46ce-bd26-971ea33822e4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-678b4c80-09d4-486b-a11b-c04b9308e09a' class='xr-var-data-in' type='checkbox'><label for='data-678b4c80-09d4-486b-a11b-c04b9308e09a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 125.00 kiB </td> <td> 125.00 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>maskw</span></div><div class='xr-var-dims'>(Z, XG_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(40, 20, 20), meta=np.ndarray&gt;</div><input id='attrs-15be0881-9ece-45d3-9b48-46dc618b1903' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-15be0881-9ece-45d3-9b48-46dc618b1903' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9c89351b-b044-4613-b435-2d1f59ea4948' class='xr-var-data-in' type='checkbox'><label for='data-9c89351b-b044-4613-b435-2d1f59ea4948' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 62.50 kiB </td> <td> 62.50 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 20, 20) </td> <td> (40, 20, 20) </td></tr>\n",
" <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"190\" height=\"180\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"10\" y1=\"60\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"60\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,130.58823529411765 10.0,60.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"70\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"70\" y1=\"0\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"10.0,0.0 70.0,0.0 140.58823529411765,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"140\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"80\" y1=\"130\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"130\" style=\"stroke-width:2\" />\n",
" <line x1=\"140\" y1=\"70\" x2=\"140\" y2=\"130\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"80.58823529411765,70.58823529411765 140.58823529411765,70.58823529411765 140.58823529411765,130.58823529411765 80.58823529411765,130.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"110.588235\" y=\"150.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"160.588235\" y=\"100.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,160.588235,100.588235)\">20</text>\n",
" <text x=\"35.294118\" y=\"115.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,115.294118)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>timedelta64[ns]</div><div class='xr-var-preview xr-preview'>61023 days ... 66948 days</div><input id='attrs-f7b7230f-8a3b-4f52-8efa-1a8d4c9b5415' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f7b7230f-8a3b-4f52-8efa-1a8d4c9b5415' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-01a8db27-f013-4df9-88d7-87c9cef9608b' class='xr-var-data-in' type='checkbox'><label for='data-01a8db27-f013-4df9-88d7-87c9cef9608b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd><dt><span>calendar :</span></dt><dd>gregorian</dd><dt><span>long_name :</span></dt><dd>Time</dd><dt><span>standard_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array([5272387200000000000, 5273683200000000000, 5274979200000000000, ...,\n",
" 5781715200000000000, 5783011200000000000, 5784307200000000000],\n",
" dtype=&#x27;timedelta64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-011f1f5a-d875-4f6d-9d07-f67223453cc4' class='xr-section-summary-in' type='checkbox' ><label for='section-011f1f5a-d875-4f6d-9d07-f67223453cc4' class='xr-section-summary' >Data variables: <span>(18)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>T</span></div><div class='xr-var-dims'>(time, Z, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-f60a88a8-4fb9-4619-a142-f4c358028bb3' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f60a88a8-4fb9-4619-a142-f4c358028bb3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b4d64629-ac0f-4756-b113-b13710f3b18e' class='xr-var-data-in' type='checkbox'><label for='data-b4d64629-ac0f-4756-b113-b13710f3b18e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>eddyV</span></div><div class='xr-var-dims'>(time, Z, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 10, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-f8aeb200-28a3-4077-bcec-66a4b1781618' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f8aeb200-28a3-4077-bcec-66a4b1781618' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0b7e753b-9b0d-41a5-9b99-e81e58c4a74e' class='xr-var-data-in' type='checkbox'><label for='data-0b7e753b-9b0d-41a5-9b99-e81e58c4a74e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 48.34 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 10, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 65 Tasks </td><td> 64 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"195\" y1=\"5\" x2=\"195\" y2=\"40\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"207\" y1=\"17\" x2=\"207\" y2=\"51\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"195\" y1=\"5\" x2=\"230\" y2=\"5\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"207\" y1=\"17\" x2=\"241\" y2=\"17\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>eddy_a1</span></div><div class='xr-var-dims'>(Z, time, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(10, 99, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-6691f8b0-bc59-420d-bb03-b4929f21a4b9' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6691f8b0-bc59-420d-bb03-b4929f21a4b9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-dc3263f7-47a7-4d37-8a0f-f9e8d2c4bd1b' class='xr-var-data-in' type='checkbox'><label for='data-dc3263f7-47a7-4d37-8a0f-f9e8d2c4bd1b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 48.34 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 396, 20, 20) </td> <td> (10, 99, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 65 Tasks </td><td> 64 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"371\" height=\"155\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"38\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"38\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
" <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n",
" <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n",
" <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 38.65248821440221,0.0 38.65248821440221,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"19.326244\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >40</text>\n",
" <text x=\"58.652488\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,58.652488,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"178\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"108\" y1=\"17\" x2=\"178\" y2=\"87\" />\n",
" <line x1=\"108\" y1=\"34\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"125\" y1=\"17\" x2=\"125\" y2=\"52\" />\n",
" <line x1=\"143\" y1=\"35\" x2=\"143\" y2=\"69\" />\n",
" <line x1=\"160\" y1=\"52\" x2=\"160\" y2=\"87\" />\n",
" <line x1=\"178\" y1=\"70\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"108.0,0.0 178.58823529411765,70.58823529411765 178.58823529411765,105.15078122881496 108.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"142\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"125\" y1=\"17\" x2=\"160\" y2=\"17\" />\n",
" <line x1=\"143\" y1=\"35\" x2=\"177\" y2=\"35\" />\n",
" <line x1=\"160\" y1=\"52\" x2=\"195\" y2=\"52\" />\n",
" <line x1=\"178\" y1=\"70\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"178\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"125\" y1=\"0\" x2=\"195\" y2=\"70\" />\n",
" <line x1=\"142\" y1=\"0\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"108.0,0.0 142.5625459346973,0.0 213.15078122881496,70.58823529411765 178.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"178\" y1=\"70\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"178\" y1=\"87\" x2=\"213\" y2=\"87\" />\n",
" <line x1=\"178\" y1=\"105\" x2=\"213\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"178\" y1=\"70\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
" <line x1=\"195\" y1=\"70\" x2=\"195\" y2=\"105\" />\n",
" <line x1=\"213\" y1=\"70\" x2=\"213\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"178.58823529411765,70.58823529411765 213.15078122881496,70.58823529411765 213.15078122881496,105.15078122881496 178.58823529411765,105.15078122881496\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"195.869508\" y=\"125.150781\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"233.150781\" y=\"87.869508\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,233.150781,87.869508)\">20</text>\n",
" <text x=\"133.294118\" y=\"89.856664\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,133.294118,89.856664)\">396</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>eddy_a2</span></div><div class='xr-var-dims'>(time, Z, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 10, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-aa7b3ef5-b014-4d85-8a3a-ed39d0f37765' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-aa7b3ef5-b014-4d85-8a3a-ed39d0f37765' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c8bd56d1-743d-4266-98a5-bd1e05bdabcb' class='xr-var-data-in' type='checkbox'><label for='data-c8bd56d1-743d-4266-98a5-bd1e05bdabcb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 48.34 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 10, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 65 Tasks </td><td> 64 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"195\" y1=\"5\" x2=\"195\" y2=\"40\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"207\" y1=\"17\" x2=\"207\" y2=\"51\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"195\" y1=\"5\" x2=\"230\" y2=\"5\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"207\" y1=\"17\" x2=\"241\" y2=\"17\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>gmredi_07</span></div><div class='xr-var-dims'>(time, Z, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-a283d816-2104-404a-b470-0f41b25f40c1' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a283d816-2104-404a-b470-0f41b25f40c1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7d21f631-9367-44d6-8762-d588c458e48e' class='xr-var-data-in' type='checkbox'><label for='data-7d21f631-9367-44d6-8762-d588c458e48e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>temp</span></div><div class='xr-var-dims'>(time, Z, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-1603a297-fc8d-481d-b05d-087a467cf86f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-1603a297-fc8d-481d-b05d-087a467cf86f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-edbb6831-aeee-45a3-926a-e46df34bdb99' class='xr-var-data-in' type='checkbox'><label for='data-edbb6831-aeee-45a3-926a-e46df34bdb99' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>temp1</span></div><div class='xr-var-dims'>(Zl, time, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(10, 198, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-e98b91b9-fcdb-4bf7-bd9b-c0edd80cea00' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e98b91b9-fcdb-4bf7-bd9b-c0edd80cea00' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-531d2f8d-8acb-4140-a16a-268b9f4c5f4b' class='xr-var-data-in' type='checkbox'><label for='data-531d2f8d-8acb-4140-a16a-268b9f4c5f4b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 396, 20, 20) </td> <td> (10, 198, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"371\" height=\"155\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"38\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"38\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
" <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n",
" <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n",
" <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 38.65248821440221,0.0 38.65248821440221,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"19.326244\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >40</text>\n",
" <text x=\"58.652488\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,58.652488,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"178\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"108\" y1=\"17\" x2=\"178\" y2=\"87\" />\n",
" <line x1=\"108\" y1=\"34\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"143\" y1=\"35\" x2=\"143\" y2=\"69\" />\n",
" <line x1=\"178\" y1=\"70\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"108.0,0.0 178.58823529411765,70.58823529411765 178.58823529411765,105.15078122881496 108.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"142\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"143\" y1=\"35\" x2=\"177\" y2=\"35\" />\n",
" <line x1=\"178\" y1=\"70\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"178\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"125\" y1=\"0\" x2=\"195\" y2=\"70\" />\n",
" <line x1=\"142\" y1=\"0\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"108.0,0.0 142.5625459346973,0.0 213.15078122881496,70.58823529411765 178.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"178\" y1=\"70\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"178\" y1=\"87\" x2=\"213\" y2=\"87\" />\n",
" <line x1=\"178\" y1=\"105\" x2=\"213\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"178\" y1=\"70\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
" <line x1=\"195\" y1=\"70\" x2=\"195\" y2=\"105\" />\n",
" <line x1=\"213\" y1=\"70\" x2=\"213\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"178.58823529411765,70.58823529411765 213.15078122881496,70.58823529411765 213.15078122881496,105.15078122881496 178.58823529411765,105.15078122881496\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"195.869508\" y=\"125.150781\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"233.150781\" y=\"87.869508\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,233.150781,87.869508)\">20</text>\n",
" <text x=\"133.294118\" y=\"89.856664\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,133.294118,89.856664)\">396</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>temp2</span></div><div class='xr-var-dims'>(Zl, time, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(10, 198, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-e73456c9-ec79-45f6-a467-7373768c2482' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e73456c9-ec79-45f6-a467-7373768c2482' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8908fd5b-ba5f-4970-ad03-78e9c164838d' class='xr-var-data-in' type='checkbox'><label for='data-8908fd5b-ba5f-4970-ad03-78e9c164838d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (40, 396, 20, 20) </td> <td> (10, 198, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"371\" height=\"155\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"38\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"38\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n",
" <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n",
" <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n",
" <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 38.65248821440221,0.0 38.65248821440221,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"19.326244\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >40</text>\n",
" <text x=\"58.652488\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,58.652488,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"178\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"108\" y1=\"17\" x2=\"178\" y2=\"87\" />\n",
" <line x1=\"108\" y1=\"34\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"143\" y1=\"35\" x2=\"143\" y2=\"69\" />\n",
" <line x1=\"178\" y1=\"70\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"108.0,0.0 178.58823529411765,70.58823529411765 178.58823529411765,105.15078122881496 108.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"142\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"143\" y1=\"35\" x2=\"177\" y2=\"35\" />\n",
" <line x1=\"178\" y1=\"70\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"108\" y1=\"0\" x2=\"178\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"125\" y1=\"0\" x2=\"195\" y2=\"70\" />\n",
" <line x1=\"142\" y1=\"0\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"108.0,0.0 142.5625459346973,0.0 213.15078122881496,70.58823529411765 178.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"178\" y1=\"70\" x2=\"213\" y2=\"70\" style=\"stroke-width:2\" />\n",
" <line x1=\"178\" y1=\"87\" x2=\"213\" y2=\"87\" />\n",
" <line x1=\"178\" y1=\"105\" x2=\"213\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"178\" y1=\"70\" x2=\"178\" y2=\"105\" style=\"stroke-width:2\" />\n",
" <line x1=\"195\" y1=\"70\" x2=\"195\" y2=\"105\" />\n",
" <line x1=\"213\" y1=\"70\" x2=\"213\" y2=\"105\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"178.58823529411765,70.58823529411765 213.15078122881496,70.58823529411765 213.15078122881496,105.15078122881496 178.58823529411765,105.15078122881496\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"195.869508\" y=\"125.150781\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"233.150781\" y=\"87.869508\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,233.150781,87.869508)\">20</text>\n",
" <text x=\"133.294118\" y=\"89.856664\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,133.294118,89.856664)\">396</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>temp3</span></div><div class='xr-var-dims'>(time, Zl, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-0c580e3a-7d38-4cb4-8d8f-4434dd3f1ac6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-0c580e3a-7d38-4cb4-8d8f-4434dd3f1ac6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c70dae9a-5323-4dfb-beaf-06869166f866' class='xr-var-data-in' type='checkbox'><label for='data-c70dae9a-5323-4dfb-beaf-06869166f866' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>u_th_trans</span></div><div class='xr-var-dims'>(time, Z, XG_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-047e87b7-01fc-485a-b907-9f4a85a20814' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-047e87b7-01fc-485a-b907-9f4a85a20814' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-37e92e8d-bec2-4bd9-b4a3-0d418cd6c30e' class='xr-var-data-in' type='checkbox'><label for='data-37e92e8d-bec2-4bd9-b4a3-0d418cd6c30e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>u_trans</span></div><div class='xr-var-dims'>(time, Z, XG_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-dfdbb22f-c76c-443a-8d43-25348c4d3be7' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-dfdbb22f-c76c-443a-8d43-25348c4d3be7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c09a9f2d-382e-4079-971c-562e1209622b' class='xr-var-data-in' type='checkbox'><label for='data-c09a9f2d-382e-4079-971c-562e1209622b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>utFlux_GM</span></div><div class='xr-var-dims'>(time, Z, XG_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-c681c667-2cba-46be-bd4e-363b538c8381' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c681c667-2cba-46be-bd4e-363b538c8381' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eb92381c-7ef0-409e-8477-668601206272' class='xr-var-data-in' type='checkbox'><label for='data-eb92381c-7ef0-409e-8477-668601206272' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>v_th_trans</span></div><div class='xr-var-dims'>(time, Z, YG_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-7936d61d-01c5-4684-9657-a6677d494b75' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7936d61d-01c5-4684-9657-a6677d494b75' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-918c8f39-15ad-4fca-8881-a4759da429d4' class='xr-var-data-in' type='checkbox'><label for='data-918c8f39-15ad-4fca-8881-a4759da429d4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>v_trans</span></div><div class='xr-var-dims'>(time, Z, YG_agg, XC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-c4fd3ea7-b5ed-4498-a1fd-8f90394421f4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c4fd3ea7-b5ed-4498-a1fd-8f90394421f4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6e265cb9-0c6e-4aa9-8052-c6a503323c6e' class='xr-var-data-in' type='checkbox'><label for='data-6e265cb9-0c6e-4aa9-8052-c6a503323c6e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vtFlux_GM</span></div><div class='xr-var-dims'>(time, Z, XC_agg, YG_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-4d06d51e-130f-4633-8148-00c87f1f9415' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4d06d51e-130f-4633-8148-00c87f1f9415' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f272fbd0-f8d7-4bd3-a0f3-b8ed4077f283' class='xr-var-data-in' type='checkbox'><label for='data-f272fbd0-f8d7-4bd3-a0f3-b8ed4077f283' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>w_th_trans</span></div><div class='xr-var-dims'>(time, Zl, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-ee929e60-97ef-4490-87ec-a61e3b42009c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ee929e60-97ef-4490-87ec-a61e3b42009c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5c1edce2-f0af-40e3-b779-848376ccf820' class='xr-var-data-in' type='checkbox'><label for='data-5c1edce2-f0af-40e3-b779-848376ccf820' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>w_trans</span></div><div class='xr-var-dims'>(time, Zl, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-ea57535b-8ecd-4e40-9203-ba89c8e4a118' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ea57535b-8ecd-4e40-9203-ba89c8e4a118' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6e702104-2efc-4083-89dd-74650e4f14f1' class='xr-var-data-in' type='checkbox'><label for='data-6e702104-2efc-4083-89dd-74650e4f14f1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>wtFlux_GM</span></div><div class='xr-var-dims'>(time, Zl, XC_agg, YC_agg)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(99, 20, 10, 10), meta=np.ndarray&gt;</div><input id='attrs-12282d64-420c-4088-aa70-ca167ddcb650' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-12282d64-420c-4088-aa70-ca167ddcb650' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1fc6ae7d-3345-4985-8134-c6b44c76637b' class='xr-var-data-in' type='checkbox'><label for='data-1fc6ae7d-3345-4985-8134-c6b44c76637b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
"<tr>\n",
"<td>\n",
"<table>\n",
" <thead>\n",
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr><th> Bytes </th><td> 24.17 MiB </td> <td> 773.44 kiB </td></tr>\n",
" <tr><th> Shape </th><td> (396, 40, 20, 20) </td> <td> (99, 20, 10, 10) </td></tr>\n",
" <tr><th> Count </th><td> 33 Tasks </td><td> 32 Chunks </td></tr>\n",
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
" </tbody>\n",
"</table>\n",
"</td>\n",
"<td>\n",
"<svg width=\"487\" height=\"107\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >396</text>\n",
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"190\" y1=\"17\" x2=\"212\" y2=\"40\" />\n",
" <line x1=\"190\" y1=\"34\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"201\" y2=\"45\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 212.73675777317777,22.73675777317777 212.73675777317777,57.29930370787509 190.0,34.56254593469732\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"224\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"201\" y1=\"11\" x2=\"235\" y2=\"11\" />\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"190\" y1=\"0\" x2=\"212\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"207\" y1=\"0\" x2=\"230\" y2=\"22\" />\n",
" <line x1=\"224\" y1=\"0\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"190.0,0.0 224.5625459346973,0.0 247.29930370787508,22.73675777317777 212.73675777317777,22.73675777317777\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"247\" y2=\"22\" style=\"stroke-width:2\" />\n",
" <line x1=\"212\" y1=\"40\" x2=\"247\" y2=\"40\" />\n",
" <line x1=\"212\" y1=\"57\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"212\" y1=\"22\" x2=\"212\" y2=\"57\" style=\"stroke-width:2\" />\n",
" <line x1=\"230\" y1=\"22\" x2=\"230\" y2=\"57\" />\n",
" <line x1=\"247\" y1=\"22\" x2=\"247\" y2=\"57\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"212.73675777317777,22.73675777317777 247.29930370787508,22.73675777317777 247.29930370787508,57.29930370787509 212.73675777317777,57.29930370787509\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"230.018031\" y=\"77.299304\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n",
" <text x=\"267.299304\" y=\"40.018031\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,267.299304,40.018031)\">20</text>\n",
" <text x=\"191.368379\" y=\"65.930925\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,191.368379,65.930925)\">40</text>\n",
"</svg>\n",
"</td>\n",
"</tr>\n",
"</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-0b0de5f2-1979-45fe-8de1-1fb5e1255273' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-0b0de5f2-1979-45fe-8de1-1fb5e1255273' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (XC_agg: 20, XG_agg: 20, YC_agg: 20, YG_agg: 20, Z: 40, Zl: 40, time: 396)\n",
"Coordinates: (12/23)\n",
" PHrefC (Z) float32 dask.array<chunksize=(40,), meta=np.ndarray>\n",
" * XC_agg (XC_agg) float32 5e+04 1.5e+05 2.5e+05 ... 1.85e+06 1.95e+06\n",
" * XG_agg (XG_agg) float32 0.0 1e+05 2e+05 ... 1.7e+06 1.8e+06 1.9e+06\n",
" * YC_agg (YC_agg) float32 5e+04 1.5e+05 2.5e+05 ... 1.85e+06 1.95e+06\n",
" * YG_agg (YG_agg) float32 0.0 1e+05 2e+05 ... 1.7e+06 1.8e+06 1.9e+06\n",
" * Z (Z) float32 -5.0 -15.0 -25.0 ... -2.728e+03 -2.83e+03 -2.934e+03\n",
" ... ...\n",
" mask2 (Zl, YC_agg, XC_agg) float32 dask.array<chunksize=(40, 20, 20), meta=np.ndarray>\n",
" maskc3 (Zl, YC_agg, XC_agg) float32 dask.array<chunksize=(40, 20, 20), meta=np.ndarray>\n",
" masks (Z, YG_agg, XC_agg) float32 dask.array<chunksize=(40, 20, 20), meta=np.ndarray>\n",
" masktb (Zl, XC_agg, YC_agg) float64 dask.array<chunksize=(40, 20, 20), meta=np.ndarray>\n",
" maskw (Z, XG_agg, YC_agg) float32 dask.array<chunksize=(40, 20, 20), meta=np.ndarray>\n",
" * time (time) timedelta64[ns] 61023 days 61038 days ... 66948 days\n",
"Data variables: (12/18)\n",
" T (time, Z, XC_agg, YC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" eddyV (time, Z, XC_agg, YC_agg) float64 dask.array<chunksize=(99, 10, 10, 10), meta=np.ndarray>\n",
" eddy_a1 (Z, time, XC_agg, YC_agg) float64 dask.array<chunksize=(10, 99, 10, 10), meta=np.ndarray>\n",
" eddy_a2 (time, Z, XC_agg, YC_agg) float64 dask.array<chunksize=(99, 10, 10, 10), meta=np.ndarray>\n",
" gmredi_07 (time, Z, XC_agg, YC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" temp (time, Z, XC_agg, YC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" ... ...\n",
" v_th_trans (time, Z, YG_agg, XC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" v_trans (time, Z, YG_agg, XC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" vtFlux_GM (time, Z, XC_agg, YG_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" w_th_trans (time, Zl, XC_agg, YC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" w_trans (time, Zl, XC_agg, YC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>\n",
" wtFlux_GM (time, Zl, XC_agg, YC_agg) float32 dask.array<chunksize=(99, 20, 10, 10), meta=np.ndarray>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds = xr.open_zarr('/Users/rpa/tmp/test')\n",
"ds"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8339a220",
"metadata": {},
"outputs": [],
"source": [
"filename = \"temperature_and_eddy_forcing.mp4\"\n",
"\n",
"plotter = pv.Plotter()\n",
"#plotter = pvqt.BackgroundPlotter()\n",
"# Open a movie file\n",
"plotter.open_movie(filename, framerate=5)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7b5ee16e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0., -10., -20., -30., -42., -56., -72., -91.,\n",
" -113., -139., -169., -205., -247., -297., -357., -429.,\n",
" -514., -616., -719., -822., -925., -1028., -1131., -1234.,\n",
" -1337., -1440., -1543., -1646., -1749., -1852., -1955., -2058.,\n",
" -2161., -2264., -2367., -2470., -2573., -2676., -2779., -2882.,\n",
" -2985.], dtype=float32)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xg = ds.XG_agg.values\n",
"yg = ds.YG_agg.values\n",
"zg = ds.Zl.values\n",
"\n",
"# manually extend arrays\n",
"dxg = xg[-1] - xg[-2]\n",
"xg = np.concatenate([xg, [xg[-1] + dxg]])\n",
"\n",
"dyg = yg[-1] - yg[-2]\n",
"yg = np.concatenate([yg, [yg[-1] + dyg]])\n",
"\n",
"dz = ds.drF.values\n",
"zg = np.concatenate([zg, [zg[-1] - dz[-1]]])\n",
"zg"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "87719acc",
"metadata": {},
"outputs": [],
"source": [
"#plotter = pvqt.BackgroundPlotter()\n",
"#plotter = pv.Plotter()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3b44965f",
"metadata": {},
"outputs": [],
"source": [
"aspect = 0.3e3\n",
"offset = 4000\n",
"\n",
"grid_l = pv.RectilinearGrid(xg/aspect, yg/aspect + offset, zg)\n",
"grid_r = pv.RectilinearGrid(xg/aspect + 2*offset, yg/aspect - offset, zg)\n",
"\n",
"def update_data(i):\n",
" grid_l.cell_arrays[\"T\"] = ds[\"T\"][i, ::-1, ::-1].values.flatten()\n",
" grid_r.cell_arrays[\"eddy_forc\"] = ds[\"eddyV\"][i, ::-1, ::-1].values.flatten()\n",
" \n",
"update_data(0)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ff32f3e3",
"metadata": {},
"outputs": [],
"source": [
"# background plotter\n",
"#cpos = [(-5357.064080965135, -10160.354713256544, 9891.917619132917),\n",
"# (5610.073566725802, 1485.4731686040536, -552.5943624341437),\n",
"# (0.38039384351927424, 0.39270852688016344, 0.8373055217351943)]\n",
"\n",
"# regular plotter\n",
"cpos = [(-7660.16298698021, -12605.978568447243, 12085.265135261985),\n",
" (5610.073566725802, 1485.4731686040536, -552.5943624341437),\n",
" (0.38039384351927424, 0.39270852688016344, 0.8373055217351943)]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "64731ddd",
"metadata": {},
"outputs": [],
"source": [
"T_sargs = dict(height=0.25, vertical=True, position_x=0.05, position_y=0.05)\n",
"eddy_sargs = dict(height=0.25, vertical=True, position_x=0.9, position_y=0.05)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9d96545c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB4AAAAQ4CAIAAABnsVYUAAEAAElEQVR4nOzdeZhU5Zmw8aca0KxqzAIiIKi4EgGh6b1O4xrNrkk0XxId40ziMi4giArdbVV1s8gmKKCZGEfNjKJBY4IaBe06VV1VvbA1giIoNDutUeMSk0wi/f3xNofTp6pOnzqL6/275vJSaHhQnJnm5vF5Q11dXQIAAAAAAAAAgN+KPuwfAAAAAAAAAADgk4kADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEAQoAEAAAAAAAAAgSBAAwAAAAAAAAACQYAGAAAAAAAAAASCAA0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBGgAAAAAAAAAQCAI0AAAAAAAAACAQBCgAQAAAAAAAACBIEADAAAAAAAAAAJBgAYAAAAAAAAABIIADQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEaAAAAAAAAABAIAjQAAAAAAAAAIBAEKABAAAAAAAAAIEgQAMAAAAAAAAAAkGABgAAAAAAAAAEggANAAAAAAAAAAgEARoAAAAAAAAAEAgCNAAAAAAAAAAgEARoAMDHRiQSCYVC48ePj8fjH/aPBQAAAAAA9C7U1dX1Yf8YAACwE4lE4vG4JTpXV1c3NjZ+SD8iAAAAAADgCAEaAPARFYlEROTWW29Vf1k7+Udaxala+akioqc3nvm9OvW1dXV1H96PEQAAAAAA2CFAAwA+Wmy6swUZGgAAAACAjzgCNADgI8F5d7Y48/t1emqjkKEBAACyGJ9iVVdX19XVVVdXf9g/IgDApw4BGgDwYYrH47qum7uz8Ufn9PTG6OyH9dRGfmUFAACgmH93v6KyKtWUVF/O50sAgA8YARoA8CHwpTtbkKEBAABEJBKJGJ9lTb7plsk336L+PN2UnD1juirRfL4EAPjAEKABAB8o86+IRKR28o88dmcL4zC0iDQ2NvLLKgAA8OlhfKJVUVlVXlllpGezdFMylUymm5KUaADAB6Pvh/0DAAB8KkQikXg8Ho/H1V/WXXm+iESWPOnjiOjsh9UfVdHW0xvHjx/Pr6kAAMCngZGeJ990S0VVVXllVb6PLK/s/lq1EG18hsZnTQCAgLABDQAIkOVpwborz9fGnqAVDzc+ILrkiciSJ73sQVu6s/n74SgHAAD4xHOenvPJPs2h/sTnHygA4NOKAA0A8F+v3dlMb9sSWfKEvmpLQRlaT2/UUxtzdufsjyRDAwCATx7v6dks3ZQUEY5EAwB8R4AGAPimoO5soTK0HHpI7eQfaeWn2nxkdPbD0dkPaxWnauWnFhSs1W1ofjUFAAA+7syPavz+iac8pmcL80K08LkTAMAzAjQAwKt4PK7rurk7i0jtld908V3ZZOjo7IfV1rOXex1kaAAA8LFmpOeaKTdMu3FSIpWOzZr7fqhPeWWV9yVow+wZ02fPnH7Tzbc0NSWbkt0L0SLCp08AABcI0AAAlyzdWRs7vLp4uLvubGHO0Hpqoxw48ay2nn34/snQAADg48aSns1flUilE6m03pR5P9Rn8s23eMnQRnq+6Zapxhc2JZMzZzQYJZpPnwAABSFAAwAKZv6vPkWk7srzfenOZtElT8TbtuirtoiIVnHqs49F/P3+5cApDxGprq5ubGz0/fsHAADwhU16tlAL0YlUuqKyqqASPXvGdBHJTs9mTclkUzJh3ommRAMAnCBAAwCcikQi8Xg8Ho+rv6z7WXX1acdEHtC7DulXd+U3Hd56thdd8oSIRJY8WXfFeSJS+8vz9FVbInc/JYce2utt6AKmGNc8brxIT23UUxtE5NZbb1VvvgMAAHwUmF/X6DU9Wzg/zaHSc5+QiEi+9GxhXogWSjQAoDcEaABAL6xPC/6suvq0Y7TThhofoK/v8Jih9bYt+qrN5u5s+YDo3U9F7npKqzjVS4ZW+87R2Q/X3niRVjFCq+j+fvTUxuhtS8nQAADgI8JLejazP83hIj1bZJ/mkAPXogEAMBCgAQC59dqdLfT1HeMn36eNHV5Qho4ueSKy5Elt7PHVY4dnd2frB9/9VOSupwp9hNDcnUVE/THHj58MDQAAPmx+pWcLy2mOVDIp3tKzGac5AAD2CNAAgB4K7c7Wb/5bPfJAvNer0MaJ57orzuu1O5upixz6qpd7zdDqyEav3dn6rQ5kaH7tBAAAPkjmW2fhivIVf1gWxJSzv3NhIpUWkcqqqptunlpZ5f65wmyc5gAA5ESABgCI5OrOIlL3U83l95YnQ5tPPGtjjtfGujwbbX8YWr0uqI5sOOzO1u+fDA0AAD4oxhuDWunYmuuvEJHY7XfpzavCFeU1U24IV5T7MqX+tjmxWXNrbpwgIuHyskQ6o6ea9xf19TdDz5zeICKhUKgpmUgeWIiurq7WNI1PqADgU4sADQCfavF4XNd1oztXnzZUGznUdXc2Mx+G1ldtlp5PC3r//iUrQ5ufFnTXna3fPxkaAAAEyUjPtddfISKqPhv05lWx2+/q6nOIiHgp0UZ6njZ5ouWrEqlMbPb8RCrjfSHaSM8icsvUqSKSTCZEZEZDQ5LTHADw6UaABoBPKeMXPErdz6p96c5mqkHH13eIiDb2+Of+61p/v3/ljP9YqK96WUS0ihG1N15kPC3oF/Nt6MbGRn7VBAAAvDOn53DpWK10bL6P1JtXiYgq0YVmaJv0bKFK9P6ivpWVVZVV4YJKdHZ6tkgmE0aGFko0AHz6EKAB4NPFfF5QROouLK0+eXBkWUb69a37meb81rMNfX1HfP32yAPx6lMHa6cOqftRub5xZ+ThVNdnD6375Xmuz25YRO9+SkQidz1Vd+X5IqKNPSGy5Ak59FB/G3T0tqXqj7VTLo7Oekj4JRMAAPDGeXq2UAvRDk9zOE/PZolUpqDTHL2mZwtziVafTfFpFQB8GhCgAeBTwXri+cLS6pMHa6cMMj5Af2GX9wwd+a2ut3fI+++r7mz5Wl8ytL5qi776ZaM7W25M621bfMnQ5u4sIuqPIqKnNpz57WlChgYAAIUzp2fLtY2CGKc5tMqycEW5pUS7S88WvZ7mmDm9YeaM6TffMlWcpWcLS4nm0yoA+GQjQAPAJ1mv3dn68csykWXN1acNfW72pQVM+a2ut3fE13fU/aii+tTB2qmD7T744XTk4ZQ29vhCM3T07qfiq7aIhKqLh1u6s/UjlzwRWfKku4sc0duWZndnCzI0AAAoiF/p2UxvXpVoXqU3rzJOc/iSni2yT3MY6dlFd7ZIJhPJRNL8XCGfWQHAJxIBGgA+gQrtztZvviwTWdbc61XoyG91EYk8EHfSna3f9uF05OFU3RXn9fogofnUhjb2BK3YabNWGdrhg4TR25bqqY16akPtlIvzdWcLMjQAAOiVkZ610rErH/p1ECP05lVnXfzv6s9X/P7hcEWZ7yPUaY7YbfNFpKqq6sk/Pe3v98+RaAD4ZCNAA8AnR3Z3FpG6C938IsTmIoe5O4tI9qkNpyM27ow8nIpv3JkzQ1tOPNuvPNuwz9DmUxta5QitYkSh3/+Z35mmN20QkVtvvbWurs7dDxIAAHzyGOm55oZrtfJxsbl36OkWrXRszfVXOL/73KvY7XdFb7+r9rpf1F73C71ldXTBr7r6HFIzeYK/Gbp+9rzYbfOn3HxLZVV41oyGpmSyqqrq5qlTq6rCPk4RkfO/ca4lQ8uBa9EAgI8vAjQAfOzF43Fd143uXH3yIO2UQe66s4U5Q4uIelrQY3e2juh5GNqv7txjRNuWyJIn9FVbjAyd78Szy+8/tSE66yEyNAAAkJ4LATU3XFsz6Rrz1ybSLbG5d8j+97XSsQW9QJjNnJ7NX64ytN68OlxR5r1EG+l5yi09Dm6kkslZMxpCIpVV4apwlfcSPb2hYcb0hqlTp06bOjWRSCSSyWQikeA0BwB8IhCgAeBjzNisUeouLPWlO1ucEXsk/uIuEak+dfBzEU+tNh91kUNEtLHDez3x7I7etuWMy2/XKkaoOxviuTtbv39Thub/twIA8Clkn57NEukWPd2ayLTI/vddLETnS88WHkt0vvRslkomm5KJVFMyJOJ6Idqcni1flUgkGhoaEpzmAICPOQI0AHz8RCKReDwej8fVX9Z9e6yIRP64yt8AHVmW0V/YFX9xV+15Y2rPH6Nv2Xvmwj9Wnzq47kcVBZ177mXKw2l94w4JhbRTB1ePGBJZmur6zKF1V37T+a1nJ6JLnoi3bZE+RdUlJ8VbNkm/frVTLnZxcKOXKbMeis56SKscoTdt4BdIAAB8ejhPzxZqIdr5aQ6H6dmi0NMcTtKzhVqILvQ0h016tjCX6Orq6urqak3T+EQLAD4uCNAA8LFhPfH87bHaCUdrJww0PuCMuY/rm/c0Tvuh8/cGc0xZlhGRyLLm2vPGaMMHasOPMn9t9MnV0adW1/2owuMJjsjDaRGJPJyqu6iiesQQc9HWN+70K0NHlzwhIpElT9Zd+12t5ESt5MTuES0vRRY+7leGjs56SP3ROCRtbEOToQEA+GRznZ4tjNMc+TK0u/Rs5mQh2kV6tjBOc4jtTrTz9Gz9ETY0cJoDAD52CNAA8FHXa3c20zfvifyxLdSnqO7CsoIytLk7i0jt+WNsPvjMhcv1LXtcZGhzdxYR9cfcH7k0FVmaqrvyfBfnOMzdWURqr/1Ozg/zmKHN3VlyHfQgQwMA8AlmvoTmJT2b5VyI9p6eLYyFaBExSrT39GyWSiZFRJVoS4Z2nZ7NOM0BAB8vBGgA+IjK7s4iUvutYiff1nmGLqg79xixZW/0qdWhQ/o4ucjhvDtbv2EhGVpv26Kv2txrd7Z+q5aXzvjJbVrlCOcZWp3acHhImgwNAMAnTBDp2cJYiNabV2mlY57937t9H6G3rBYRVaITqYxf6dnCfJqjsirsPT1bWE5ziAifbgHARxABGgA+Wrx0Zwt9854z5j5effKg52p+aP2qF3bFX9zpojtbvx/bDK1v3BnfuNNFd7Z8J71e5IgueSKy5Emt5MTqkpMcdmfr97DwD5GFj2uVI579Q33ej5n1kJ7aoDdtqJ1ycaEPGJKhAQD4BDDSc7iqsqqyMtnUFHr/nzU3XBMuL/F3UGzOHbG5C2snXC0ienOrdO2vve4XWonLT9jyiS74VXTBr6befFOyqSmRbKqsqppy89SKqip/p4jIrOkNs2ZML6+s6hsSEZk6dWo47Oa5QhuJROLcb3xD/TmfbgHARw0BGgA+EuLxuK7rRnfWThhYfeJAd93ZIrq8zfw+YWRZJrKsWRs+UDv+KNfd2SI7Q5ufFnTXna0jcmVo86kNd93ZQmVoS1/OPvHs+vsnQwMA8DFlpOepN98UrqoMV1WqL08kmxpmzEwkm7TyEu8lOjbnDhFR6blm4tXGl+uZ1tj8RXqmTSsd40uJNtLztFtuMr5Q/b3sl1BFZVVlVdiXEq3S86Sbbpl00y0ikm5KisicmdP7hvzM0OowdFVV1bSpt5z7jfNEhCPRAPCRQoAGgA+Z+b/i9LE7mxmr0PEXd9WeN8av7myh3iesPnVwfOPO7KcFfWFk6Ori4YWe2nA6ouWlyMLH9ZaXVIN2fmqjgBGpDWd+e5rwiyIAAD4O8qVnC1VvQ+//M1xWopWPK7REq/Qc2v++iJjTs4Uq0V4WonOmZ7NEsimRbEo2Ne2XkJeFaEt6tkg3JefMnJ5uSoarqryU6PqGBhGRrq5wuCps+qEmksmGhukciQaAjwgCNAB8OCKRSDwej8fjIqIdO0A7dkB05bq6b4/1tz5Hl7eJSOSPq2rPHBUeNiD27DrpW1R73hht+FF+TnlytYhEn1pde+5oEYk+vbbuogpfFp/N9I074xt2RJam6i6p1ts7uj5zaN2139VKTvR3ihjnOEpP0ps3PfvHei8rzzbO/M40vWmDiNx66611dXVBjAAAAF6Y03O+XGth1FvnpzkcpmczdwvRvaZnC2O5u9DTHPbp2UKVaBenOYz0LCLTpuYdZC7RKkPLgWvRAIAPDAEaAD5Q5u4sIrVnjQofe5R27AD1l7GVa33J0ObuLCI1Z44yvkrfus+vDK1v2atv2WN059pzT+/+8lf2Rp9eG/pMv7qLen+f0An1FGH1yKHayKF1P6vu/sIH4pH741rJiX5l6OjCP4hIZOHjddd/r/a674uI3rwpsuAx6dvX+fuEvU8xDnrceJGI6KmNeooMDQDAR4uL9Gzh5DSHi/RsYSxEayVjtNIx+Up0oenZwjjN0WuGLig9mxV0msNhejZLJJOJRDKZTHKaAwA+FARoAPggWJ4WtHRnM33rvtjKtdK3qO7bxdoJAwuaYtOdLWLPros+u871OQ51bUM7/ijtuAFGd7bwnqEjS1Nq67nukmqjO1s/5oF45P64lxvQ5u4sIio9m/mVoaOzHjK6s/qj4czv1pKhAQD4KPCeni2M0xzmDO09PZvpmdZEpi3nW4Ue07OZ/UK06/RsYX+aw0V6tuA0BwB8KAjQABCg7O4sIjVnje71GxaUofXNe/TNu510Z4tCM3T0ydX6y3v1LXtqzx2drztbf2yFZ+jI0pT6Y90l1dWnDdVGDu31m5wx6b/j7R0FZWi95SV17jlfd7Z+vNsMHZ31kJ7aoDdtqL3xIkt37vH9pzZGb1tKhgYA4ENhfpPDr/RsZl6I1tMttROuFj/Ss4X5NIdWMsav9GxhKdFNyYQv6dki+zRHfUODl/RsYTnNUV1drWkaJRoAAkKABgD/ue7OFvrWfWf96inthIHP3fDdnB8QXd4W+eMqbdgA7dgBzruzZUSvFznMJ56144/Sjiv4cIf+yt4zFz1ZPWKITYY2n3gWkXwrz3lHtHdEHog7OQwdXfiHeMsmCYWqS0/qtTtbpzjO0OZTG1rFCK3iVEff/4EMzT4OAAAfDPOnbeGqKpGuqspKm8cGXaufPrNhxsyaGyfoqebQ/n/VTLhaKxvn7wglNm9RdP6icEW5FBWphxODmCIi557/rUSySUQeXf5UeaXLtwrtqdMcF3zrPBEJV1U9/aenfB9R3zDdOM0hIo2NjXwCBgC+I0ADgG/i8biu60Z3Vk8LuujOFtmHoaPL2+Iv7dE376k9c5S77myRM0NbnhZ0uPJsI/r0mpzvE+Y88eyOTYY2n9rQSk7WSk9yP6V5U2TBY5o2qnbKxdavSm3QmzbkO7Xh9PsnQwMAEDxzep46deq0qVNFJJFIJJLJZCIh0uVXvTXS87TJE9WXJFKZ2Oz5iVRGKyv2sUSr9Fwz5YZpN04SkUQqHZs1N5FKh6sq/S3R6u/o5lum3jJ1ajKZmNHQkEwmyyurJt10i78les7M6XNmTp86dWpVVVVDQ0MyqU5z3BJ2/CKiE6pBd4kkOc0BAMEgQAOAD8z/2aZf3dnMuMhRfeJAdWojPGxAzhPSXqc8u076FmnHH+Vjd+4x4pW90afX6i/vbYz9OL5hR68nnl1OMWVoveUlsT3x7Fp0wWOR239fO+VilaHVqQ3pEq3iVHfd2YIMDQBAQHKmZ4tEItHQ0OBxITo7PVunpDKx2fND+/+llY4LlxW7LtGW9Jw1JR2bNVeKirwvd5vTs+WrVIl+v0tExHuJNtLz1J6D1M9LSEREfCnR9Q3TJRQSkakHfgdClW4RUZ998WkYAHhHgAYA9yKRSDwej8fjxpes/MV5vnfh2Mq1IhJdua5GG6l37AsVhWrOHOX7FDlwEjp8TP/E9k7nV54LFX16jf7KPv3lvSLie3o2U4ehRUQrPem5B28OasqPZ+jNm0SkoFMbzpGhAQDwUY9bz3nSs5nrhehe03OPKalMIp1xd5rDPj33nJJOpNJ6U8bdaQ6b9GyWTCZERJVodxk6X3o2SyQSIqJKtOsMXd8wvWF63kENDQ3qJ19YiAYAz4o+7B8AAHz8RCKR8ePHh0KhW2+9NR6PT6s47ZmLz/775J8+c/HZ0afWnPWrp/St+7xPia1cG1u5tt9N93b9s6vrn13/qPnZtPBpKy45Z1rVaWf9+k9n/defvI/oHvTsurP+60/9bvnvrv/r+sfUn6346Tn/mPqz+KY9fSfeo7+y168p0afXRJ9e03fiPaG+fapPPPr9JVc8N+E78ebNZ0z6b729w68pIhJ5IH7GpP8uOvtWbezw/elZjXf+MvSP/4sueMzHESKiN2+KLnisz7BLq0tOqrvue1rJSXpqo78jugelNqg/6fpH5/jx48ePH2/+DQ8AAOBQJBJRn7yFq6qmTp36t/fe67U+i0g4HJ42derTTz89deq0hhmzPvvFI4zDx/nUT5/52S8eUfT+P/7x2k4n9VlEwhVl0yZPXPH7h6dNmRxdcHe/waec9aNL9Uyr/beKzVvUb/ApXYd85h+v7+21PotIuKJ82o2TVvxhWc3kCQ0N0538vZj/jvaH+rzz1/fs67OIVFWFq6rCT/7p6WnTps6fNX3AEV+44FvnqVPOvZozc/qAI75waJ/Qe++9Z1OfRSQcDofD4aeffvqWqVPrG6Z/9vNfOPcb5xl3nHv/O2qY/tnPf0FCdoOmTp369NNP/+lPf6qqqnr//ffVJ/98JgYA7rABDQBOWZ4WnFZxWnhw//Dg/pYPS+zsrE+tD/UL1Zw12sWesr51X2LrXrXvLCLTwqfl/LD6xPqY3u7lBnTs2XUiEn12XU3VyPAx/cPHZP2NbO+MJdtD/Ypqzx3t4uFBRX9lr/7y3ujTa+u+OVZEar811voBm/dEnlgV+uwhdT+r1kYOdTdFRCIPxEUkcn+87vKzq0cfq51+bI+vvWdl5J4Vddd/z/sJDnV5Qys5qbr0pNprDz4Oqbdsiix4XPr2rb3xIu970NHblqo/1k68UCs/WSs7RUT0zAvRucv0zIus4QAA4Jyx9RyuqqoKh510ZxvGaY7sJeKCtp57mXLgNEfOhWjnW8+9Tek+zZFvIdrh1rM94zRHeWWV+p/sj3Gy9WzP4WkO+63nXr9/jkQDgDsEaADoRXZ3FpFp5bm7sKE+vb4+tb72rFHOj0GrxwbDx/TXhg7I153NEts7Y3p7oRc5zN1Z8gfuHlNcZWh1akOKQtXDB2Z3Z+sHL18VeWKVi4scentHfH2H6s4iUnf5WTYfHLlnZXzjzrrrvu/iBUK1Qx25/fd1133P3J2tPx7PGTp621LVnUWk9oYLc4zIvHDmD+qFX/kAANAbIz2r2ugxPZupHJlIJtX7folkk1/puceUrLcK/UrPPafkeKvQl/RslkwmkolkUzJhOc3hPT2b2ZzmcJ2es0eYj0TX1dXJgWvRAIB8CNAAkJulO4cH9w8P6d9rdzZzuAodW7lW37pP37qvRhvppDtbpzjL0PrWfYlt+5x35+wpZ//2Ge34o5696nz7j4w+vUZE1MqzdsJA7YSBzqcUlKEjD8Qj98erRx+rnX6cfXc209dsjdyzouvQQxxmaHN3FhGb9NxjSuEZOnrbUj21UU9tqJ14Yc7ubB1BhgYAIL9Cbz27du6556rLDyt+/3C4oiygKYlU5uzv/UhEwhXlK/6wLLAp3QvRiWRTVVXVk396OogpaiE6mUyWV1alm5J+pWcLIxOHq6qqqqp8Sc+W7z+ZTHIkGgAcIkADQA/xeFzXdS/d2SJfhjY/LZjzAkZhU7Z3nn3/M9qwASv/4xuWrzKeFtSGOFqstlGfWB9Ltud8n9DcnSXXqQ2Her3IEXkgrrd3xNs76i4/23l3tk5xkKHVqY2CurN1ioMMnfPUhnNn/iCmZ14UkVtvvVUt4AAA8Cl3cOv55pum3dK9m5xINqnTz+Fw2K9B9Q0NDQ0NNZOuq5l0bSLdEpuzQE+3hCvKaiZP8LdE18+eF7ttfs3k68PlJbHZCxLp5nBFec2UG8IV5T5OEZH62+bEZs2dNmVSuLK8ftacrlCfm6dOrary7Z+YYXpDw4zpDTVTbtCbMl1Fffz9eTFraGhoaGgIV1Z0hYpEJIhBnOYAACcI0ADQzbwp4707WyR2dp7z0Iras0apv+z1xLM75sPQsWfX6Vv36dv21VS5WazOx3KRo9cTz+5kZ2j7E88up+TK0NEFj8WbN+nNm+xPbRQwpWVTZMHjmjay9saLzF/e66kN58jQAABIVnq2fK0q0SIh7xXSnJ6tU9ItsTkLukJFvmRoIz1Pm3RdzynNsdkLJFSkVZaFK8q9l2gjPU+bcvCyRyKVrp81J9GUrqqq8qtEG+nZOCFiHACp8vV3CFR6nnbT5GlTJotIoiktIvWzZneFivzN0GrQlJtvqagMz5rRkGrqXogWEUo0ABgI0AA+7SKRSDweN96znlZxmo/d2VCfXi8i9an1IhI+pv+KS87xfYRy9v3PJLZ3qinqdcEgpqiLHOrP67451q/ubKFv3nPG/D9Ujxyq9p2ltxPPLqes2Rq5Z4WmnSYHTm1oJSdqJQUfibYXXfh4ZMHvVYMu6NSGQ8b7hEKGBgB8+tinZzOPC9E26bnHFM8L0fnSc88pzYl0i55qllCR64XonOnZOiiV9r4QnZ2es6f4UqIt6dk6pSldP2t2oinlvXc3NDSIyL/2d914c4/LHrfNaGhKJo0STYYGACFAA/jUsnTnm0aOrBjQf1Z7e1E/mVZxWniwP902sbNTneCYWvp1EZlaelpiV2dD8/OhPqIub/gyRUTqE+tFJKa3q0Hhwf0bMs9LH/G9QXcPSrarH39Mbw8d2kede/Zxihy4B62dPEhE9Bd3VY8+9rlFv/R3hIjoa7bG126N3LOi+vTj4mte8WvrOVt04eMiElnwexHRyk5+9nc1QUwxDkOLSGNjI7/aAQB8spkvp/Wani0KXYh2mJ6tUwpfiHaSnrOmNLs4zeEkPfeY4nYhutf0nD0oNmuui9McDQ0NiURCqyjNmZ6tU5rSaiFaCj/NoU4//2t/l4hY6rMhlUwaC9FCiQbwqUeABvDpYnlaUHXnyv4HE21TZ6cvGbo+vb4+tb5qUP/woK9NLbWuVPuVoRPbO9UjhKo7TyvrMSixq/PcR1aGj+m/4qdeF67N3Vl6Xg5Rdz/82oOOLl8lIpEnVtVdUFp7QenBL3+0OfJos5e7zxaRe1bqa16RUEgbfVzdv5/d/YW/XhG555nn/neKjxvQave57qpvikjtVd8Skeji5fG1W2tvuLDQi8829MwLevrF6Lxlddd+V0TiLZv0lpf4pQ4A4JPK/BldoenZzMlCtLv03GOKs4VoF+k5a1D3aQ77DF1oerZOObAQLSL2JbrQ9GyZ4nwhWi0jh97/v3BFRbiygE1wF6c5Ghoa4nqisqoqX3q2oEQDgBCgAXxKZHdnEZkyMu+pjabOzm8//YyLcxz16fWJHZ2JnZ1TS7+e3Z0tGprXNzQ/X6O5udGssm94UP+qQV+zdGfrR2bWNzQ/7+4SdHfgztWdc/54XGdoc3cWEXN6Nugv7oo82qy/uKvxzl+6vgEduWeliETuWVF3+TnVpx+rnX5c9seccfVdXf361V33XS8ZOrrw8XjzJr1lU91V31Td2Uxv2xxZ/IT07eM9Q0fnLovOW6aVnFhdclLttd85OKLlpcjCx8nQAIBPGL/Ss0XOhWjv6dk65cBCtFZRGi4vM0q09/Tcc0rehWiP6bnHlJRKt7lPc3hJz9mD1EK05FpVNtKziDhZfM47xcFpDuPcs8P0bMFpDgCfZgRoAJ9klu5cOaB/Zf8BNt3ZYlb7+pnt7c9cfHavq9DGieeppV+vGtQ/PKiApeZzf7fS+Sp0fWK93rEvsb1zaunX7buzWWJXZ6EXOeoT62PJ9vAx/bWhAxyWa7WLXdBFDn3zHvXeoE13tn6TF3dFHm0OfeaQusvPdp6hjVMbdZefIyLGynP+j38lcs8KFxnaOLVRd9U3teITtOIT7KZ4yNDRuctERK08m7uzdQQZGgDwSWF+L9rH9GxmXohOJJM+puceU9IterolkW5WJdrH9Jw16OBCtMq4vqRn65SepzmSiaRf6dkyRUQspzkaGhq8p2froFynOTymZzO1EC0ilGgAnyoEaACfQOaDgFJ4dzazv8hh7s4i0uvKcz69XuQwn3gODy4scPeY0luGrk+s13fsS2zvdLeXLY4zdHT5qviWPdKnqPrkQU66s4XzDB25Z6U68Ww+teF0SiEZOvvUhtMphWRoy6kNm/Tc41uRoQEAH2fm9ByurEw0NYWrKqfefFO4qtLfQfXTZ4pIn7+/HS4tjs1fLEVFNZOuC5eX+DtFic1ZGJuzQCsbd2AhuiRcXvBnRE6c/f0fJ9LNIhKuLJ82ZZK7twqdOOc7F6iLFiv+sCy4KcZpDhEJV1Y888fHApliOs2RTCZ9Sc8W2ac5Ghsb/R0BAB8dBGgAnxw+dmcLlaGrj+uvLnJkPy3ofYSIJHZ1fuN3K83l1/K0oPOVZ/sp2YehLU8Len+3MLG98+z7n9FOGGjJ0OZTG9rJg9Qbg67ZZGjzqY1Cu7N1im2Gtj+1UcCU3jJ0dO4yPfOC7N9vObVRwAgyNADg48ZIz+HKynBVxbSbp6gvTyRT9TNmSUj8ytBGehaRmglXqS/UM22x+Yv15jatvMTHEq3Sc83Eq2sm/qeIJDKteqY1kWnrChXVTL7OxwxdP2dBbPbtNTdOmDZ5oogkUpnY7PkSCoUrysOV5T424vpZc0Sk6B/viki4dGzs9rv05lUFvYhYwKzb5sRmza2ZfH24vCQ2e4EU9QlXlhd6+tnRoFmz62fOrpl8vZ5uTqSaKyqrptw8taKqyt8pIvKd879huRCt/sT3QQDwISJAA/gkMO/F+NidLb79zDNN+zpFJN/Tgr5Qh6HDx/RXdzbEp+5sYRyGljxPC/oz5cBhaPWXBZ3acM78PqG5O4uDUxvOqQytVX299trvSoGnNgqYkpWhzac2tJITtZITvY4gQwMAPg7ypWczlaE9LkTnTM8WqkR7X4i2pGeLRKY1Nm+RnmkNl5d6LNGW9NxjSiqTSGf0VLOEQt4Xos3pueb6K8xfpTevit1+V1efQ0TElxJtpGfzuZJEujmRbtFTzVLUZ9qUyb5kaCM9T5s8wTwoNnv++6F+IuJjib5tRsM/93eJSFllVaYpmUk1ZTjNAeCTiAAN4GMsEonE4/F4PK7+svTLRzW/vveP555T2d/rAq/FrPb1TZ37RKSy/4Cmzn2hvjK19Ovu7mDYU/W56qj+IhLqI1PLApkiBwJ01aD+yV2dKy45x/vKcz5n3/9MYnuniGgnD3pu6g8CmiIifX56u4i4O7XhXOTXKyL3PCMiLk5tOGdkaD3zYkGnNgoY0fLSGT+5TfjvPQEAHz1O0rOFu4VoJ+nZzMtCtH16tlAl2t1CtE16tk5JZWKz5ydSGXenOWzSs5nevEpEVIl2naFzpmeLg08vVla4LtH1s2YnmtJaWbE5PVumiIgq0R4z9G0zGmbNmD5xys0Tp9xi/vJMKjlv1oxMz51oSjSAjzsCNICPH8vTghNOHFP65aPKvnyUiGRe3zv/pdXVg77mywb0rPb1IjKzvf2mkSMrBvQ3ura6yBHqK0//4CzvU0SkoXl9YteryV2dN4857ZbTu3/kyb2dM1av9zdD12fWJ3e9mtjVObXk61NLThORxO7Ohha789MuBx14LLFm/Kia8SMT2/bFGtvls33V5Q2/pohI9NHm+Iu79Bd31V1YWn3y4MiyjHz20LrLz9ZOP87HKSIS+fUKfe0r8TWv1F06XkTiL+xWu8/+ThGR6OLlIhJZ/ET16GPja7favzHoadDCP0QWPq7+nAwNAPgoMNKzis5O0rOZ84Xo+ukzk01N1WNPE2fp2aKgheiC0rNZoQvRztOzddCB0xwOM7TD9GyhFqILPc3hJD1bdD+9WOBCdP2s2SISev+f4YoyJ9FfLUS7O82RLz1bmEu0CtCUaAAfXwRoAB8b2d1ZRCaccHr2R87fvGb+S6tdr0Kbu7OI5GvZs9rXz2xvn1r6dde3OBqa14tIQ/PzN485reqo/mrx2WL6mvUzVq+fWvp1L4c46jPdg6aWfL1qUP/w0dZBid2d31i2MnxM/xWXnJPrO3A86MDR6prxo7Sh/cPDBvSY4l+Gjj7aLCKRR5tVd9ZOOfi96S/s8jFDR369QkQi9zxTd+n46lHDtJHDuqe0b4vc19jVr59fGdroznWXny0idZd3/95G5J6V8Q071P0N71NERG95SV3hqLv6WyJSe/W3zrh0nt62WURuvfVWdXYQAIAPmDk9F9qds9ksRNdPn9kwY2bthKvCpcVaWbGXKb0uRLtOzxa9LkS7Ts89pjhbiK6fNafQ9GxhnOawz9Au0rNZQQvR9bNmh97/p4jkW3zubZDTEu0wPVvMmzWd0xwAPu4I0AA+6izdufTLR5V9ZWDO7mymVqH79ts/ZeRIhxnaYXc2M1ahC7rIYe7OImKsPNs4f/kKF6vQ5u4sImrl2e4H1rK+oeV58yuIDiW2dya2d6ruLCI140fafHCssT3WuK7uglIXl6D1F3ephwfrLiwVkboLy/J+pOcMra5tqH3nukvPyD3FjwwdXbw8uzv3mLJma+SeFV2H9POYoaML/xBv2ST7u6rHnVB7tfV4CBkaAPCh8Dc9m1kWohPJJpWeXaw828teiPYrPZvlXIj2JT1bB+VZiK6fNad+1pza669wnZ7NbBaiPaZnC/sSnfPcs4dBeU9zuEvPZpzmAPCxRoAG8BEVj8d1XS+0O1tkXt97UXr5TSNH2tTkps7O1L7Ogrpz9vfgJEMndnUmd3UW1J3NCrrIoU48O+zOPX6QBV7kUM8MakMHhIcNsO/OFoVmaHVqIySinTLIpjtbqAytlZ/i/Cq0+dRGvu5sneIqQ5tXnnN2Z+sUtxk6uvAPIqJWnrXiE7RxeX+EeuvmyKLlZGgAwAfDfOt52s1TwlUVAQ065/zvJJqaRGTl0ns9bj3bMBaiRUQrG7fikfsCGmQsRCfSzf6m5x5TTAvR4YpyH9OzhblEa5VlPqZnC8tpDh/Tc9aUHgvRt81oEJF/7u9ynZ4tKNEAPo4I0AA+WnzpzhbzN69pe2tX9iq0uqFROaB/Zf8B3m9G21zkMJ4WrBzYv9DubGFk6Kd/mCNZZp94dqfXDG0+tVFQd+4xxcFFDptTG85FlmUiy5rrLj/HJkPnO7XhnJGhn7vX7pcxettm9cagzcqz3TcvJEOrK8/GqQ2nIw5kaH49AwAIgvmTvZrJ14cryhKpjJ5ullBf3zN0/YxZ9TNm1V73i9rrfqG3rI4u+JVIkVZW7P3+RrbY/MXR+YtrJl6tlY2LzVskIjUTrw6XjfN3iojE5t0Zm7eoZvL1eqo5kW4OV5TVTJ4QrnD62/MFqZ89L3bbfK20WKRLKx0bLh2rlY4NYlDs9ruit9+llY7pKurn4ulF5xLp5rO//2P15yt+vzTQQapEi0hZZdUjf3jS9xHZpznkwLVoAPioIUAD+KgwtmDEp+5sZr7IkdrX2dS5r2lfp/1mtAuWVeicTwv6wnIYutcTz+5kH4Y2d2fp7dSG0ym5MrTzUxvORZZl9G2vZV/kcHJqwzm9fdv4Cb+pu+qbtVdZg2908fJ425bQv/6lnX5cod3ZOsU2Q5tXnp13Z+sIMjQAwG/mu2rZm6cq2PmVoc3p2fzlestqvXm13rJapKhmwlW+ZGgjPZsPbhgXM7SycX6VaCM9mxeEuxd7QyF/M7RKz8bFEj3Tlmhu0zNtIl0111/hY4aO3X6XiEjXfvUzpX6fQG9e7fDpxYJ0XyyZeHXNxP/sXiQvKtLKSx0+PFjYrNnz9VSzVlEaLi+JzV7wz6J+E6fcXFZRwFuFDv3wO+cb29DCQjSAjyoCNIAPWSQSicfj8Xhc/eWEE8eUfvmosi8f5fug+ZvXZP68p/n1vZUD+js/DO3Ct595pmlfp4hUHdVfvS4YxJTk3s7zl68ID+qv9p2lwFMbzqnD0OFj+ie2d/rYnS2MDF198qDIo83VJw8q6NSGQ+bD0PE1Wws9teFc5L7nIvc1PnfvBK34BPOpjerRx2qnH+vXFEuGzn5d0IcRZGgAgB/s07OZsTfq+i5HvvRs4ctCdM70bKFCp3hbiM6ZnntMMS4de16ItqRni4NPL5aO9ViijfQsItk/WeonSC1Ei4jHQGxOz+YvT2Ra9UxrItPWVVRUM3mCLxm6fvb82Ozbc/4+QSLdXFZZ5VeJzqSSmabk/73fNa68alx5ZWu66c45M1rTTepr+eQNwEcKARrAh8PytOCVw0qKjzh6ybaWPn32TzhxjI8Bev7mNSIy/6XVE04cIyITTjj9R+nlBT1O6JDxhuGNI0apL7ltwzrfd59FJLm3Ux3iuGnUaSLStK8z1Femlnzdr8VnM1Wfqwb1F5GivqGa8SPDwwb4PkVEYo3tIhJrXCcidReW+p6eDZFlGf2FXfEXd4lIEOnZrOiMGhGpHn2s95VnG/qareP/826t5MR8rwv6MIIMDQBwy3l6tnCxEO0wPZu5Xoh2kp7NXC9E95qerYMOLERrFaXh8rKCSrR9erbofnrR1UK03rwq0bwqX3ru8ZHdv08grk9z5EvPFgffeKwodV2ic6Zn6yCfSvS8WdObkslx5ZX/Oelmy1epDK1KdHV1dXV1taZpfP4G4MNFgAbwgcruziJy1bCDn4K3vbn752sfnXDiGO93n6VndzZ/rfkih8cMbbxhqLrzjSN6bAd/97mni/p0+bUHPX3N+qY9nV1dUjmg/82jD3btGWvXz1y33uPdZ7OGlvUi0tDyvPn7VIeh/c3QRneuPXOUiNScOUpEYs+uS+z5c92FZe4uPufTfQn6glIRqb2gVJ34qB43PIj1Z729I75uW93FldVfPybyYFL69a27/Gwfd5+7B92zUkQi96you6RaRCL3x73c3LAXXbQ8smi5VnwCGRoA4JD5uprrp94cLkS7SM8WxkK0fYaOzV8sIgWlZwvnC9GFpuceU9LNiXSLnmp2eJqjoPRs5mIhOnb7XXpzm1YypqCfLBenOernLBARef+fBf1MGac5aiZPEMeb107Ss3VQutndaY55s6bPmzXjPyfdlJ2ezVrTTa3ppLlE8/kbgA8RARrAB8HSnYuPOHrslwaZu7PFz9c86m4VOvP63ubX9+brzhbzN6+Z/9Jq15eg1auDFV8bUPG1AZbubJZ6dd9tG9q9ZOjpa9aLiFp5rjqqf+WA3N/JN59a4XEV2tydJc9ND3UYWhs6YMXPz3U3RYk1tlu6s5m+dV/s2XWhz/T1nqGNlee6C0prL7D+EiL6aHPk0WZfVqEj9z0nIpH7GlV31kYMMb5K37DD3wwduWel0Z3rflZ98MsfiPuboaOLlotIZNFy46q1ekGRDA0AsOFLerbItxDtPT2bGZVTKy22lGiVnrtCIRFxl57N7BeivaRn66DeFqJdp2cLJwvR6qVBjz9Z5tMc+eqwkZ7F7U+W8fsEvZ7mcJGeewwqZCHaYXq24DQHgI8CAjSAABXanc3a3tytLnI8XO4opama7OL1wkIvcphPbdh0Z4vbNrQXepHD3J1FxLzynE/Tvs4Za9e7yNDq1IbzW9Lq42vGjyr0HnSssT2xbZ/esa/2zFHZ3dnCS4aOLMuIiFp51k4eZDxvmFP00WZ9a2fdpeO1kcMKmtI9677nVHcWkbof5/1lg/cMbV55Nndn64c9EI+/uKfu6m9p405wMUVE9NbNettm1Z1FJPtBRb1t8xmXzRd+DQMA6MlIz+GKUq281Jf0bGYsRE+7eYqI+JieLcwL0YnmNvEvPVtYFqJ9TM89puRaiPYrPZvlW4j2JT33GJR/Ibp+zgIv6dnC5jRH/ez56k98+cmyL9Hu0rOFuUSrT974LA7AB4YADcB/8Xhc13V33dli8bbWJdtabC5yGE8Lerna4eQih+XEs/P0bHbbhvbM63vtV6EtJ56ddGcLI0M/fUEvd4cbWtYndr+a3NXp4nxHQRc5zKc2wsMGaMcWcMFDZejq04c6PAxtObXhdMqLuyKPNocO7ec8Q5tXnm26s3XQhh2RB5NayYnOr0Lra7bG127NufKc95u0d0QeiHcdckihGTq6aHm8dbOIVBcPz+7OFmdcNl9v2yxkaACAKT1r5SV6umXF75f68p5bTmrnVCsdK9JVe90vtJIxAQ068//9Um9erf585SP3uX5CsFeJTOtZP7xU/fmKxx4M7h+dUTlFRCstXvnwvQENMhaiRURvXhXQ7xNIz4XoRLrFyblnd8ynOcLlpf7W5x6Dep7mmDdruoj83/tdXtKzheVINJ/FAfgAEKAB+Mn8X1x66c5mxiq0+SKH+cRz6ZeP8uXRwpwXOXzpzmY2Fzmmr1k/Y/X6ygH9LSee3bE5DG0+tVE1qL+X1wvtM3Ri2z69o9Pm1IZzsWfXRZ9d1zjth/lWoe1PbTjkJEPr7dvi67Y5WXm2EXkwGXmoqe7ys+0zdOSelfqaV2T/fm3kUCfdOeuH6jRDm09taMUnaMUFNGsjQ9966611dXWF/iABAB935vQcLiupmXRNIt0Sm3uHnm6pmXx9uKLMx5yq0nPt9b+sve6XIqI3r44uuFukq9CDwr1SD99JUT8RqZl4tZ5pjc1fJBIq6P1Ah7q3nm+cMG3yxEQqE5s9X7q63D2416vuF/luuFYrHxebe4fs31/Q04sFUe801l5/hd686oP5rQKtdKyEioL4OTJ8KL9VMK688v5Hn/B9hOU0h4g0NjZSogEEhAANwAeRSCQej8fjcfWXVw4rKT7i6OIvHe3jCJWhK/sPkPxPC3pnXoW2eVrQu9Sr+7773NPqIof51Ib37mxmucjh5MSzO9mHodWpDQmJduwAL93Z4qz/+pPlIkdBpzYcypeh1amN6hFDtBFD3HVni8iDSf2lPdkXOcynNqpPG6qNHOplin2GVq8L5ju14RwZGgA+hYz0rIJmuLzE8gGxOXckMi1d6uyDt1RnSc9mevNqvWVV9Pa7tdIx3iunJT33GJRpjc1fpGfach5udsGcns1frjJ0IpVx/uBer4z0XDPpmoODDvxWQfbNay+M9Fxz/RXqS/TmVbHb79KbV/nyc2QWXfCr6IJf1V5/Zc2EK0VEb26LzV+iN6/y6+fITP18qb8v4+/Ix58jM/XzNW3KpHBlef2sOYmm9Ljyyv+cdPO48kp/B4nIJRd805yh2YkGEAQCNAD3LCeeReQ3oy/wtzsri7e1isiSbS3FXzq67c3dS8u/5cvKc07GLenm1/f++eJLA5oiIrdtaE+9ui/16j6/Vp7zadrX+c2nVohI1aD+4aO/5mN3tlCHobWhA9SJ50JPbThkHIbWThnk4tRGAYNe3BV5tLl63HD1l4We2nA6pedh6HyvC/owqGeGzn5d0IcRB94nFDI0AHzSmdOzOWjmpCqn6wxtk54tjIVod4nTJj1bB3leiI7Nu1NEpO8hlvRs4ctCdM70bB2UbvFlITo7PVuobuvLQrQlPWcNaovNX+LXQrQ5PWcNWhW7/a6uor7+/lbBtCmTpk2ZZP7yRCpdP2vO3/cX+Zih75wz4845M6+84aarbrhJRBbPnbkq3dSWOXiaQw5ciwYAjwjQAApm6c6XDa4QkcsGl9+7M33vzpSPDbrtzd1tf9m9ZFvLVcNKROSqY8epL1y8raVPUY+LHN5l3/RQJbqglwadSL26L/Vq520b1k06ZZSIlH/1qDkvrC3q03Xz6NMqB7g/hZHTjLXrm/Z1Nu3rvGnkSBGZ2d7u4tazE4ndncldnWq3OrH71aJ+oZozRwVRn0Uk9uw6fes+fds+7dgBcmhftfgcxCD9xV2qQYtI9YghzzX8JIgpyhlT/ye+YYeIVI8c+tycfwtukN7eMX7Sf4uIVnyCkyvPbkaQoQHgE62g9GxmLNtmP+aWk7qx6zA9m6kMXdCyrfP03GOQq4VoIz2LiH19NrheiHaSnnsM8rAQ3Wt6NvO4EG2fnnsO8roQbZOeew7yYSE6X3o2Uxna+0K0JT2btaWblsydqTK0sBANwCcEaABOWbrzqMMHjz5syGWDy80fs/btnffuTPUL7b9yWImXDK3eHiz+0tHFRwxS3dn6AVtbF9s+TuiQuTtL1k0PdZGjT5+uG0eMrPia15x624b22zasK//qgPKvDph0ymjzV6Vf26cy9BPnne1xiojMWLteRGauW3/TyJEVA/qbn1Wc1b5+Znv7ny48y8vdZzO19WzZre4+DO1rho49u05Eos+uqz1rVPjYo9R3G1u5NrpynZejzzlFH22Ov7hL9u+vPvHo2m8X6y/tjvyxLdSvb92Pq7QRQ3wcpG/YEX9+e+Shprrvl4qIdtLRkcdaQof2rftZtcezG9kiD8RFJHJ/XJ2ujjzUpBWf8Ny9E/ydokQXL48sfkIbO1xftUXI0ADwSeE6PVv0uhCt0nPon38TkYLSs4WThWh36dk6yNlCtIv0bOF8IbrQ9GwdVMhCdEHp2aLQhWjn6Tlr0MGFaBFxUqIdpuesQd0L0VpFabi8xGGJdpKeLVyXaHX3eUxZZXZ6tqBEA/ARARpAL5x0Z4u1b++8bsNDVw4rKfQFwsXbWle9uavtL7uvGlaSsztbXLbmUXer0Pbd2cLI0I+fcW5BUxTj1MakU0ZZurPFnBfWznlhnetL0E37OpN7O1V3FhHzU4o9Pqyzc1Z7u3EY2sUg6fmMYb6V6u7D0MMGrPyPb7iboqjnB2vPGiUiNWfl+AfoV4aOPtosIpFHm+u+U6ydMFA7scfvoPiboSMPJvUNO7r+tb/65EG13+9xMVN/cZePGVpv74iv7zC6s/mESPdDiP6d4IguXi4ikcVP1F15fu2V3xQRvW1LZMkT+qot/IoFAD6+zJ8KekzPZjkXov1Kz2b5FqJ9Sc89BuVfiPaens3sF6Lr5ywQEdm/3/vPVK8L0bH5i0VEuva7SM9mThaiu3++Qn0KTc89B7XF5i8REfvTHOrnK7T/fdd/X3rzqkTzKr15Va+nOdTPV1dRX+fp2aKg0xx3zpnxfpcUl1UWF7I6bTnNUV1drWkan9cBKAgBGkBu8Xhc1/WCurPFtRsfcrgKbZx4vmpYSfGXCnu90LjI8XB57xEt8/re5tf3unvDsNCLHLdtaBcRdWqj/KtHlX/V0SKwsQpd0EWOGWvXz1y3vnJA/8r+A/J1ZwsjQz99wVkOp0jP7izOnjFUK9K1Z44q9ClC49RG7VmjcnZnM33rvtjKta4vckQfbVbdWURqv2235uMxQ0ceTIqIWnnWTjra5ocafawl8lizl4sckQfienuHvL/f5slEdYE6vmGHxwytVp7rrjxfRFR67jGFDA0AH0/GyrP4mp4tjIVorbzU3/RsYSxEd/dN/9KzdZBpIVrPtIr4lp4tLAvRRnoWEX9/srIXoo30LCIe67OZsRCtlYzRSseonykjPYuIl/rcc1De0xyxeXeG9r8vPv192Z/mqJ+zoKuor4i4rs+GXheibW5uONSWbmrLNC2ZO1P9JZ/XASgIARqAlfkXGy66s5m6yFF25MCcq9Dm7iwHTjy70+tFjvmb12T+vEdEyr4y0PXVDicXOczdWUTsV57zcXiRw3xqw2F3tlAXOZwchlYd2Xl3NivoIkfOUxsOFZqh1akN/cVddd8ptu/O1kEv7T5jzuPVI4Y4z9Dd68bfLxURy8qz3Y/wsZbIY811l1Q7f5DQfGqj+uvHOPnhqQzd9dnP1F31Ta34BIeDJNfKs90UMjQAfHyYt57D5aUh6aq54ZpwudP//1WQ2Jw7RCS0/329uVW6umqv+6VW6ultOhvRBXfrzatFRG9eVTvh6nBZseb5ebp8zvrRpXqmTf35it8/HK4oC2hQIpU5+3s/Un+ulZesWPbboAaZFqJFurTSsT6mZzNjfbj7dwt8Tc9Zsw6e5tAzrS5ubjge1OM0RyLdUujNDYeyS7T39GzBaQ4ALhCgAXSLRCLxeDwej6u/vGxwxajDB48+bLD379nyOKGP3dks5+OE2U8Leh+U7yKHOvHspTtb5LvIYe7Okv/UhkP2FzkaWtYndr+a3NXp/fXCXjN0r6c2HOo1Q9uf2nAu+se2yB/a6i6uzLdfLD1Xnp13ZzN1kUPftKtxzr/ZX+SIPBDPeWrD6aBCMrT9yrPdlLYtZ1x+u/BrFQD4qOqx9Tz5+mmTrhORRLo5NntBIt2slZf4WKJjc+5IZFq0krFyYBP54BWL0rH+lujogrtFRKRIRGomXKk3tyUyq/TmNgmFaiZc7W+Gjs1bJCJdffuJyLRJ16l/eqJuXvudoetnzxPp3nrWykticxaISNC/WyAiiUyLHLhQoZWODWTW7XdFb79LKxunZ1q10rE1E67USgtYFyjIWRf9XG9eJSKqqgf0dySmhWgReeaPj4YrXG75OJFIpc/59gUiUlxW+Ztly4MYYS7R6pM6PrsDkA8BGvi0M/8yQ3ztzmbqKnTxEUer+87iX3e2aHtz92VrHlUXNtyd2nBIXeR4/IxzU692Ojzx7IL5IoeIODnx7I4lQ5tPbVQN6u/Xi4WS6zB0Qac2nMt5GNr5qQ2H1EUO/aU9jQ0/Me8aW14XdJeeewzKfxjavPLsojtbB9lm6IJWnu2mkKEB4KMnZ3q2UC3V+0J0bM4dsbkLbXaQu69Y+LEQbUnP1kHdC7D+ZGhLejZ/lRHxa26cEC4v816iE6lMIp05cHDjWtOglticBXq6xfffLYjNXWi+xNJ9l0NElWgfo61KzzUTr66Z+J/dszKtsXmLpGu/7xk6Nn9J9PYltdf/Uh1+OXCnRbTSseHSsf6WaPX3VXv1v9VefZneui666F69bV24snzalEm+l+j6WXNEJPTPf2jl42Jz79AzrcVllVfecFNBp58daks3/fwHBy+58dkdgJwI0MCnlOVpwRFfHLLhnR2J8slBzFIb0KMPHzzq8MH37kg7fGDQhbY3d6s96OIvHd325u6l5d/yZeU5J3XTo/n1vSISRHo2u0B/Kv3aPhGpHND/j+ecE9wgdZFDRNyd2nBOHfTQhg1Q3bnQUxsOGavQ1ScPkgMrz750Z+sg02Ho+PPb870u6MOgnhna48qz3aCeGVpv26y3bXa38mzjjJ/frq/aIvxCBQA+bEZ6DpeXahWlOdOzmZGhw2Ulhd4aNtKzk+PLHhei7dNzj0EHLwIXuyvRNunZon7OAj3V7HEhun72vERTOlxeak7PFqpEi+eF6Oz0nGPQ3Dtk//veo212eu4xKNMam7fIr4VoS3o205tX6y2r1LUWX9p67Pa7RET++ffaqy+zzmpdF110b9ehn/MxQ9fPmhP65z9EpOaGg/8YE5nWIEr04rkzl8ydec3km/5z0s2t6aY7Zs9oTXOaA0AOBGjg0yW7O4/44jE/PrpKRB7cnXxoT3LBiIv9Wn++d2d67ds71r2187Ih5T83XZG+dsPSvkX7r3LwOKFz6gZ08ZeOHvelo68+dpyItL65e9HWVstFDu+Mmx7XDx8jItefMKb59b23b1ld2f9rvjfoOS+sFZE5L6ybeNLo8q8clf7z3nmb1ro+92xvVvv6ps590iUVAwaIyKz29j9deJaPi89mxjnpxO5Xiw4J1Zw1Ooj6LCL61n2JrXujK9dpQwfoHfuem/Rd19c2ehX9Y1v8pd36S3tExPW1DYfOmL5M37RLRKpHDHmu4SfBDdI37Bg/9X9UgPa48myDDA0AH6JC07NZIt2s7tg63LQtKD1bFLoQHV1wd/T2u2uvv1IKvB3sYiHaeXo2M+5yaBWlBS1E18+eF7ttfs2k62zSc89B7heie03PlkF6utU4zVFotLVPz9ZZ3haibdKzhVqI1ptXeTnNEbv9Lvnn30Ukuz4fHOTTQnT9rDn1s+bUTLzGnJ4tVIl+Tw7xmKHN6dnyVZRoANkI0MCngk13NtvwzvYHdyf7FnVdNrjCdYa+d2daRO7dmbpsSPnowwaPPjzH97P2rZ337kyXHTnQ4yr04q2tbX/Z1fbm7quPHXd1ru9q0dbWRVtbbR4ndCjz+t7m1/eau7PlA27fvPr2Lasf1c4r/6rXlmruziJyw0k9fuQ/aHqyT9/9U0aOrOzvQx2e1b5eRGa2t6vvsOLA95lSFzn65T4M7U7Oc9Ldh6H9ztDq/oY2dEB42ICa8SNFJLFtX6yxXQ4tqvt2sb8ZWl2Crj17tIjUnD1a37o3tmKt9Otb9/0SJw8hOqe/uEvftDvyWHPteWNERDv+qDPvWF7QQ4gFzDJOiFxUISKRpSlt7PC6K7+pFQ/3d5CIRJc8EW/bohq08EsUAPigeEnPFr3e5fCSns2MDK2VjsmXDo307OXNOocL0e7Ss5mK+A4XogtNz1mzCliILig95xjU/Vaho2hbUHruMajwhejY/CUiIrK/1/RsYZzmKChDm29uOB3ktkQ7Sc9mXhaibdKzxZ1zZrSkmlSJVp/jyYFr0QA+bQjQwCdZPB7Xdb3X7myhVqEvG1xx2eACfu/d3J1F5OcOvu1vdqY3vLPdxSr04q2tIrJ4W8vVx45TW8/2H3/p6sdcr0KrUxsiodIjj8ruzmZqFbqoaP+kU0a7y9Dq1cGc3dks8+e9czet9ZKhmzo7U/s6VXcWkSmn5V6p9iVDOzknbWTolb84z90UJbZyrYhEV66rGT9KdWfrBzS2xxrX+XKII/rHNhFR6bnmbOvye2zF2uiKtX6tQkcfa4m/uEv+9b42fGDteT3+xYg+tSb61Gpfrj8rkQeTkYeaqkcM0U4drOpz95cvTUWWpvzdg44ueSKy5Mm6a74jIrXXfEdvfSlyxx/0lpdE5NZbb1W/RAEA+M7H9Gx28MbxDddq5eNU4vQrPZvpmdZEpi06f5HlLocv6dk6K89CtPf0bGFeiJ42eaLlaz2m556DelmI9pKec8yae4fNQrTr9GwddGAhWistDpeNzVeiY/OXiOwXkULrs8H5QrSL9Gyd5fg0R6Hp2aKgEt2WbmrLNK3ONJVUVPZanw0sRAMQAjTwSWV+RkZ1568fNmTEF49x+M2dr0KvfXvnurd2FtSde3zzt3beuzPt8CKHuTuLSM6V53yMixwPl3+r94/ueWqj9MsDSx2X6+bX917c/MeCrkLPeWFt+rV96df2TTxptE13tpi7aY2LixzqynNl//4VAwbk687Wb7J+/az2dvPaskPGqQ1xdk5afbyLpwiNUxs140eJSM70bOYlQ+sv7dY37zGvPNsN8paho4+1iIhaedaOP0obnvdfwjMXLtdf3uslQ0ceTIqIWnk2d2eLM2ofim/Y4TFDR5c8ISIqPdde8x3L15KhASA4xueHNZOvD5eXhMtLe/sWbqgbxyHp0tMt/qZnC/NCtO/pucegAwvRtRO6/158TM9mxlWTcEWZWoj2MT1nzbIuRPuYnq2Dshai1U3krqI+HtNzj0GZVvWbE9mnOZzf3HDI5q1C7+m5xyDbhWjjpUF36dmi19Mczhef86FEA59mBGjgEyUSicTj8Xg8rv7y4oFVBXVniw3vbJ+66X9yrkIb3Vk9LVhod7b4zc60zeOExtOCLrqzhbrIYfM4YfaJZ3eDnFzksJx4LvuKm0PVDi9ymE9tOOzOZgWtQuc8teFQoRc5YivX6lv3yX4xTm04HVT4RQ51akM7boB27FH23dnM3UWO6GMtxqkNy8pz3kFb9kafWh36TL9CL3KolWcVnW3S88FBG3dGlqbiG3Y8d8/1hV7ksKw8200hQwOAr8zpWU83S5fUTL4uuAAdm317zcRrEpkWkS53b/o5FJu3KDp/kVZarDe3+fIwnd2s+Uv05ja9eZWIrHjswYD+6SmJdPPZ3/+xiGjlJSse/d8gB3UvRHfPWvbbYGcdeKuwq6iPiPhYn3sMMp3m0EqL/U3PZpa3ChPNq3xMz9ZZBxaiRUSV6JwvDXqXcyHae3q2sJzmqK6u1jSNEg18shGggU8Cf7uzxdRNvzWvQqunBUMi3ruzWc5V6OynBb3L+ThhryeeXch3kSP92r70a3udnNpwyOYih7k7S/5TGw7ZZ2gnpzYc6jVDm09taEP7h4e5PB7tJEPbn9pwyGGGNq88O+zO1kGOM7TDlee8gzbujCxNdX3mUCeHoe1Xnu2mmDJ0Y2MjvywBABfM6Xna5AnqCxPp5tjs+b5naCM9G0XMiFn2x5RdUOm5dsJVNROuUl+iZ9pi8xeLdPmeodXh4OjtS9RCt9q87gr18fGAiVn3P8YbrtXKx3XvDpeX1Ey6rqD3Ax2KzVkYm7PAmCXOLkS7o14pjM1dGC4vTaSbtbJxNROvDgf4mxN3xuYt0kqLRZy+XenamT/+hfqdCa14VO3Vl2njRgU0SG9dJyJn/tt1IqKVjVvxuwcCGiSm/+UVkXHllQ889oTvI1rTTa3p5B2zZ6q/rK6ubmxs9H0KgI8IAjTwMebwaUHv1Cr0qMMHr3trp83Tgt6tfWvntRuWqgBt87Sgd61v7v631Y9NOHGMiMx/aXXplwf2euLZHfNFDnXiuewrR5V9ZYD37myR+fPeHzQ9aVzkUKc2fOnOFqnOzm8/84x5u7nQUxsO5TwMrV4XdHhqw+mgPBna8rqg90E2GdrFyrPdINsMXejKs92g3jK085VnuykHMjT/nSYAOGf+LNGcns1Uhk6kmsPlpR5LdHZ6ts7KtMbm3uHLQnR2ejYzMrRWWuz9IoclPfcc1H2K2vs/PYORni1HMLp3h0V8zNBGehYRY9zBcxl5LkR7GHdHbO7CmsnXG8m+++3Krv2+Z2iVno1/Q9S/EmpH3vcSrZago7ffXXvFz2qu+Km+an3srgckVBRQho4uuje66L+nXvLd8GknNTzweKJ9k1Y2ruaGa4Lo+IlMq55uFRH1mxN/Cx1yzeSbxxXyVqFzremmn33/4Hk3PuUDPpEI0MDHj6U7Kw0n/cSvlWezB3cnReShPckfD6wSkU1/7bhscHlA9fk36hnDHenRhw9e+9bO/x7z/V5fF3Rt0dZW448PlX7b+YlnF9Q5DhEp+8pRv6s8P7hBIvKDpiczf94rIu5ObTinDkNXDerv7tSGc6puqz1ofeu+fK8LemcchlZ/6XHl2W7QirXRFWu1kwY9d8uF3leebVgytMeVZ7tBWRna9cqz3RQyNAA44yQ9W3hZiO41PfcY5C1D26dnMz3Tlmhui85f7Pouh016zprVvRDtJUPnS89mPeqwhxKdMz3nnCV+LERnp+eeg7rfrvRlIdqSni2M35zwK0N3v3t5xc9qrvhpj0Gr1sfuekBftd7HhWgjPU/72XfNX55of6nhgcdDnzssXFailY/zq0TH5t4Zm3dHzv+aYVx5pb8l+s45M+6YPfPmW6beMnXq9IaGpmQimUyqr+KzPuCThAANfGxYuvNJXxh60heO+X5/TUQ2vbv9sU591GGD/Vp/tnTn/3fgu33+wOOEC0dc5MsgMXVn8zOGxkWO+8Z8369BYurOVw0rEZGrjh2nrkv3Keq6fvgYfzP07ZtXi8jtW1Zfe/zYkiOPFpGFL7cVFXXdcNJod+eebczdtEZE5m1aO+HEMaVfPmr+S6v79t0/ZeTICtvD0O7MWr9eRGa1t08ZOTK1b5/Dw9DuGGc9qgb2T+7pXHnZua6vbfQqsW2f3tEZa1wnItpxA1b+MsDfKlCr0Por+7Tjj9KGD/Q9PZtFn1oTfWq1HFh29jc9mxkZWl+1xePKs90UU4bmP9IEAAsX6dms0AxdUHruMajwuxzO07OFi7scztNzz0GtsfmL9ExboQvRTtKzheuF6NichSKSSDeHy0qcjPO4EG2fnrNmeVqIjs27M5FpU48B2v9L4stCdL70bJ11YCFaGzdKKx7trkRHF90rIu+/86aIWOqzIdH+UmL9pmT7S6HPHeZxITo7PVtn+Vqi75wzY11zqrIqfMvUqeYvN5doMjTwyUCABj7q4vG4rus5u7PFY536y3/d9uOjq7y8Ovj82zuyu7PF/+5OPrgnuXDERV5Wode+tXPt2zst3dlCPU7ofRW69c3dbW/uNndnyweoY9PXDx/j/QpH8+t7m1/fo7qziFx7fI9f6ix8uW3hy6smnjTalxMcmT/vTf95r+rOIjLhhIPfZ+b1vRell/u7B622ni1nPQp6n9A5tfh8y9ivi8gtY08TkeSezumrni86JFQzfqS/GVrtPlcN6h8++mtTS07rPv1xaKjm7NHasT7/VkFsxVp9696u/+sKD+kfHty/PrU+sbPz2Wu+pQ33fwc/+tQaEYk+tVpd9og+tdr33WdDZGlK/bF61LD4um1ayYl113xHG3diELPMh6H5BQkAKObnQFykZzMndzlcp2frLAcL0a7Ts5m5OdqUaHfpOWuW04VoF+nZrKCFaJWe1eKzi3GFLkQXlJ57Dip4ITqRadUzrTaLz/mYrrWM0UrGOizRDtNzj0Gr1idWrddXtbs4zZFv8TkftRDt7jRHr+nZOivT6uU0h3nxOd/HJJOJGQ0NLEQDnwwEaOAjKmd3PvnzQ0/6gl1cVqvQfUP7G05y+imR8uDu5EN7kl//4pARXzwmX3c2M1ahXVzkUFl59OGDnTxjaKxCX33sOBcZetHW1kVbW4u/dHTxEYOyu7OZ91VodWqj5MiBJUcOtHRni5+0Pu5xFXrupjWZP+/r6pKyrww0d2eL+ZvXzH9p9R/POcfLKvSs9etT+/Y1dXba5GzVpr3f4jBWnm8Z+3XVnS2MDL3i5+d6GSQiscZ2EYk1rsv5w/Y3Q8dWrBWR6Iq10ypOCw/uHx588KcjsbOzPrU+dGhR7Xlj/MrQauu5+6L0+d2/mlIXOfQte/zN0JGlqcjSVN2l40Wk7tIzur/wvuci9zX6eH9Did7xh3jrS1JUpJWeXDvxwjN/VK9nXhR+NQLg0814Y1A8p2eLnAvRfqXnHoMOLFTWTrg6XFZslGhf0rNFvoVoX9Jzz0F2C9Ee07OF/UJ0It2ip1tcp+fsQfYL0a7Tc9YsRwvR9jc3nFDXWvRMW6+nOVykZ+usQk5zFJqeLYzTHE4ydGzuncafu/4PGpwvRDtJzxaUaOATgAANfOSYd1hE5HsDtF67s8Vjnfrv9+lOrkI/uDu54Z3tG97Z8eOBVU66s4Vahb5sSHmvHVlEfrMzve6tnWvf2unw483U44TO3yRctLVVbT1fNazEvjtbqAxd8ZUBzlehzac27LuzWcsbe1xc5LCc2ihzEMozr+91d5HDfGqjsn9/J9/2O888424VOrG7M7mr07LybGP6qvXTVz3v+h60Wnl28mpiYnfnN5at9HKRQ118nlZxmohMK887y5cMbV55NrqzRfdh6EP71l1UoZ3q/r9gMFae6y4db3Rn68f4l6Gjd/whcscfaidcoJWdopWdbP4qMjSATy0jPYcrSrXyUh/Ts5mRobWKUt/Ts0Vs7p2JTItIl1Y6zvf0bGZ+qFB9iY/pOWtWj4Vof9OzWc6FaOPcs7/jci5EG+k5XF7iy5OMYrsQ7T09W9ic5oguuFtE5O/viYjr+txjlu1bhR7Ts5mThehCF5/zznJQou+cM6Ml1XRmteY8PVtkn+ZQf+LhBw7gA0KABj4qvHdnM/tVaPOJ568fNuTrHl4v7HUV2nziefRhg71c7bh2w1L7VWjziefiLx1d7PZwh7rIYf84obk7S9apDYccXuSwObXhkJGh/3DOOb1+cM5TGw4VepFDndqoGti/auDXeu3OZi4uctivPPf6gyzoTULzyrNNd7Zwl6H1LXv1l/dmrzzbfxPXGTrnynPeQe3bIvc1xtdtc5eho3f8QURUeq6deGHeKZkXo/OXkaEBfHqYt57DFaUiUjN5gl/Jz6J+9nwRic2+XSsbp2daXfx3/QVRLUwrGyddXTUTrtLK3Hx+5ZARHEVk5cP/7eJRxEJmtZ71o38TEXfHlAti1GE93RJE6bYMUslbT7fUTL5eRDwuPuef1b0QHS4rFhF/07OF5a1C74vPeQdlLUT7mJ4tcpZov9KzdZbpNIeIGCXaxeJzPixEAx9HBGjgQ2bztKB3llXofE8Levf8O9tv2fQ/5tXmnE8LeqcucpR/+SjzKnSvJ55dyHeRw/7Eszs2Fznmblozb9Pa0i8fZX9qwyF1kSPfJQ0npzYcSnV2fvuZZ2w6b6+nNhxykqGN1wWdrDzn4/wih8OVZxv16fX1qfW1543p9XHC6FNr9C17JBTSjj/KSXe2KChDO1l5zjuofVvkvsauQw9xfhjaWHkWEZv03GNKzwzNE4UAPpFybj13LymL+LsHrdKzvP9PEamZ2N2nEpnW2LxFolZffS22B1rY1WqWGqRnWrXS4iBKdGz+4uj8xWrrWS0pi4jDFxELnjVvUXT+opqJ3SE4kWmRUCi4DN29iXzDtYlMi+v3A53PEpHY3IVaeUmXhAp6fdGFs7//40S6WSsrli75AH5/4qyLLlN/vvLXszUPn6/2PmvV+rP+fbJWPKrr//4uIk/PuTG4WcZpDj3TGuh/0HDgwrv8LXRISUWlX+nZghINfIwQoIEPR6Dd2WzTu9tnvHLfiC8OUXc2xNfubHHLpt/2Leoadfhg37uzhfE4oerOTk48u9P25u7L1jyqHie8ffPq5jf2dnVJryeeXbBc5DCf2vDenc2yL3K4OLXhUPZh6EJPbTiU7zC05XVB74NsMrS7lWcb5zy0IrGzM2eGNq88a8MHerwc3WuGLmjl2W6QgwztcOXZboopQ996663qP8wEgE+AXg9uJNLNiVQmNvv2cEWpx4XonOm5xyxfM7QlPeee5d9CtDk9m7/cuNqslRX7VaLN6dlc+rrbnN8Z2kjP5q3nQt8PdCiRbtHTrbG5C2smXVcz6druQXMW6OkWm+crXVOnS4yfte7fM+gSkUBKdPe/JFdeUnPlJXpbe2zJ/SJdNVf8LKAMHbvrt9G7Hrjlh2eJSPKFraG+h0z92XfDIwN5zLn+gcdFpM/nD9fb2vVV7R/Mf9MQrixPNKWrqqpunjq1qiocxCDLaQ4RoUQDHzUEaOADZenOys3HXer61IaNTe9uf/GvHb/fp39vgLbp3e2b3u2YftJPvFzbsKfuQY/44hARKf7SoIDSs6ICtPrze0+/wPWpDSfUOQ6R7u5ccuTA4Gb9pPXxljf2iIjrUxsOGRla7TtL4ac2HDIucoSP/lpi96uyXwo9teGccRha/aWLUxsOWTK095XnvIOyLnJ4XHm2EX1ydfSp1eb3Cb2sPNvIl6FdrDzbTSFDA/gEMadnJ2XZWIh2kaF7Tc89BhlLym4bln16zp7lMUPnS88WvixE50vPZsbNXO9LyjnTc49ZB85l1NxwrVY+zmOJ7h53ID3nmDVngV8L0fVzFohI6F/q30nr7xmIiCrRPv/+xJWX1Fx5SY9Zbe2xJffrq9q1saf5WKKN9Kzqs5J8Yev0R1YmN24NjzzJ3xJd/8DjDfc/bv67687r/Q4Nl5Vo5eN8LNGJTKuebu3qd6iITJsySUQSqXT9rDldoT43T50qIv6W6OkNDTOmN0y7abKI1M+crb6QhWjgI4UADXwQ4vG4rutGdx7++aHDPz/0/K9Wi8iWv3Y8+Vr81C/6uf6sLm9YtqrVVeh+of0/PrrKxwz9v7uTG97Z/vw7Oy4eWPXjA7vVD+5OvvTXjnxXoV07eNZjcMWowwePPmzwvTvT9+5MFfrSoBOLt7aKyOJtLVcMLRWRsV86+q5tLX2K9v/POJ8vsinqGLS6K9L65u4+RfsnnDjGyRuDLszfvCbz5z3Nr+8t/fJRza/v9X5ww4axXl3xtQGpV/c99Z2zqgb6tmGd7bw/rEzu6RSRqkH9n77grF4/3otzH12Z3NUpIn6tPOeT2Nl5zkMrtOOP0l/e68vKsw2VoatHDIlv2OF95dmGkaGrx50o3lae7aaQoQF8zBnpuWby9eGKsoJaXqEZuqD0bJ1V+EK08/ScPcjFXQ6H6dnMyNBa6bhwWbHzEu0kPVt4WYjuNT1nf3wi0yJuF6Lt07OZ94XoRLo5kW4xLz7nc3B73cPBFiM9h8eO1IrzPnNtLERrY0eGx57mukTnTM8WqkT7shCdnZ7N9Lb2xKp2va1d+h3q43/WMG3KJJWezVSGFhFVon3J0EZ9njZlcveUpnT9rNmJppT6S0o08FFAgAYClLM7D//c0OGfH2r5yCdfi299r+P7/TUvq9CPdepq0/l7A7R8OVu16R8PrPJ4iON/dydF5ME9yYsHVn39sCEjsor2hne2P7g72a+oa+GIi7wMkp7dWUQuy9qtvnbjQ/2K9quHBz3OkgMrz6o7XzGsx+fld21ruauj+drjx/p1gmPhy20tb+xpeWPP1ceOs1y1XrS1tU/R/ofLv+XLIBGZv3mNiMx/afWEE8eUfvkoVbezL3L4Rd3fuPHUUSIy+dRRIjJ747rbNq7zePQ5p+mr1ovI9FXP33jqqMmnjkq9tm/2xnVFh3Q5fAixIMYVkSkjRlX075/q7Jy1YV1wDVrdg66pGiki+o59oUP6FPQ+YUGiT64WERWgpW+fukvHayOHBTFIidz3XOS+Rm3scH3VlmcfnqaVnRzQID3z4pk/qld/3tjYyK89AHwsmNOzl7POKkMnUs0229Ne0nOPWc4ytLv0nHuWg4VoF+nZTM+0JjJtenOrOFiIVn/7XaEicZyezQpdiC40PfeYdeAuR/feq4MS7Tw955hV+EK05eaGQ8ZpjkJ/f0JEci4+5x1kFNvCT3MY6bnq1GOrTjm214/3uBBtn54tDi56e/vPGnKmZwtVoj2e5shOzxb1s2YnmtKUaOCjgAANBML8OrmInP+16pzd2cz1KvRjnbqIqFMbJ39+aK8J28sqtLk7i8iPe6vYD+5OPrQnuXDERS5Wode+tXPt2zttunOPD3575707U+VHDnS9Cr14a2vbX3a1vbn7iqGllu5stuovu9QqtJdzHAtfbhMRtfJc/KWjx+Xp5ou2ti7a2ur9DLR6e9DmrIePGdpYeVYtOPsDvhf/U1HfrlvGft37KnRyT6e6/mzO3AYjQ/u1Ct3Qsr6h5fmKrw2o/NqAG79+cC8m9eq+Wc+39zm0a1rFaeHB/vTu+vR6EVHpeVr44C9p6hPrY8l2bfjAZ6/17XcmxLi/cXGliNRdVCki+oYdkaVNQWToyH3PiUjkvsa6K8+vvfKbIhJd8kRkyZNa2cm1Ey70PUNH5y2Lzn+0dtIPRURPv6CnN/ILDwAfZeZbbR7Ts0XOhej62fNjs29Xgc9LDu4xKP9dDl/Sc85ZtROuCpcWW4Kjx/RsYX+XQ6Vntfjs/VW3XheijfQsIi7q88FB6RY93drrQrTr9GyZ5XAh2l16NitoITrfzQ2nswo8zeFk8TkfYyG6auSJ4dNO6rVEG+ee7Xe6czJOc9TccI2IOCnRztOzhbvTHL2m5x4jmtKJVMpymkMOXIsG8MEgQAN+ikQi8Xg8Ho+rv3TSnS2cr0Kbu7OIFJqt1eOEDlehn39n+/Nv73Denc2MVWjnFzl+szO97q2dXSKjDxti350t7t2Z3vBuR0Gr0OZTG2O/dPTYIwY5+VYqQ5d/ZUBBq9Atb+xpeWO3cWrjaget3FiFdnGRwzi14TBhq07t7iKHuTtLVgu26E7DHjK0Ovdc8bUBFV8dYD9LrV17OQbd0LJeRNTKs7k7W/iVoc0rz+b03ONjEutjyfba88Z4PANtrDzXXVypurOFvxlarTzXXXm+iKj03OMHs+SJyJIn/TrEEZ23TERUelb1WdHTL0TnPEKGBvARZP4c0t/0bGZkaK28VKVnv1pwjlmmhWg93epveraIzbszkWkzFqL9Tc9m2Q8V+puezXIuRPuVnq2z8ixE+5Kec8zKsxDtPT1b2C9Ee0zP1lm9vVXoJT2bJV/Ymty4tde3CgtafM7nwN+U9Hqaw3V9NhR0mmN6Q0MqEQ9Xljupzz2mcJoD+PAQoAEfWJ4WNJ94dsF+Fdpjd7aY8cr99qvQxtOCI754TEHd2UKtQl82pNzmccLsE88uBqlV6H5F++89/QKbD2t7c3fbm7vzndpw6K5tLWvf3uFkFVqd2tjfFRr3paOddGeLgi5y5Dy14dyP0ssLWoXOPrXhkJGhn/qO08/CLac2ChtU+EUOtfI8ZcQoEbFJzz1muc3Q+Vae80ls74wl211f5MheebbhMUNnrzznHdS2JbLkCX3VFi8Z2rzybE7PPQalXzjzgluFX3UA+GiwfBrp8KVB19TWs1ZarDe31Uy8Wivz89mxbGf/8FL1UtzKR+4LdJCIJDKtZ/3wUhHRyopXPnxfoLOMhWg90+Z7erYwFqLDZd2fr/qYnnsMMi1Eh8tKVHrWyks8vliYb5Z5IdrhrWd3shei/U3PPWblWoj2Kz1b5DvN4Ut6trA5zeE9PVvYn+YoaPHZbgolGvjAEaAB9/ztzhaWVehN725/8a8dfnVns5yr0DmfFvQo3yp0ryeeXbB5nFCdeB57xKCxRwxy153N7C9yODy14VCvFzl6PbXhkJOLHL2e2nDI4WFotfLsInMbnGdohyvPNm57vt35YWgnK8/5FJqhe115thFZ2hR5qKl61DDnGdp+5TkflaGlX9+CLnLkW3m2+yZzHonOeUT4JQeAD0/OgxuFPh7onErPtROuqplwlfqS2PzFeqZNQqGaiVf7Xodj8+6MzVtUe/2VNROu1JvbYvOX6M2rtLJxQcwyxtXccK1WPi429w493WIsKfs+S4yXBiddl0g36+mWmonXaOVBpfzY3DtFJDbvjnB5aUi6wmUlAQXo7nFz7khkWrpCoUSqeeWj/xtEfTY7+4L/p6dbRCSg+mymZ1rP+tG/iYg2duTK38wNdtaBhWh91Xrf07OF+a3CcyfNCiKsG8ynOdR/2eBjerawnOZIJpK+pGcL85Ho6urq6upqTdP4tBAIAgEaKJjlvrO/3dlMrUL3CcmmdztO+sLQk75Q8Hlo59QqtHpL0OZpQe82vLN96qb/uWxI+ejDBjs/8eyCsQqtLnKYT214784WlscJXZzacCjnRY5CT204lPMiR6qzs6mz093Kcz42FzncrTz3PivPYWgXK895B726b9bz7alX9z1z8dk5V6ELXXm24SRDF7TybENl6LpLx9ddekbej3G88mzDeYaOzlumN7+oVYyQ/CvPNs68IKKnNwoZGsAHy/zJZM6DG/5m6Oz0bKZn2mLzF/uYoc3p2TqruS02f4mEinzM0EZ6tmTZ7rMSXfv9zdBGejZfpYjNWZhIN0tXl7t32/LOOpCeayZfP23SdSKSSDerZWGHDxUWNm7OHSISm7tQ/TtpvGCplZfUTLrO9xIdm7NQRELv/1NEwqXFsfmL9ea24H7bQB1LkX+8KyJ6W7vetk4bO7LmyksKPY7sdNyS+/W29orjj0pueDm54eWqU4+95YdnOXly0J3pj6xMvrA1dMhnE2s3Bvr3pZz18xv0Ve0iEq4snzZlUrjC51/HmRkL0SLie30+OKXnQrTwcjUQAAI04FQ8Htd13fjVwnGfG1oUkuuG/ltA4558Lb7lrx1b/tox/PND+4TEyVVo14yzHiIy4otDGk76aUCDFHWOQ0RGHT544akXBzrr2o0PrXtrp4h4ObXh0L+vXdanaH/LG3vUsrOP3dlCZejKrw0QD6c2HDIucjR1dqb27evqCvV6dtkdc4YWEZvXBb2zHIZuaFmf2P1qclen65XnfHJe5PCy8mwjsb3z7N8+ow0faM7QXlaebZxR87/xDTuyM7S7lWcbNhlaz7yoZ15QK89a+ala+SleBpGhAXxgek3PZkYBrJl8fbiizEWJtk/PZipDq7scri8126TnHrMOZOhwWbGXq9D50rOZjxk6Z3q2zpqzwK8M3f1m44H0nDWrOTZ7QUi6/MrQ3eee8/92SKiry8cMHZuzMDZnQfa/mQd+OyT3Y4/ux81bFJ2/qPaqS2uuuvTgrLb22OL7pKvL91wbW3J/dMn9t1z8jakXf0N9SXLDyw0P/Um69ledcmzVqcf6W6KnP7Jy+iMra37+o2mX/1BEEms3xu55JNSnr1Y80sXzg71Sf3fq30z172Ei3Rxcia6fNad+1pxpN90Yrqyon3lboikVrqyYNmVyuDKQ6n3Ot79vztB8Zgj4iAAN9CK7Ox/3uaHHfX7ocZ8b+sxr8W1/6zj/q9UFPTNo78nX4iLy5Ktx8wOG9lehXTPOelwwQBORCwaERaTh5fv7hLp+fHSV7+vPD+5OishDe5IXD6y6eGB4wzvbH9qTLD5ikO+7zyKy9u2d697aee/O1KWDKtSXbHx3+xXDShy+MViou7a1iMhdHc3/cUzZmrd2FoW67hvz/SAGKeoWR/ERR7f9ZffS8m8FlJ4VY71aRPxaQ7bxvfifUq/u+wBmpV7b973GP1UN6q+6c0X//hVfGxDUrAMZOjykvy8rzzaM9wnlQHcWbyvP+ZgPQ8fXbRPPK892s3pmaHVtQ295SSs/xcXKsw0jQ996663qbXQA8JGRnsMVpVp5aUHPDNbPnq+nm6WQhWjn6dlCncct9FaGw/Rspje3JTKrorcvcXGXw0l6NlMZ2vVdjl7Ts3XWnAV6uiX7Wq7Tcbbpuees7vznZSHaJj1nzfJhITpfejYzfjvE+0J0zvTcY1Zbe2zxfX4tRGenZ7PkhpcTG15ObnhZuvb7shBtSc9mibUbE2te0NduDPXp61dhN6dn67h0c2z2Aikq8jFDG+l52k039pjVlKqfeZuIqG1ov0p0/azZ9TNnT73l5mm33Cwi9dNnJJPJRLJJRFSApkQDHhGggbwspzbO+Uq16s7mj3nlvY4l2//7/K9VezzBYe7OIpLze7NchfbisU799/v0k79wzMlfGKq6s9mL725/dJ8+8rAhvlx/NndnEbl4YI9xD+1JbPprx2WDK9w9OZjt3p3ptW/vkK7QyMMGXzq4wvjy9rd33rcz1bdo/69Hu3zcLJu5O4uI+qOI/Nf2zH9tz1x97Dh/l6AXbW1tfXN325u7rxxWctWwcSLS9ubuJdta+vTpcZHDL+oEx3XDx4rIdcPHtLy+58ctfwyoC8/euE5Ebtu4Tp0x+Unr43377p986qiKrwYShdUGdMmRA8cdObD1jT19++6f8vWRAQXo1Kv7Up2dszasqxzQv2lfZ6D1WUTqE+tFJJZsFxF/t55zUqvQIqKNHf7cb64PdJbetuWMy28XEbXv7G96Pjgl/UJ0ziNkaAD+8pKezRze5XCdns2c3+VwkZ6tswq5y1FoerYodCG6oPScY1aBC9HO03PWLDcL0Q7Tc65ZbhainaRnCy8L0b2mZ+usAwvR7haH7dOzhVqI9nKawyY9W6iFaI+nOWzSc49ZPi1E18+ak0ilw5WVlvTcY9aBDC0i3hei62fNTqQyVVVVqj4fnJJMJpJNDdNnqL9kIRrwggANWEUikXg8Ho/H1V/m7M4WS7b/d1FIXKxCO+nOZlv+2rGg47+/N0Bztwr9WKe+6d3tm97tuGCAlt2dLR7dl9j8122uV6E3vLP9+bd35OvOlo98aE+yb9F+L+c47lUvGe5MXTqoYtThQ0bmydn37Uzdtyv169EXelyFVkefLd3ZbM1bO/9re6Yo1HX1seO8vz2o/njlsJLiI44uzvre2t7c/fO1j/p1ANpYeb5u+Njrho+xfO2CLasXbFn1+/Hf8CsNqxZ87fFjRURd0FZa3tiz8OU2fzO0kbmvOX7sNccdnNX6xp47Xmnr23f/H84815dBym3Ptze9ui9U1FU5YMBNo7qj88x162euaw8iQ6vd57rvlYhI7fdL9E27I4+1hPoW1V1UqY0Y4u8sfcOO+MYdkYea6i4/p+7fz9bXvBK5Z0VXUVHdld/Uiof7O0tEokueEJHIkifrrv6WVnxCZNFyTRsZUICWA48TauWnkqEBeOdXejazydC+pGcz+wztPT33mNXbXQ6P6dnMyNBa6bhwWXHOsuklPVtnzVnQ60OFrtNzz1lOF6LdpeesWU4Xol2kZ7NCF6ILTc89ZrW1J9rW6W3tzk9zFJSeLYzTHM4ztDr3XF0yNnz6KeHRpzqfZZzmKDRDx5bcH2/frFWUOv+X01iIDleUhyvLCyrR+Raf885qSnk5zWFZfM47JZlsmD5DLUQLJRpwhQANdDM/RC4HTm2c43ivuaBV6C1/7djyXofz7myxoOO/C7oKbZx4vmCAdvIXjjnZ8QK1u1VodeJ5xBePGfHFITbd2eKhPYmH9iQXjLi4oFVoc3cWEfPKcz7GKrSLixzmleec3dlizVs7r2h/xPUqtDq1ceWwEhFRK882Fm9rXbKtxfVFjvmb14iIWnkuPfKoki8PzPeRLa/vWbBldR9vaXj2xnWp1/alXt1nvNyYe9aBDP376oI/obeMU91ZRMzp2eyOV9rueHmV9zPQxsrzTaNGVg7oXznA+gJh077Omevaiw6VmqqR4WNyvE9YEGPlue57JbXft/7az/cMHVnapG/YIYf000YfV/fvZ/eYFUCGji55QnVnEam9+lsHv3zR8sii5bWTfuhvhlbp2TgqbWxD82sMAC6Y07MvDwlaGPlPff+JVMbf9Gxmyn/dtzL8Tc89ZuW6y+FjejZLpFv0dGsi02JZiPYrPVvke6jQl/RsYbMQ7T0955qVdyHaY3q26HUh2kt6ts5ysBAdW3K/iPzrzVdFxEV9NjhfiHa++JxPQQvRDhef885KNyfSLXqq2eFpjkLTs3Vcgac5HKZn67cyneYQSjRQCAI0Pu08dmcLtQpt8zLhk6/Fn3w1PvzzQ4d/fqiXqx1OVqHN3VkOnHh2weEq9IO7kxve2b7hnR3qxLOLQcYqtJOLHPfuTBfUnS3a3945YeODVwwtdfIsYb5TGw791/bMurd3OF+Fzj614ZC7ixyWUxsOv5XK0OGjvlbQRQ7zqY2SI48uOTJv5jZb+HLbwpdXubj+kW/lOR9jFdrdRY6cK8/5eM/QlpVnm4/0nqHNK8/Vpx+rnX5cvo+M/HpF5J5nPB6DNq88m7uz9cN8ytDROY+oP+b8rsjQAApV0DOD3p39/YsSqWYRWbn0Xq2s9/9n54WeaTvrostERCsdu3Lpb4KddWAhWs+0+p6eLcwL0UGkZ+usA3c59HSr7+m556zuDB0uK9HKx+npVn/Tc9asHgvRRnoWEX9/XyTnQnRs3iIR0ZtSWvFI7/X54Kz8C9FeFp/zsVmI9p6eLYyFaBHJLtEe07N1Vm+nOZzc3HA6y9lpjnw3N5xOyXWaQw5ciwaQEwEan1L+dmezZ16LP/Pn+HVD/818juPJ1+Jb/tqx5a8d3q9Fm+Vchc75tKBHNqvQ5hPPI754jPenC9Uq9GWDK3I+TqhOPK97a+elgypcdGeLiRsfsl+F7vXUhkNOLnL0emrDIYcXOcwrz867s4W6yOEkDec7teFQoRc5nKw851Nohr7t+XYRsVl5tuEiQ9uvPNuIPtYS+X1LoYehbVae7b6V2wydb+XZ7pssWh5fu6120g+18lMKmiWmlWcRsa/YZGgAThjpuWbSdVp5iYjE5izoCoWC2ICWAwc3aiZeXTPxPxOZ1ti8RdLVVTPhqoAytHqcsPb6X2olY6ML7haRmglXaqVBJe/Y/CXR25fUTLwmkWmRUChcVhJog1Z7weGKUu+P7Dlx9gX/T0+3iEi4vLRm8nVB/OthMNqfiIQrSlc8tjS4WWrc2d+7SCsvkf37tbLiIFbyDcZCtPqdA18Wn/POMr1VqBWP9D09m1kWopMbt/qbns0SazeKiPk0R2zJ/Xpbe3j8+CB+X8T8VqGIqBLtcfE576w8pzncLT7nncJpDsAxAjQ+dcxrKT52Z7NX3ut45rV4UUhUg1anNoZ/bmihF6KdMK9C2z8t6J15Fdr5iWcXslehHZ54dkFd5Cg9cqB5FfqubS2r/rJr1V92OTy14VC+xwkLOrXh0OJtrWvf3pG9Cp15fW/z63tdrDznY3+Rw/K6oNdZvWVo47KHw5VnG04OQ9/2fLvqziLS68qzDYeHoZ2vPNtwnqEjS5ucrDznoy5yxNe88tw91/d6kUNv26Kv2tzrynPeb966ObJoufTr5zBD26882w0iQwPIxbzWkL08qzZe/c3Q5vTcY1amNTZvkZ5p9fcWh5Gea6/7pfGFevPq6IK79eZVWulYf0u0kZ5rbuj+u0tkWtWycK+njd2MyzpJ4fqRPWfjFsbmLKi5ccK0yRNFJJHKxGbPl66ugDJ0/ZwFIiKhkIiEy8tis+eLdAX0OyLdE9W/nJOuS6Sb9XSLVloc3G+KyIF/ObWxI/VV7VrxqJqrLnX3yJ7TcYvviy6+L3z6iK7/+/vUi79RNeL44GaJyDem3Znc8LKI1Pz8R4VefC6UcZpDRMLlpSseezDAWSpDi0hRUaIp7Xt6to4zneY459vf8ys9W3CaA+gVARqfCvF4XNd1ozuLs6cFXXvmtbiIPPPnuIgM//xQm4scvlBnPUTk5C8cM/X4SwKd9eK72xtevl9ECj3x7MKGd7ZPe+m3ow4frPadxdWpDYfU44RXDC2VA6c2xhwx6PTDfcvcBvMqdNubu92d2nDIcpFDndooPXJgyZcHeu/OFkaGNo41e1x5tpF9kSP12r70q/vUynPJl44e5+yyhxM5D0ObV569dGeLb/3pmaZ9ndkZ2vXKcz72FzkiS5tExHhg0Ous3g5DR5c8EW/bIqFQ9bgTXKTnHrMcZGjnK892g9IvnHnBrcIvLQD0lp7NjJfoPJ6EzpeeLdTRZO/tL2d6tlAlWvxYiM5OzxaJTGts7h0SCvmSoe2vIfueoWNzFoqIFBWp9NxjVioTmz0/kcr4uBCt0nNs9u1G7LbO8vs6uZGezf+L0H1yZP9+3zN097+cV15Sc2X3L3/0tvbYkvslFAoiQ6v0XHP5RdP+/SIRSazZGLtnaWLNhqoRxwdUohse+tP0h/5Ue9Wl4eJR6gxI17/+WXP5DwPK0PX3PBL7zcM1E6/WysbF5i3qChUFuptfP2dBbPbt0266MdGU6l5SvunGcGVQv9YTkXO+9V01SEKhqbfcHK4q4Ikj59RpDqNEV1dXV1dXa5rGp4uAEKDxiWfedxaR8UdWD/3csMbXG/uE5JyvVvsboI3ufPZXqkXk7K+M3/pex4o/N574BU/nnvN58rW4iDz5avzbX6s+4QvHiMjcrfddMEALYvdZRB7dl3jx3Y4X391+4QBNRJbt0+tP/Kn3gxv5qEMc6vvvG+q6dHCFj1vPFu1v71z31o77dqVGHjak/e0dd438YRDp2fBf2zNr3tq5+i+7io84+sphJa5PbTj08zWPtv1lt4h4ObXhkLrIUfG1Ab2+LuidkaFv27iu5MiB444c6HHlOR/zRQ7jdUHxtvKcj+Uihy8rz/lkZ2hj5VlEvKfnHrNyZWjj2oZWfII27gTfZuXJ0EZ69uvdQvUdChka+LRynp4t3C1E18+eLyom9paee8zycJfDSXo285ihe03PZkaGdn2Xw/lDfNmnjV2N607PIpJdn3uM82khWtU9S3rOPcuPheic6bnHrAO/AePLQnR2ejZTGdrHhWh1BjrevFobfaqqz2aqRPu7EG2kZ8tFEeMMSHj0qT6WaCM9m/9vi/GfUwRxJaZ+zgI906aic/c4Y0k5gAxdP/O2+pm3GXvWB09zVFUGUaLVKnRVVRUL0YAFARqfTJFIJB6Px+Nx9ZdDPzt0/JfHD/vsUOMDtv2t495d957zlWrv9zdeea/jlb92mLuz5QNW/Lmx428d53+12pcTHObuLCLf6vkI4dyt9/UJdV0wQDv5C/6k4Uf3JUTk0X36hQO0k794zCkHvtsX3t2+bK/eJyT1J/7Ul0HKQ3sSG97ZseGd7RcNrLrowHr1xne2L92THHP4IN83oNXi88jDhow8bMjPBlWIyAO7UvfvavL38oZBneC4bEi5iPx8cPlvdqbv3ZH+zegLgmjQbW/ubvvL7iXbWn5xTKmIrH5rV7+i/dcNH1PyZd+2g80WbFktIgu2rPrl0NJVf9nVt2j/tccXO3xj0IWFL7eJyMKXV405YlDfov3XHFfs49ZztjteaWt9Y0/LG3tEZPk3zinoyrMLahVaRLSTBj138wWBztI37T5jxrLqEUPiG3b4svJsN+tAhq4uHu762obTWQcytGrQ/qZnszMviOjpjcKvK4BPE9fp2cx5hlbpWd7/p4g4T889ZhWYoQtNz2bGXY7a668Ml411UqILSs9m7u5yOE/P1nGuFqKdp+ceszxkaCfpOXuW64XoXtOzdZy3hejY/MV6pk0bfbKI5KzPZr4sRFsWn/PxayE6X3q2UCXa+0J0Yu3GxJoX5IivSv7/86L+D0hXqEhEvJdoY/E5582NHleb/SjRlvScc5xaiBYRX0p0/fQZDdNnmK98cCQaMBCg8YlieVowuzubbftbh1qFvvKYf3M37pnX4q+81yEix35uaHZ3NvO+Cr3lrx1b3uvI153NNv+1w/sqtLk7i8iFR+X+rpbtTfiyCv3QnoSIPLQnedHAqhFfPObUXN/b0j2Jl97d7ssq9H07UyJy367UJYMqVXc2a397xwO7Un2L9v/HMWW+rEIbK8+XDSn/ec+XFde+tfPenem+of0+rkIv3ta66s1d+yU05vBB5oy++q1d/7U943uGVlvPvxxaKiIqdovI6r/sunt7cxAZWi0+m5+FVFdN+hbtf6D4uz4OUtQJjoknjRaRG046PfPnvXM3re3Td//yb5zj+yw5cAy69tzRIqIdf9SZi54MtEF334O+ZLyIRO5vrD79uLrLz3Zx7tmh7pcJLz9HX/uKVnZycPVZiS5aHlm0XCs+QW/b/K99Dwc6iwwNfEqY/7s61+nZzD5De0/PPWaZzkOHS4tztj8v6dkiuuBuvXm12C5Eu07PFg7vcrhOzz1mHcjQ4fLSXv8FiM1ZWGh67jGrwLschabnnOOcL0QXmp57zDqQobWy4nz/NlrombZEc5vN4nPeb+h2IdpherZwvRDtMD2beVyIzrn4nE8i0yoiXk5z2Kdn6zg/SrR9fbbMEhGPpzmy03P2B5hPc4gInzTi04YAjU+C7O487LNDx3/ZrggbGl9vbHwjfuUx/+b8HIfqzq+813H2V6qP+9ywYx1/Q3er0OrE8wmfH3ri54fadGcL16vQj+5L9NqdzbysQm94Z7t6b/CigVUiclFvF6U9rkKbu7OIZKdnM5Whx33paNer0P+1PaP+eNmQ8tGHDR6dv2WvfWvntRuWerwEvXhbq4iolefTjxg85vBB+X5Uv9re7P0ch3nl2ejOFr/a3nx3R7MvtziMled8y+lqu9z724PKHa+0iYhKzzecdLrla+duWjNv01ofD0DPXLdeRFR6rj23x7jo02uiT6/16/pz9/f5WIuIqPSs6rMSub8xcn+j73vQkV+vEBGVno3vuTtGB7AEHV20XEQii5bXXfXN2qu+JSJ62+YzLpsf0Ab0wfcMb/iBnn5Bz7wgItXV1Y2Njb7PAvAh8j09mxnXCWomXx+uKAuXl/qbni1i8+5MZNosC9E+pmezfHc5/ErPZua7HFr5OHOJjs25Q0QdX3afnnvMSjcnUpnY7Nvz3eWwvDTodVxvC9Ee03P2LPuFaCM9i4iX/11IpFv0dEsi3dzrQrT9zQ2HnC9Eu0vPZoUuRLuoz2aFLkQXlJ4t3J3mqJ+zoKvPISJS6GOD7k5zOEzPOWe5O81RP32GiISrKnv9VupIdMP0Geov2V3ApwoBGh9jXrqzmVqFPuHzQ+3PcZhPPBfUnc2cr0KbT204785mBa1Cm088O+nOFoWuQhsnnk/94pBeu7PF0j2JpXuS80/9sfNVaHVqw0l3tnhgV2rjux2FrkJbTm04/Fa/2Zne8PZ2F6vQi7e1Gqc2HObyK9Y/4noVOufKcz7eV6GzV57zMVahvVzksKw85/swYxX6plEjvVzkMK88W9KzQX9lb/TptdK3T933S7STPK3Jm1eezen54Kz2bZH7G+PtHY2LrvC+Cm2sPEueo9KRX6+Ir++ou/pbvtyAVivPdVd9U0RUeu7xtYuXRxY/4e8NaD39glZ2sojU3vAD48vPvDCqMvStt95aV1fnyywAHyIjPWvlJU6WXr1Q1TJcURravz9cVux7ejYz7nJoZcVBpGczI0OrBu17ejZTdzkSmRa1EK2nW0WMCxj+1Oce47LucvibnnvMyrUQ7WN6zjnOshB98Ba5r78NY7MQ7Ut6NrNfiI4tvk9vaw+fdmL49BHh0324sNzrQrTH9GzmZCHaS3q2ME5z2Gfoghaf885yvBBt/jCP4xye5uh18TnvFE5z4NOHAI2Pn5zdeejnhuU7teFQ4+uNO/7ekf0yYfbTgl6mKHfvuLcoJDlXoe1PPLtgvwqd78SzC8Yq9MUDq/JlaPOpjUK7s5lahe4b6pp36sU2H2Z/asMh4yLHktN+ZP+RNqc2HCroIoc6tdH2l92/OKbUxZp2oRc5FmxZ3fL6nuY39tisPOedVXiG7nXlOR93Gdp+5Tkf1xnaZuU5Hy8ZOt/Kc95Z7dsi9zdKnz7uLnLkXHnOO0sdhu7Tx3WG1ls3622bzSvPNqKLl8fXdVjeJyxU93uGN/xAKzsl5/ejp1+Izv0dGRr4uDNvPWvlJXq6xcszdL3qPha8f7+IJDItIlIz8epwmfv/NKr3ifPujM1bpJUVS1dX7XW/1EqDfan4zB//Qm9eJSJa2biaG64J9G9NRM7+wc/0TKuIhCtKVzy2NNBZxkOFIhKuKFvx+2DvPhkL0Yl0cxDpOccs6dLKSyWA9NxjVs+FaHcHN5zLXoj2vvicT86FaB/Ts4V5IVpEjBLtY3022CxE+5KereMOLESHKyvU/5i/1t3ic6+z8p3mcJ2es78fnivEpwQBGh8b8Xhc13XjVwIiMv7Iau/d2cy8Ct3r04IebX2v464d957/tWq1Cu17dzZb3qn/8dW4eRXa4YlnF9Qq9MUDqy429WVzdxYHpzYcUqvQlw6qsFzkKOjUhkM2jxM6P7XhkHqcMN9FDoenNhzq9SKH+dTGmMMHjTnC/TgnFzla3tjT8sZuhyvPNta8tfOK9kd6vcjR+saeljd3O1l5tlHQYWgnK882Cs3Qva48280qPEP3uvKcd5arDK2ubcRbN1cXD+81PR+c1bY5svgJ6dev0AxtvrZhXnnOO4gMDXxs9dh6LiupmXSN+vJEuiU29w4R8TdDd+/MTrxGRIy94O6DEsFkaJWeaydcXTPxahHRM62x+Yv0TJtWOjaIEh1dcHf09rtrbrhW/ZPs/sfY1RVQho7NvVNEpE8fEQmXl8RmL0ikm43zJr6PE+MkxZQbwhXlsVlzu7eGK/x/zvrAuHkiIqEivSkj0qVVlAbaoEXk7O/9KJHKhCvKQl37g/s9mIPjLvh/erpFRFbeM9f144EOGQvRIhI+fcSKRdFAxxkL0ckNL2vFo1beOy+4WSpDi0jXv/6pjT7V9/RsYX6rUKsoFZGuPodkN2J/ZjWl1P/IgdMc/qbn7HHZpzlUNa6qqvJYnw9OyXWaQw5ciwY+GQjQ+Bgwb6BIAN3ZbNvfOu7dda/687O/Uu17d7a4cVPd8M8P3fLXjiC6s9nmv3b8sVPvE+o6+QtDg+jOZuZV6IJOPLtgrEKrxwldn9pwIvtxQnenNpzIuQrt4tSGE/lWoQs6teHcL9p/l3MVeuHLbS1v7PnX/qLTDx/s19+d+gn6bfF3s1eh73ilrfWNPUVFXWVfGeCuO1vYH4Z2sfJso9fD0IWuPNtwkqH1Na/E12x1uPJsN8txhra/tuFoViEZ2lh5lp7XNhwNOpCh2WcBPhbypWczHzO0kZ7z3aNQGVrPtNZMvForG+c911rSs4Uq0T4uRFvSs1kQGdqcnqdNus78VfVzFuipZgmJwxf2HDLS87QbJxlfmEilA8rQRnoWETUxkUqrceGKsiCqd/3sebHb5tfcOHHajTeIWoi+bW5wGVr9dwBF//euiGjjTo/ccY/eskYbO7LmyksCKtGxJfdHl9xfc/lF4dNHxO5ZKiI1l1/ky/GNfOp/vTR2z9KaGyfqqUzo//5W0LuILqi1bq28RLq6JPj/rsJYiBaRZ5Y/HkR97jGuKXXOt7ofIf9gxqnTHIlkU7iq8umnngxkStZpDl4WwScGARofXZFIJB6Px+Nx9ZeDPzN05987xh9Z7eLKsxONrzdu+1uHqJsenxt27657Aw3QK/7cuPW9jlBIjv/c0D+95v7Qs0PLO/WX/tpRFJJN73a4u/JcELUHLSIjvnhMtPDHCQtV+9JvN7yzXUS8nNpwqP3tHZNeeHDMEYO8nNpwSGXo0iMHyoGVZx+7s4WRoVWDtn9d0Oss00WOljd2y4FTG2OOGFTQrW0nLBc5zCvP5V85quwrR/k4K+dFDo8rzzZyZmgvK8828r1PGPn1Cn3tKyKijT7Or6cLbTJ09gODXmfZZmg9/YKe3uh85dluEBka+Mgzp+eaG67pNa55zNC9pmfrx8+90+NdDvv0bOZLhrZJz2bqH6OebvF+lyM2986c6bnnuObY7AW+ZOic6bnHrFQ6NmtuIpX2Kw3Xz55nTs85x/lYvS3pueesTOy2uYlUxt+jNOp/Kequvbz2mn83f7nesiZyxz3y/vv+ZmgjPZsPbhi3MsKnj/C9RBvp2fhH2h30/+9vWvHIcPEof0t09/rzZw9Xb3Im0i0i0v27PsFkaPV/ZGomXz9t8gTjLk2vV5u9UIvPNTdOCJeXxWbPl1CR2oAOaJwK0OHK8kRTWiTvaQ6/qBMfxl/yOSQ+AQjQ+MjJ7s5lh48f/JmhIrLz7x2Ztxr7hOTngy7za1zj640i0vhGvPrI6mGfGzb0wGJ1x986Gl9v7BOSXw7xbZaIrPhzo4is+HP8G1+tHv75ocd/bqiIvPxex1OvxYtEbjjW5xNgyzt1Efnjq/Hv9tdO+sLQEz9/zEt/3f54px6SrguP0rxcfM5p2d6EiCzbp6uT0yd/4ZiGl+/vE5KLBlad6uxxwoIs3ZMQkaV7kj8aGD7lC8c8sjfRN9T1s0EVIw8b4vssEXlgV0pE7t/V9JOjK0XkhXe3Xza43PvBjXzWvrVz7ds7792RPu2wIevf3nHXyB96vLbRK3WOQ0TGHDHoVyM95TYnftH+u9V/2aWic3BhXVEXOUqOHNjyxp6Crjy7YGToygED/Fp5zse4yFF90tHi08qzDXOGNq5tVJ9+rPfnCrOpDK2VnVx79bfEj5Vnu1lZGVpd29BTG7XyUzym5x6DyNDAR1Kh6dnM6KfOD+MWmp57jHN1l8N5ejYz7nIU+j6hw/Rs4WUhOjb3zti8O2omX2+TnnvOavZyl6PX9Gwd5zkNd7dgBxN9qd426TlrnD8L0fnSs5nK0L4sRMeW3C8iXf/3DxHJd+5ZlWgRqbn8IhHxWKKz03OPWalMIpX2dyG6+551/v/4oPt3fXwq0bF5dyYybeHK8uynPlWJllAffzO0kZ7N92cOnCwXVaL9zdAHrnxMnjZlcve4pnT9rNmW0xx+Tpw+Q7q6wlWViWRTw4yZ6gurq6urq6s1TePTSHwcEaDxUWF5WnDwZ4YO+szQ8sNzlJT0W417/9Ex/svjvVzhMHdnEcm3Vd34euPOv3ec/ZXxx/Z8mbBQ5u4sIud9tTr7Y556Lf6n1+I3HHvpCVkvExbK3J1F5LtZu9WPd+qPd+p+rUKbu7OIGJemlRff3d7w8v0eXx002/jO9g3vbFfdWUR+aPpb2PjO9kf2JsYcPtjfPWh1AFp1558c3f25xfp3dvzP7mTfUNfCET4/VKJuQJ922JCRhw356dGVIrL+7R0P7G7qV7T/P44p8z1D/9f2zOq3dq3+yy61P25cGvnlMaVeLj7noxr33R3NatwDu1Ib3+0wrpr4zrjQfc3xY6XwZwZdULc4arSRese+UL+iZ686P7hZcmAPuvrUwfGNOxvnXqaNHBbouDNu+E28vUNEqk8/7rlFVwQ6S0TOuPqu+JpXRMSvlWcbRobW0xvdXdtwOij9wpk/iAqbLMCHzfy4SM0N16olQdffW2zOHbG5C+0XQr2kZzPnGdpdes76ThZF5y9ych7aXXo2KzRDF5qeLQq9y1FoejYzMnRBJ5udp+d84wrK0PWz5+mpZq2iTER6rc+mWe4Xop2kZwuPC9E5F5/zMTK0uD3NYZ+ereOMf5LFo1yXaJv0bB1n/K+btwxtXnzOP8u3hWh1jlkrH2fzv0eqRCdSGV/2r7PTs3VcU7p+1mwJhaqqqsJVld5LdPfzhjffNO2Wmw5OSTY1zJjJW4X4WCNA40PmvDubqVXo4z83tNBzHA67s5lahR7++aEuznE46c5mHlehN/+1Y/O72226s5kvq9Dq1EbO7mzhyyq0enXw1C8ec+oXj/lh/nT+yN7ES+92eF+FfmBXqv3tHe1v7/jJ0ZVGd7b4n93J/9ndtHDERb68PSgi9+5I/2xQperOFuvf3jH5xf/16xCHKrO/2t58yaDK0w4bbPlnZWRoH1eh1SOE2Re6s49r+0IdgFbd2XiKsPWNPXe80lZU1HXDSaP9vb8xd9MaEVHpeVq4+wx0fWJ9TA9kCVp/Za/+8t7o02vrflhe98NyEdFf2Bl5JC19+9RdMj6IDN29/nxJtYhUnzY08kC8oPcJCx6njnvs36+NPlZE4ht21l31Ta3Y6fuEhYouXi4ikcVP1F1xXnzVy5o2MqD6bOg78GL1J/z6AfjgmT/59FJLs+W7y+FXeu4xy3QeOvthMV/Ss5n9XQ7v6dnMyV0Oj+m557je73LUz56vp5u1ygoX6bnHLMcnm12nZ8s4h9VbXZd2uPicf1wBC9Eu0rOZi4XogtKzhVGitdGnhk8f4bBE1/96qb5ph1ZRVug/UuM0R0EZ2nl67jHLw0K0k/ScNc5Tic65+Gw3Tu1Ee1iIrp95m0hXuKIiXNnL3cVEUzqRSiWa0l5Oc+RMz1kfMzPZ1ESJxscRARofjpzdefChw9SpDYecr0Jv+1tHx3vbCurOFgWtQm99r+OV97Y5784WT70W3/pex7f7a85XoZd36n98Na6ObNh3Zwu1Cj1t+CUFNehlexMvvNvx4rvbLxig2XdnM9er0OZTGzbd2czLKrT51MbXDzvmtC/2UrGNVWh3FzmMUxs/G1QpIjnTs9nkF//X4yq0OrXh5KlGtfrt8Ri0ZeU534ep49r/cUyZx7xuXnk2urOFvxnaWHkWESM9GxLbO2N6e6hfUe25o7XjfEje0afX6K/sCx3aVztlsErPZpFH0pFH0j4e4ojc36j+WHdJdd3Pqs1fpbd3BJGhu497XHZm9ahhqj6LiL52a+TeZ7v69fM9Q0cXL4+3bakec5yI1F7Zva4eXfJk5K6nvJ9+zjFu7u/UH2snXlh7w4XRucui85YJv3gAPkDGwQ1/07OZOUPr6Rbf07OFSrEqHqm3v/xNz2bZGdrf9GyRcyHax/Tcc1buuxz16r/oL+oTrigPV/j28ofNhrIv6dkyy756O7+54Wxcd4YOl5dq5SXZJdpIz9q407USr79D72Qh2kt6Nkus2ZhYs0Ffu1F6W4guaPE577hCFqJji+/T123K93Sqo3GmhWgRcfJfVxSUnrPGFXaao9D03GOWq4XoXhef845ze5rDSX3u+fEHS7T6HJJPJvERR4DGB8r8XzsqZUdUF9qdzXb+vePhznsvG3RZvgbd+Hpj4xvxoZ8dOvSzBa9LW3T8raPXlwnNTwsW2p3N1Cr0yZ8fav8yofnURkHd2cxYha4Zfon9R2afeHYxzvkqtLk7S89TGw49sjfx8J7EnFN+7HAVOuepDYfWv7Pjphf/p6BnCX+zM73urZ3vd4WMUxtOZx24yHHXaT90/q3MK8/Ou7zrixyr/7Jr9Vu7cq4821A/BXeN/KGLVeicK882Wt/Y89O2x11f5Mi58pyP9wxtXnmuPnWwdordP58zIku9X+Qwrzxb0nOPH1h7R+SBuDb2BI+PEEZ+vUJEVHquu+zM3LN8zdDRxcvVyrNWPFwbOzzHByx5MnLXU8/+rjb7fUI34+b+Tk+/oJWdLCK1N1xo/qozfxDTMy8KGRoIkmX1YeWy3/r1clo+Z1/4Uz3dIiIrf/dAEO99Wcf94GeqPmtlxSsfvi/QWcZ5aBHRyktWLPttoOOMLhYuKwkiPVsYdzk01aCL+kied/+8M042q1fUEumMv+k55zhz9fY3PfecdeCusWkhOpFuUb8l43rxOZ98C9F+pWcLm4VoX9KzdZztQrS7xee8sw78/pnNaQ7v9dk0rveF6ERTKtGUCu3/p4v0bP2unJVo1+nZOs7xaY5C03OPKckmy5FoPpnERxYBGh8QY99E8didzXKe42h8vXHb3zo6/tZRfWS1x+5sce+ue/uExLIKnfNpQe/yrUL3euLZBZtV6Bfe3f7iO9sdntpw4sV3tz+6Tz/tsCH5VqHVqQ3X3dlMrUL3DXXNOeXH+T7GyakNh6Zs+p9eV6HNpzZO++KQ09zeCfnt7qYHdjU5ucjhfOU5H5WhS48c6GQV+lfbm1f9Zde/9heNPGyIi3GFXuRwsvJs445X2go9DG2/8mzDyNAFHYa2X3nOx/VFDpuVZ7tv9UA8cn9cvU/ofFb3tz2w8iwi+dKzmccMbb62Yaw82zjj8oXSr1/tDT9wnaGjc3+nVp618pO1srzfCRkaCIj5U1D1VGAi3RKbs0BECn1y0CF1D1r1oIOvFE68RisfF0SJjs29U0SkTx8RCZeXxGYvCHW9XzPhai2w6q2uQtdMvr57nHQF9E/y4MQ5d8TmLgxXlCVSGTW30JcDC3X2938sIUmkmlf8YZmPi895x33nwkQqLSIfwDijeotIuKJsxeO/C3jcwYXoINKzhXkhOrGqPd6yRht9qr/12WBZiE6s2eB7eu4xLmsh2t/0bB134Dd+xHRu3sf0nDXu4EK0iBhp2Mvis924/Kc51I3pcGW5x/p8cFZvpzmMxwbDVQUsJOUYxJFofOQRoBGsSCQSj8fj8bj6y8GfGVp2+HhfurOFOseh9qDVqY1hnxs21MMrhTYaX2+MvxG/Yshlr7y3TQo58eyCeRW6oBPPLmSvQqsTzyd/4ZiTvzDUe3e2eHRfYvNfO8yr0C5ObTikVqEtm7+FntpwSF3kGHvEoOxVaPW6oMNTG45m2T5OaHld0Ps4tZ78q5E/yLkKbT61kX1UulBGhl5y2o/yfUyhK8/5OLzIUdDKsw2Hh6ELWnnO+50UkqEj9zfq7du0kUPFduXZ7nt4IK5v2OnwIoeTlWcbRoZ+7l6nvwQyVp7FdG3D0axVWyJLnio0Q1uubTj8VkaGvvXWW+vq6pz/IAFky07P5q8NIkOb03P2VyUyLc6f13M0zpSezUvB6ppEqOt9rXScv4c4jPScY1wwGbr7H6kp6tXfNldPZaSrq2bydUFk6Po5C2Kzb1eJzVjPrJlyw/9n78zjoir3P/4dQFHRNEtFRRizRXPf2WbOYJktt+223eq2WL97u90l28wFkIYZ3EDNbrf1ltl6y2wvU1PmnFlREAGX1JQZQAHNXRQUmN8fDxyeOTPnzHPOeQ7XuvN53ZcvxYEPcE3hzYf3l66Co6NuaQEA+HVRWXNmt+0l/X5UR72Lb7QsWZb9wrPGtFTL0mUAkP3Cc+SHChU1LrMsXc4kT2Q9JczUCTn/eFy9eUM60/74N7ZoGwAYJ4xSdjxQVtDqGQCMaSlavzMBgHO6p99+N3TW9x8AACLRrHuLFug5sM5jQdIbXbQxPU0L9BxQFziI5hxOKsNn0bogNYea4bNEIpLoSC7aRAB0JJpEwJ0B4N4BM7Xgziiuk4UA4D5hG9JNH62DmQkzNSpCQWcJvee8AHBjP5MW3FmQf/re/bnBCwBqVBuEQVPou+IZNHmmzp3x8FNoUKfaIAk/hX4oIa38VLVi1QZh8OOESLVRerJa7LqgyiAMnXzpIDSFlr4uqDIhjRxi1wXVByFvgRha5eRZLBIYWvHkWSzSRo7c9dsAgKv5RdbkWSLsruqMFz8xjdVvXvZYiN8tq7SVedHk2TRGjwC08i4CMTQ6MNhGuuWj54C60gMZs/6d89dbFvz1dxIP49GzLO4s7CLG0BK2DaIi967cZWsjGDqSSNSER89M6lRjarIAPeOhhaEl0LOwLkhqrKROBD0Hdnk4V5El/yUmZbL6QXRI9CyoQxhajYU2oDEIPQfUOd2WpcvoYmgcPQt/K38F6/IARFFEw0jN7NdFAQAOvDooVVoqXRJtXVrAOtxMWjL+Lm17TwIwaSnGtFS68BSh5wWz/rxg1p/RU9iiktyVb4LfrxGGzv3nv80vv515/02Z998MAFzFvryP1+m6xmqHoducG8/+g0mdwrq2cO4if1S0phgavVcz58+z2+2c3cGkTu2Eb0FAk3nWU2xMS5Y410klCEPr/H7WVRT2XCeVIBcNAGTNnU1yb1BlOIfrhlvvAACjIT1z3lyVw2fRllBqDmi3RUcSyX8lEQAdCc0I/HoDu+oHxeoHdtWXnLbpe+hTe9NUYQDGnVP7mAAgtU8GAHxStypaBxmXZWgxf0bb56E99EO766ddlrH5aGFVo/emfiZazg1B1h2x/XzW+3OD96b+pit76P/pfVdTAP1VPYt+vKW/aV+DN1rnz7wyjBVaZT6v4z6vY4f31P90xvvi1Q+FtUKrDNpBA8DoSxKXDH9Q0y4AmPPThxWnqgBgzCWJDw1OV6zaIMwHBx27znjR3hlog2BBeCMHEFwXpNKFjBwlJ2qoTJ4lghs5aE2exRKMoXPXb0OTZwCggp7xBN8nRLYNtHpWNnkWixiGDnlgUH3MqzaZV23avOoZgZFDrm2DJNIYmtC2QVQUwdCRRKIo5OgZD8LQrKtIwTezE6JnYZ1SDE2CnoPqPGq8HGHRs6CrjXqrgGLS6Dmgrh1DM2nJasTQEug5oK5tnkkBQ1uXFrBOj/S3+VMcRKOdNfj9YoiZVzYDpUF0MHrGgzA03UG0AD3jQRjavmMf3UE0j54FJ0Y59xbLsn/6o6KpM30ePWfNn9dRZ7fnLVyka7mg3bcgLHj6yexnnkRPYT1bLSte80fHaIShrfkrLPkv8d+zgv5y9uuitMPQ7Sb0Ng876/SALiprzmztMLR1Sb51cX72C88CAOt0Q1S0dhgaADi7Y8bNHUONyCA6kv9iIgA6EgoJyZ0n9DLhj9l22nb4gpeKf6O60VvdVCngznhcJwpdJ2wzE2bSYtBo7+w95512mWlaoFG68px389HCa+JUnRwUZN0RGwD8cMSGuPNVmAD6Ze+7MTq4fQBzTRw1VrunwffTGS/izgDwu/5tgPvbw+x3h22ZVz6s7NigRD6v43af8e4+47sjvo2n/3TG91U9O+aSRC3mz2tqOQD49BB3z0Djtb2Sru2ZZN73frTO/+BgAy3thiBo/nzvoLZt9aeH7Bptn1E+OOgAgPdrHHfFM7vPeLtE+R9KSKM7fBYEDZOv7ZW067SP/Majmjok6QaAvTOe1LQL5er1rwGAMWkAo4/XAj3j4Xz109/bwFw5kP25NueeVOrcGQ9v5GDGDiU5MKi2rv0+IfqlYtsGYaY99RYvhlZs2yCMAEMrs20QFWEYurCwMPLZQiSRSEQZehbEUvCypWAlITxVgJ7x4Lf1BAArdJ189BxYJxtDy0LPoetkejnI0XNAl9PNOV2WpcuNqclyB9GE6Dmgjj+bpmihjAwY5N/mz2NoJj1F2XFC69ICZPIlea/yg2jFGNq6dBkA6JrOAEBI+oyHyiBaAj0LQmsQLYaeA7rcWygOokOi54A6uz1v4SKKg+hg9IwHYWi6g2gBesbDf42Q7iCaR88Cy0eAmoMqiebRc/B3IXBOtxaDaOvCxXmLFiPVNTrnyDmc6LciJDqSzk8EQEeiPGJ754Gx+pCPr23yfnv03ZQ+JsVTaNfJQuTZGNJNH8yd8VQ3el0nCocFXiaUm8KjhQBgO2abdplpaI+hQ8VxNpUpNM6dQdwova/BS2sK/VU9u6fB1+qHq+L0PHfGs7fB+91hltYU+vM6DgA+r2PviGeuidMPD+LaX9Wz+xq89ww00ppCo8kzgtp3B6LtXWd8a2q58ZcMoajg+PCgHQAQer4Xq9t52vdprT1a56e+g0Z3CO+KZwB7Az+r5dbWsVqsknlr9j0DjagOvRu76LRC3ryCAwD+lJTCS5+1mz8DwD9/Ls5MHm0cMiDPXQHRkM2MNSYN0KIO2n3QOTdPAgDz98VaA2jzGhf6kRmRoOsak/OQSaVwI3zj+zbzezYAMI0buvnlP2naBQDTnnrLtr0SAJhJV21+Wwl7khW2eN+0x19mUq5VbNsgLWrH0CaTqbCwUKOWSCL59YYKesYT1suhEj0LuljXFsuyl5mUKWKDaJXoObCOSA+tBj2HqCPA0MrQs7BOjpdDAXoW1skcRMtFzwFdDhfndFoX58ui3rzuWe57tYOIyZQaSw+fxaJmEE1On/nwGJoZP9I4YZQsEo0OD3K7Kgm/bgSqB9Ho6yutMbEAIEafAx7fPog2pkxlUqcoINHoLyVdywVjyiQmOcyH3PggGgAUk2hr/grw+5nUqdKvMD6IBgA1JNqavxwAjKkpEi+k41bhnNkAoJJEW5fkc3aHxH9QbX+DRUUb0tPV3yQEJIO22wWHFhGDti5ein6JAHSEREfSOYkA6Ehkx2azsSzLc2cAmNjLJMGdBfn2l3fl6jhcJwtrGr3Vjd7UPiZp7ix8xhOFh5q8cnUcOHcGgGlkCLvynPft6lXKlNDrjtjCcmdB0BT6hSuUcGFctXF1XNLV2MI6ZFROoXef8SHX8x3x4W8nUplCr6nldp727Tzt4zmpWD6r5X5q8KqcQpefrqo45eMnz/eKNCIMPaH3EPVT6A8OOspOVZWfqrornhF7Ay373qM1hS47VYWs2SFRPgDsOuMz732fIvLmJ88C+zMAbDtZ/ZbPHRPV+o9hk6f0HUSlDtrNG5nJowEgK6Vj8szV1M9Y8yN1BYeVKwcAhJ4X3DIRPZHdd8j8XYmua3TOPanKTg5KpM2/8ftkAFjw+2QAYHfXmD/3aIShze/bAMD8ni3nfkPOA0YAMH/EsbtrcmZeR9G8EdC4ahNbegC9IaZxQ82rC/0xMTlP3sRMukqLOgDIfe178+vrcp64EQDMb/xAffssrFu2lnXvQlPoyGIlkkj44Og5+/lZdL/9PBhD87CYCnoOURfk5aCIngO7RPXQtNCzoM6Sv5JzecTOM6pHzwF14TC0evQcUEeAodWgZ2EdmZdDMXoW1hEPopWhZ0FkDaIVoGc8XMU++459XMXP5INokuGzaJ2iQXTY4bNond3O2R12u12umkN6+CwWhKEBQIGaQ2L4LBb+L2dlag6x4bNoHcLQAIrVHCGHzxJ1bT4cFWoOfvicNfcF0SKH07p4aWQQHUlnJgKgIyGNSu6Mh1DHgSueh3QbqszdQT6F9p7zVp6tlMudBXm7ZlW0Dgin0LjiWRm2XnfYNmfYI4Q6Dpw7A6baIImyKTRSbfhBN7xnkqy9trIpdLBqg+S51EyhkWpjZK+kkb0SxbizIJ/Wcj+d8SmbQuOqDZI3cNcZ39patkuUv+Da++V2oSAQfMGvG9kzSRrlA8BntdzeBq8a5M2T7j8lpUzskzChtyiEpYWh8ckzzp0FsbrL8zwVVDA0Pnnm0TMeuhianzzn/D4ZcWdBcj/3mD/35DxsoiXiML9vY8u86DVH6JkPW+Ezf2yH6Ci6GBoJoHMeyTCNG8qMHdpRV1apBYbOfe17AEDoecGfb+x4+ps/aIShEXpGRukFz93Funddd7cVIp8nRPI/H03RMx6edBhTpnLuIloX9qTq2r0cAPTRc1Bdh5eDc2+ljp4FQeSXVwRQR894Oja8mJeDLnoOqBPxclBEzwF17YcKURdOommh54A6yUOFVNAzHh5Dm6aOZ6ZMCCbRKtGzICSDaDXoWVhHNohWjJ6FdcSDaGXoWRB+EA0AYUm0AvQsiFw1h1z0LKyTr+ZA/6kyqVMV/PeoWM1hXbhY52+VQM/Cxy9eGlFzRNI5iQDoSMLHbDbbbDabzYZ+ObCrfmIvkwLujEdCxxHytKDKoMuEMxNmhvxdwWlBlV2bjxZuPmr7h/5RMQYtoXiWm30N3nVHbGGn0F/Vs8q4syCEU+iwqg2SoCl0tM7/4tUPhX2whGqDMJ/VcmtqucUjHiSZQoupNgjDGznyRzxA+CwhVRuEQUYOWaZmXLVBjvJBhZEDke6YqNYJvYcIJs8SUWPkEJs8i4WrqVdj5Ag5eZYIj6E359wntwslePIsESoYGtk2cu43mEYnMaNF/8zQwtDmVZvQjzmPZOQ8Mk20rqzSvLqQSR6u3gSNT55x9BzwmDd/sJX7Fjx3l8oLhG0vbdna3OVrQ540RL8FkU8SIvnfC76HMKYlc06PGnhBEkvBy+gnnMsD4lIOqo3/5NxFfl0U53Rv/OJjLc58CTL9zvvRW9c5dZzLM/3O+wHAmJay8avPNK9rH0RzLo8W6FlY1z6IZtJTtEDPgliX5HMOFxpEc04XdfSMJ/hQIXX0jIctKmE9JWxRCT6Ipoue8YgNoimi54A68UE0LfQcUCc5iEZ/5zBTJqhBz3hYz1YAkL5VSOjcIAzJrUKV9DmgDlNzSGBoWcPnMHVkag6S4bNoS6CaAyIfZEaiQSIAOhLRaMGdBfn2l3djouDeATNBG+6MJ/gyocRpQZUJeZmQUPGsIGJTaKR4/umM95b+JjXcGY/EFFqWaoMwX9WzX9axL179UMgpNLlqgyQInkbr/EuGPxjyAYSqDcJ8WsuFPU6IT57VvIH8FDosF0bOZTUoH+QYOXjSHXbyLJEnyz8ln0ITTp7FogBDh508SyT3uxK5Ymh2V7VtZ7XE5Fn0GZUaOYJtG0R1KjA0P3kGAAn0HPAsqzebVxfm/OUmZRiaR89i3BkPW/Kz+Y0foGsXxRg6d9laAEDoWXpPHcHQkfxPBT89kj37aWNaStumNX9F26iW9g6aR88AgBg3v7bTQsEBAJaCfwK0r55nP8uv7bRbJVsLVqKfZD0/C62hAUDuHT+5jZb8l7JfeNaYlqry2B1p49JllqXLs194hnV6APy0DqZJNeavsOS/ZExLBZ2O7gUzsdxw651ovbjxq880fWeicE739NvvBgAmeeKCWX9mpsr78EZu+EE0AKRfMQAAqNNnPPihQm7bDujdHwDo0ueAusBBNDqnSZc+B9QF3SqkMnwWS8hbheqHz2IRG0RTRM8BdeKDaFroWVAnoebg7A7O7pA1fBYtCpJERz7IjIRWIgA6EmFCnhac0MukUR1i0MjvDBpwZzy8jgPITguqDH+ZcF+DVwvujAdNoUf2TLp9ACNX8awggin053Xc53Xs8J56uaoNkgRPoZWpNgiDptAPDk7HjRwfHrSXn65q9evIVRskETtOWH6qqvx0leLJs1h2nfFZ9r0XkgsHXxdUH2kjh+C6oMouEiOH3MmzREiMHHInz2IhN3KY17jYXdX+Vr9pRIIs9BxQJwdD85NnCLJtkNZV+Mwf25lJV+bMvC78g0sP2LZXhp08S8S8erNtZw25kUPMtkESZRgaoWcUcpXHdXdbIm7oSH7bEaDnkAtWNDvV+f1UMHQweg5+gKVgJU9wVNZBEHoW/C6iJ7hKQn149AyBig/e10y3rqNRF4UTGcXH7ogaly4DAAA//y7tAEYYDqPZiESxUdFZLzwPAGiSzDld5N+wL7txST4A6FqbjakpAND+1tF/ZwaULl2mazoNAKxnG1tU0gkYOnflm7kr3zRcO9S+q9Iw6qrM+28yjtbqxgPKjPkv23fsAwCJ66AUgzA0694CAOvXfWc0ULuRLtpot8+46RYAYJIn/fjJO1rX8WqOTvi2FQgcRFvyVzBpyXTRs7AukERzTqf0sUEKdYFqDjXDZ6miiCQ6EtqJAOhI2iLgzii/u+xRupNnPNtO20pO2wZ11Q+M1Zectsk9MCg3rhOFAOA6YRvSTV/d6H18yEzt0DMKcnEM7aGP1sFT+kc17QKAdUds+xq8Pzd4r47TXxWnpzV5FsveBu+KytUjeibtPuO7I56hzp0FQVPoewcZVao2SMJPoZGOA02eR/ZMkiWkJs/O076cvR+gKTS6LtjcqhvRU6/RG/hZLffz2UqeC1OZPIsl2MiBT57Vc2dBQho5VE6eJTJjzY8hp9BqJs9ikcbQvG2DGZHAjEigULe7ZlreZ6ax+pAYWtnkWSLmjzjzx/acmdeJYWhk20A3BpWhZz6EYmgS2wZRHTGG5m0bIAc944lg6Eh+kyFBz3jUY+iw6DmwTnilUFGjFHoOqEPf9C1+W48wYuhZWEdvEM2jZwAQ2wOSH7sjamxHzyDyXm2/KkZtEM25PJzTDVHRAIDoc2Cdy7JkGfVBtHVJvq61GYLeRv5mmhZM37J0+YJZf1rw1J/4J7JF23JXvgU60AJDI/Q8/+7r5t/d9kGCfdeBhZ9tgqgYjTB03sff5328bvaM5NkzkgHAtb8mf70npt8g7TC0ZdkrluX/RFi2jZxGdzEYDEZDukYk2rpwkd1uN024lkmemLvyTdZTwiRPyn7mSSZZttSOPJYVr7GeLQDAekq0dvejTP/9A6yryJieDv4WBbcKlTTecS/ndEOnfy+CMT0ta+4LxnQ61+CDI5BEA0BhYWHkQ81IFCQCoP/XI+DO/bvo+3dN6t9F379L0uELvs0nVk/sZaI7f9522naoyVt73juxl2ki9pK//eXd6ChI7RPmMqHcVDd6qxsrXYFmj+pG7yd1q6ibN1A2Hy0EgM1HOxbW/GVCNbpniSAFx/TLTQBwRY+hG38pHNFTQwD97WEWAL47bLuxnwkAvOe8tw9glImeCfNVPfvTGd9PZ7zXxOmjo/w5V4W3QqsM2kEDwMheSear/6h13ae13M7TVTtP+67tmXTXQIbupjs4aAo99pLEslNVFCfPYkHvTFRHa/IsEd7IUXT8IK3Js1hwIwfnqwcak2eJCMTQYQ8MqkywGFr95Fki5o84dneNwMihwLZBEgkMLcu2QVonjqFZ9y7WtZvEtkGYCIaO5DcT/sYgkKFnPMowNBo1Zz8/CwjQc2CdQgxNjp4D6lRgaEL0HFCnDkOToOeAOtUYGn2XugR6FtbRwNDW/BWsawuTnhKMngPrqGHo9m/wl1IK0MXQIdEzHoSh2aKSBbP+zCRPVE+ig9EzHoSh6Q6iBegZD8LQzp9r6A6iLcteAQCIihKokDlXEesq4lwef3SXzPnz6GJo68JFeQsXCczdbZ4T0GmBoS0rXst96TW8sa0uKgb9lUudRKO/z7PmzcmaNwcAOLvTumgJ53AQ3ipUEM7p5lxu8PuzZj+DnSTV/HsRkF8IAFinB3RRmmJozuG84Xe3879EH2qin2jUGMlvLxEA/T8a/IQLyqg4BnFn/GGHL/h2NLBDulFQcGw7bQOAktO2ib1MaPUc/JiS07aS07b74mdSYdBI+jykm35IN33wthrpOGKiYNplGVSm0Dh3BgAB2q485327etVN/U101c9o8jz9ctP1lwfU/fhLoe+c95b+DF3/BjJvIO48o/0N+fmsd/0R26he9OUbyCXyZR17a3/TNT3bXCLf1LPfHLZphE0/q+UAYE0tx2+6l+x/L1rnv3egQaP5MzJB39rfBABX90z6pp6N0fmzr5I6Kakmu874dp32ra1jb+1v2tPg3dvg1RpA8+/S0Zckdo1q/VNSijLRM3ne8rm3nawuOVEDAOvvud6YIPtgoNzMWPMjV1MPANqhZzxIDA0AhAcG1YQ3cjBj9RQnz6J17WJoxKDV2DaI6jAMzW7dB0ptG6R1gRga2TZY9y4m5Voq6LmjyL0rd9lahKFffPFF9LlBJJH8iqIGPeMhx9A8elbzXeGyMDSSriJqoOwbw+ViaAXoOaBOPoaWi54D6toxNJOWIut5rUuXsU633G+3x13bvFuctBHZbOc8J42eA+tUeTlI0HNgnVullyMsehYk9+W3WM82NYNoafQsCJVBdN7H3wPA+WPHASCYPuOhOIjGh89ij6E7iA6JnvEgLkxxEB2MnoPrAACRaFoY2lLwsr9LN2N6utEgRLGIRFMfRLc5poP+wWo/SapDgm+aje3oGf97IMAEogGJRlborLkvRNQckShOBED/b4WQOwuy4yx79IJP2QVCnDsDwMRwILu2yVty2qbvEQIZE8Z1orC60Yuk0mFfCILUanQclee8lWcrxbiz4JGbjxaqn0KjY4Zo8nxFj6FX9Aj9og6c9dKaQn97mN3X4N3b4L2xn2mGCEBff8RGcQqNhBsIy94axLX3Nni/qWejo/z3DDRSGQvj3BmCziciCfWYS4ZQtD9/2qaxtt/a3/S7wLpv69lvDtuyr3qYutt69xlvs193TZyeb0TvyRh670lB45pa7oHB6QCAhNoVp6s+PGjXDkMjBcfccWMBYO64MY66+t/9sIG6eYOP1V0OAHmeigXTx2dPH2/ZWJq7sVRTBp37XQkAmL8vXnDDeHZ/HXSNRtoNjeoAIPdzDwCYP/cwwxN0XaJz7jcwo7Wd5yMdh2l0kq3CV7jiMWbsUE3rAGDas+/YtlcCgHboGQ9b8vO0P78CAGpsG0RFEQwdya8wtNAzHmkMTQU9B9a1YWhjytSQVwp59ExFSEpypVAleg6oI9NDcy4P5ypShp4DXo7TjQ6ykZDTkDhGbqz5y8kPFSpAz4LIHUTLRc9BdbIH0XLRMx5lXg6EI5sP7gcAEvrMhx9EZ95/k2HUVbJItMTwWSwqB9Ek6BmP+kF0WPQsCJVBNHJuMFMnhi3lB9EAoIZEC4bPYqE4iBZDzwF1Lg/ndLMuD4CO1rcjsE63xGve9h+7LsqYnob+p7Zx8VLr4qXBjmmBmiNCoiMJmwiA/l+J2Wy22Ww2mw39sn8X/ag4Rpo749lxlt3RwJLrOORyZ0FKTtsOX/DK0nHwiufUPqYh3YaSPyOaQl8Vp5er4+AVz0O7y3he9FwKptD7Grw/n/Xyqg3B5Fksb1StitGBsik0rtoYFqe/UoR081E/heZVG7f2NwVzZ0GoTKERJA3JnYNft30NXpVT6J2nfTvP+PjJ8+9EGtu4sM6vXseB2DqaPF/dM/RFSlQ39pJEKlNonuY/EHjIkc+HB+0fHaTpgH7L50Y/zh03du44IWtevL188fYyulNodIRwwfTxAJA9fTz/dPZArWVjKURF5dwykbkq9C1EZUGr5wU3jAeABTdMaKvbX5u7oVQjDN3m37gzGQAW3DkV0Br6iyLtMHSbCfp+g2l0EjM6qe0+4YQrtFtAm1dvNq8uzHk4I+fhDLasMuO5VVoz6Nw3fzC/8UPOX24CAPPr62hpNyTCGzkggqEjubijBXrGw39DNE98qKPnwLoi1lVkKViZ/dxTTOoUBFPoomdBQl4ppIieBZEYRFsLVrKuIrnL5TB1kl4OKuhZWCfp5VCPngPrwmNoleg5sK79ixYvPCsxyUQSbV3TaQXoGQ/v5SA5VChr+CyWhZ9tsu86QDiIVoCeBZE7iJaLngVRNoi2Llzk2LyBBAQLongQLT18lqgD9EUI+YNoQvQsCD+IZtKSjakpctGwNX8563QzqcmE/2apV3PI+usOWUHUqzn44bNokcOJNtHolwhAR0h0JCETAdC/8QRz5/5dk0b1UMIHSXQctU3e2vNexdwZD9JxhF0x49wZ2hXPCuI6UVh73kui48BVG8oU0vwUmvAyIVI8X9FDP6yHnpA74zlw1vtG1apb+psIp9B7G7x7G3zBqg3CKJhCh1RtEL6qyqbQwaoNkqiZQiPL84XWgAGydPY2eJcdWH1XPKOMC39Wy61tX5GTNKLldc7VDylG3sGTZ4nM/elDlVNo5NnAJ89ij3TU1S/eXhYVA5kpo9VgaK6mnquu5yfPYg+jiKHxyTPPnYV1VDE0P3nOuTMZcWdh3e4a8xdFpvFDabk4zB9xAIDQc/DLbKPSVEUc5tWbAYBHzwG/9V6h+b1C6hg6980fAACh5wVP3NTx9DfWmV9ft+mzLOn7hEoal60FgNzlaxc8f8+C5+9hXbtyC9awrp2RZUokF2F49GxMSyb/NF5xEDoEACZ16sbPP9K0CwAsBS9zLg8AsK4ijdAzHt7LwaR10DS66DmgLhBDWwtWWvJfyn7hWYroOaAuCENTR8/CuvwVAH78jyVd9BxYF9rLYV2SDwC61mbqb2P73DsE1rcuXaZrOg0AKukzHulBNBX0jIf3chhHX5l5/83BD1CPnvEQDqIty17hPFuMqckqv+5FPoiWO3wWC/kgWhl6DllHfqtQGX3mw9mdnMPB2Z3kag6S4bNUY7uaI/uF5wCA/DsSAPwK/ipQrOYQGz6LFkXUHJGESwRA/zYT8rSgMu4siJiOY9tpW8lpG5I7q+HOeJCOIzoK7oufKfitkKcFVUb6MqG04llB0BT6H/pHxXQcuGpDAXcWhGQKjVQbrQBX9tDL5c54yKfQ0qoNwuxt8BYcWE0yhUYGZMLJs1jQ62y++o8kU2hctSE2QJbOsgOrZU2h8ckzIenmo8zIEXbyLBbFRg5kee7e7UJ6fLwEdxYEYWhG31+BkcPqLrfXHNbF6pgrBkqgZzwqjRwhJ89Sj9+wLXdDqZprhMGTZ6kHf1Fk/sJTuPCPaqbQ/OQZwp00bLtP+EiGSiMHP3kGAAF6DnjYe4W2ndU5T9zITLxSTR0ETp5x9Ixn2p9ehi4h7hMqbFy2FnFnAEA/8olg6EgutuCrZ2NaCud0G9OSVd6Ck04bPZz9tDEtRcGVQgVp21m/8CzrdAOARsev8PBUkXO6N37xsXbvTD6cyzP9zvsBwJiWsvGrzzSvc7otS5dxTndb45efal3HudyWpSuMacmc06MFeg5qbBtEIwata20GpaJwsroAL4ca5wZJgg8VUkfPeOy7Dth3VS78bBN+qJBc96wgYoNolcNnsUgMommhZzxhB9Hkzg1ZjRKDaJXoWRBCNYc1fzk6Nqi2rg1DQ1g1B60vtslSc4QdPks/b0TNEUnIRAD0byohuXNYxbPc4DqObadth5q8tee9E3uZaHFnQQQ6DunTgirDXyZ8PKENeZMrnhUk5GVCnDsDsWqDJD/+UrjxF1vwFFquaoMwElNoWaoNwiw7sFpiCv1ZLbfzjK/Vrxvek8KxRDSFjtb5zVf/Uewx+HVBuSBYEMSFR/dKkibscifPEnXLyIC+rMmzWMiNHPjkOT1+QHq8ki2zLCMHPnk2Dotnrhgot+76N76XNYVm9x1i99ZKT55Fn1fRFJrdXYMuDYpNniUybeFaBUYOtsJnq/CJTZ4lngvdJ1SGoXHbBlFdWaX5vUJ/TIxiDM2jZzHuHFBXvM/8xjqVGJpHzwLuLOxy7bru9y9C5JOBSP6rwVbPAd+G3D5xJTLwygqPnnFkQH6lUEF49MzPgTsGvNpgaGv+cv7nWbOflXulUGEpWj0/+w8mdYpl2T9Z9xZpsQOFRgRi5jwHAKzD3fanRUusj5g+k57KOtwAkD3nOWOavLOBCjL9trs4pwsANn75qdZftAAAzumefse96OebPnqdmSrvIxAFyX35rdyVbwGA4dqh6xZoArvx4INoisNnseCDaGPKVC3QM57gQbR14aLohqMAQJE+48EH0QDAJE+mMnyWrhMMohF8NzAmKuhZELFbhSqHz6J14moO9A+H3MOqYerCqTnkDp9FiwLVHBD54DOSCID+bUTAnYHstKCabD7x3uELXgCY2MuEVs8aFaHUNnm/OfrukG56wtOCKoMY97TLTAoUzwryds0qdJlQgeJZbtBlwhgdPDP0EZWqDZIIptCKVRuECZ5C46qNa+L0VA4k8kFT6HsHGXAjh8R1QZURO06oZvIskWUHVotNoRVPnsUSdgqtbPIsFhIjh4LJs1gIjRy535XY9h2CVj8zLF4ueg6oI8bQyLZh21VjGpEgFz131MkRQyPbBrujihmVqMzgIRdDS9g2iOrkY2gx2wZRnSIMzbp3sa7dJOg54PUsWJNbsAYinwlE0ukRQ8946GLokOg5oI42hg5GzwF1GmBoAXoW1oW7UqiwtB09Zz/3d/zplmWvcO4if1Q0lVtbAY3t6BnfILfthbXB0G3vWF2UMS0VQef2Og0xtHVpgWXJMvT/V8fVR9Wn0qQa85dblq5Aq+c2UQbAgll/0hRD5778VsvhGgDgKn6G1ub5d19nuPYK7eoAYOFnmxZ+tmlC3z7bjp1IuzJh9ozk1GEannEGgPz1Htf+Gl1MdHTfeK2/2QKFcxVd//sHAIDEuK0+PBdGjZs+ekPTOsAG0cbUZIrDZ7Hgg2gmLVkL9CxsxNQc/HckaKdvClZzIF6MfkmzKJSaA9pt0ZH8TyUCoH/FsdlsLMvi3LlvTOKx5qppfR7RCD3vOMsCwI4Glrd5HGsOoeOgmJLTNvTj+F6muiZvTCgdB924ThRWN3qrG70J3fRXy79MqCDIxQEAV/TQP5Go7VuH8kbVqgNnvQBwYz+TFtxZEDSFRntnUKHaIAyaQo/smaRStUESfgp970ADyXVBlcGPEwLArtM+KpPnMHVR/pyrHgJMYKJy8iwWHkO/NqZtg0Nl8iwWHkOvv+d6/On8gUFlk2ex8Bh689O3Cn6Lt20wwwYyw+g0SmNoWbYNorpwYmhy2wZRHQGGJrRtENWRYWgS2wZRHTGGRqJn1vMTk3otOXoOeAkRDB1JJ4YEPeNRj6HDoueAOhoYWho9B9S1eyRUkgUJ9Bz8yOArhQpLRdAzHs69xbLsn7QwdEj0HFCnAYa25i8HXRQABJd2+JrTUimSaBw9CxuRbluno4uh0Z8fXdMZgXBDUwyNts+Z99/Eq5m5in15H6+z79hnuHaoFiQaoec/DdP/37C2jxm2HT/x1v7K7n17aoeh89d78td75t5unHe70bHHt+grzvGTj9BorCxtf/88dq9xwrXctl1s6U5dbDetMTQyqGQ9ehe3fZeuWw9m6kRkVtG60WgwcHa7MT09a94co0HhbT3y3HDzbZzDAQDI4KS12ohzeabfcR/6ead9DwRSc3AOpzE9bcO3X2lUFKzmKCws1KgrkoszEQD960tI7jwsNq1vTCIAHGuu2t/kHBQ7lIrxGeXwBd/hC16eO4/s0YEPdp7ldpxlqfs3cO4MABN6tr0t286wpadt98XPRDoOiuGPGSb3MQ2JHZrQTQ8Aa+pXdYkCksuECsJLpQ2XmhK7D03qpv+gdlWMDrRj0D/+UggAG3+xMX1N+u5D2WOFw3uqcj2Hzfojtp/Pen9u8E6/3HTgrPfannqt6fM39ezeBu+eBi8AyDowqDhoBw0AV8fpn7viEa3rAGDZgdV7G7wAQH1kHTJoeX1tr6RonX90r0Tq3FkQZOSY2CcBAGhNniWCjByZyaPRL8MeGFQZXAxNcmBQZQRi6LAHBtXWfVFk/sKDizWkDwyqDMLQzIQrBPcJ5do2SOvKKs3vFTLJw4PvE8qybZDWSWJoCdGzgkQwdCSaBv8uPUL0jEcZhpaFngPqlGJocvQsfFWXLrMsXa5g30qOnvGo9HKQoOeAOtUYOix6Dqjr4MKq9sJt32VPUEprEC2BngPqqGJoa/5yXdMZEL80yPuamakTqZDoYPQsCCLRFAfRCz/bBABHSvdP6HvphEv7CH4XYWjqg2gcPQt+C5Fo6oNopOCAY7XGCdcax4/seHrpTsvba3Sx3bTgwjx6zpp5V1vd9l1c6W5EojUC37kr32zp2c9oMBiNRgDgOC4vLw/8fqMhzZiergWJti5aYl20BMkoEDnlHO23CjvrXEGbmkNL1xD6pwG5ODinC0An61ahgiDLB//LyIeg/zuJAOhfU/BrLRDInQXZ2vBxjC5qWp+H1dTx3Ll/l6T+XfQ4dxY8bOdZdki3oeoZdG2T99B5bzB3DnjMee/3R1fTEnHwxwyT+5gAIKW38GW6TxZ6TtjELhMqCM6dAcBwacCLtR8vtB+3PZE48wpKImYI5M4AwPTtaGSPFR5s8s7oZ6LlfUZZf8QGAD8csU2/3DSsx1D+bdn4S2HVOe+tA6QOISrLN/UsAHxz2HZTf9OVPfToruO6I7bKs6El1OrD60RuuNw0LE4/rIf+Nd+70TrQ4q1D+bb9bUSNG47YNK0DgL0N3r1nfN8ctt0Zz/x0xhcT1frgYMPoXiH+wqGVitNV5ad8Hx10TO07qOjYoW9vvIHu6jlkfvfDBkddPQAww+J/fCL0Z0QUwx6ovf71dQDADBuo0rZBVNc+hWZ311CcPEsk94si9udaZlQiUm0AjcmzRNC2unDFY7btlaDCtkFa916h+b3CnCduXPDnG9XYNgiDMDRjHLvgubbP7ghFzwpy3e/NrGsnRD4HiIRecPSs0gtMjqEVo+eAunYdJ4m2VTF6DmiU4+VQhp6FdTIxtFz0HFDn3sLrocnfS9alywAAdDoFR/8UD6LJ0XOoOiUYmhA9B9Sp9nLgzg2Sx6sfRIdFz3hoDaKDh89ioTWIlkDPeHgMbUxNZlKnqiTR/PA56/HQHxhwpTvpDqKD0bOwcfsu66q13PbdFE0gqDQzMzMrM1NYx3Gc3W7nOPD76Q6irYuWgN8ffKyPF0pQP5wr9k9Yh5pDG9eQZemKrDnPZ81p+3uPc7qsSwo4h4tXc9BtBADr4qX+6C5oyZ6Xl4eeaDKZTCYTwzCRj0J/w4kA6F9BzGazzWaz2Wzol31jEvtGJw7rFuYvgv2Nzp+bHMp0HDvOsofP+wD8EtxZkJ1nOTU6jpLTtpLTtoFd9fGx+pDcWZDvj66OiQL+MqGCINFzQjd9Qjd9MHfGU9PodZ8s7IJdJlQWpNoIyZ3x+Bq99uOF18Tp1Wug0dXBYO4cUHfOS3EKvf6IDXFnAJge6vVHEmqKU+hv6lnEnQHgpqA3YV+Ddx0moaYSNHm+4XITANwQ2Lj/rHfDEdu1PfVa2J+DGzWq4xtH9NQP75n0+/i2F777jO+LOnZ87wQtRtAfHrRXnK7qEdOc3HfQU1dNAoCiY4dW7ivu0rXl2xtvoF4HAIu3lwPA4u1l2czYLOMYzldvYct0Mbrs6eMpmjfwWDaWAkDuxtJsw1hj0gCLvUwXE4XMG1rUAQC7vxYB6AU3jGf310GX6Jw7p5LfJ1QWtIM2jRxi21lduPCPsu4TKgti0ABgGqvfvOwxresAYNpz7/hjYkAHpklXaYSe8eS+sc78+jomZQTr3q0FesaDY+jIN0VGojgC9KyGzOKRxtBU0HPIlyn2XfNU0DOesBhaPXoW1hFgaDXoWRDLslcsy/8ZdgjPo2cIpb8gjywMrQw9B9eRezmsSwsAAFpbFLu5FQyi5aJnPPwgesGsPzFTJxKS6NyX3wKAlsM1JOhZEMWDaHL0jIfH0KnDEtKuTJBFol37a5w/10R36woA0vSZj2OPz/6Tz7HHp3gQHRY9C0JlEB2WPgc0bt9lXbVW5SBaAj0L6zguLy+PipoDHz5LNaILe5QG0db8FazLI/GiAm4VUvo2CAF6FjY6XdYlBQA6ROGpkGi0fRb8H8r/f4d+GRlD/IYTAdAXbwSnBQm5M55jzVVbGz4eFccQ6jgQdz58wTuqB9OvS5Jccq1Ax1Fy2oZWz+N7mUi4Mx5lOg5e8ZzcxyTNnQVBU+jHh8yUq+PYfLSw8py38qzXcKlJgjsLYj9eeLDJO/3yDAVT6B9/Kdx/1nvgrJfpaxLjzoKonELjqo2Q3FkQ9VNofPIczJ0FoTKFxifPN0g2bjhi89IYeuOTZ4lGWnV4453xDM+dBfm8jv2ijl084kEqU2h+8jzryklTLxs0ta/wRt/L+4pX/lw8d9xYiiIOpN3IZsYCQJYx4MVauXILW0bdwoHMG9kGYaOVK7fYy7RQcORu2MburwMAfGSNYLRpTJJG/g0AMH/hybk3LefeVABgd1abP3VCVBTJfUIFYSt8tgqf+WN7zoNMzh+NbLnP/CELOl3Ow0T3CZWlbQH9SIZp3FDz6kJ/THTOEzcxk67SqA4Act9YZyveZ5pyDQCYX/1OawANGIMGgBdffBFdiYkkEsLg36tHkczi6bAnt7NmLdBzQGOQl4M6eg6oC4WhOaebc7nRz+leo8KvFBpTp+LggyJ6DmgU93LQQs8Bde0YmklLDvmuU4+eRRqlBtHWpQXQ2gIA6i9DEmJoNehZkNyX32I924BgEM1fGlRAn/nIwtDK0DOebcdPbDt2vOT4CfJBNOHwWSwKBtGWgpc5l8c4PIkQPeNRPIiWhZ4DGlUMosnpc0Bju5pDAYa2LlrC2Z3G9FTyK3zqB9Fy/xXjB9FMWrIxNUWh4Cgcfe6oc7o4h4uKmgMNnyX+37Tm5dk5LkKif8OJAOiLLiG586UxQ0KqNsKGRAmNnxZUwJ3xEOo4cMXzwK5JA7vqldXVnveWnmaH9tCH1XGEVDzLTU2jd039KkIdR7DiWW6d3Cm0QPGcJBOUK5hCi6k2SKJsCo1zZwg1eRaL4in0T2d8exq8YpNnsajcJotNnqXronWgWEKNGu+MZwBADD3zQVNolUaO4MmzWPgpNDpFqKwOgibPYg+jOIXGJ88SjQhDb3ryZipTaOR9ljhp2CaGpqeBblM/35sGAAg940EYmhmjpyjiQGppdmcVM1qf88eAF6sRhmbLKm1lXoSeceU0W1apHYZGw+ecv97CTL6amXx12xNf/da23bvg+XuYVKn7hAobC9awrl1M2kgAYNJG5uZ/yjp3QgRDR0KWTkDPgiA7MABoh57x8BiadRV1whuIY2jO5WadHjF+SivW/OWs04MG0ZyrSAv0jCcYQ1uXLqOLngPqnC7EhfHlIHX0LGgMiaEVODeI6sS9HBTRMx5pL4cs5wZJwno5Fn62yb7rwPAmf0jds4KQeDlUomc85INoucNnsaBBNFe6MywXzl35JltUYhiul4uehY1yBtHK0HNAnfxBNOHwWbSxfRDNpCaT3yq05q8AAAX/inEuD+d0sy6PXDUHOXoWNqpQc4QcPosWcZxAzQEAERL920gEQF8sEXBnALgyNl0xdxZkf6PzVGvNqDgGh8s4d4bA04IqI6bjEDstqDISOg6cO0MoxbOCSF8mrDznrTxbSaLaIEzYKfSBs94DZyvDqjYIQziFDqvaIAz5FFpatUEYWVPor+rZn874LrTCsB56Qu4syIYjtg2/2J674hHCbTLh5Fm6TtZlQpLJs1jQFPqBwemyjBxhJ89iQRg6I7Gfgim0xORZLCoxtGVjKXug1jhoAGEj56tXaeTI3bANABB6JtlT527YxlYdUWPkYHfXsD8dxCfPEjF/6jJ/6lRv5EC2jZwHGQAQoOeA163cZ/6QZcZdoV4GbX6vEADYci8zVi+4dthRRxVDs8X72JKfEXpe8NffhXjA1r3mV7+DLl0oYmh0h3DB7HuZtJFMasf9Ita1M4KhIwkbHD1nzZ3NOVzgb1V8dI4knNPNOV3oNh0AWJYsoy7iDE7bQm3Oc6zDDeDX9A3kM/32uzmnGwCyX3hGU/rc0XjHvajxx8/eN6ZM0bqO10MDgEYgWNjYPojmnO5OaOS9HPyfVeroWdiIDaLRal7XdIYuesYTfKiQOnoWJOQgWv3wWSxihwopomdB8EG0wEFPCz0Lwqs5QnJhxcNn0bpwg2i2qIT1lLT07KcYPQsbCQbRKtFzQB3xrUJa374jS81hzV/OuoqMaaly6XNAY7uaAwBISHTY4bNoUUTN8ZtLBED/l2Oz2ViW1Yg740FK6FFxTP8uenRakDp3xoPrOEhOC6oM0nHglwmR4pkid8YT8jIhUjwndtcnddOr5854fI3eDw+tmn65STCFRqqNVj8kdder5M4Bdee8qw+uurGfKXgKLVe1QRLpKbQs1QZJwk6hg68Lqqkj2Sbzt/5kjayl68IyfVmTZ4ks/Pk9wik0+eRZIsjIQXickHDyLBG5Rg72QC23v463PBuT5O21eQy96UkZn7Pxk2cAkKXyaLtPKF8MjWwb7N6DzMjEsOgZz7Sc/ygzcghsG4TPZf6AM3/IKr5JyNs2AEAMPQe8kqoxdO4b6wDAVrLfNPmqkOg5oI4ShubR84LZ94p2YRi6sLAw8nF/JHwE6Dlrzmz0c87hsi7J1wJDI0UD6/Qw6Sk4Omyniq1aYGgePfONHXJhzTA02nfzU2v0S1rez9CNaA783FPZz/+DcxVZlv0T/P7s5/6hKYZGVujs554CAMuylwntyWrSZl4GYB1uUHQ2UFmpZckyJnWqH3Tkhx/VhHN5pt95PwAwUydu+ug1resAgC3adt0DfwEAw6ir1i8Mc7pTffBBtH1XpRboWRB8EO38uUYj+swHDaIXf8UhBz3rKtICPeMJHkRTR8/CxlCDaPXDZ9E68UG0ddESzu6gfm1PQs2BkDGTmkz323fwW4UAIHQcKR0+i9Y5XQCASLTYe0/W8FkiETXHbyYRAP1fjk6nQz/pG5M4LDaNOnfGs7Xh42PNVQAwqgejEXfGc/iCr/DkewBAflpQTXgdhzLFs9zwlwnRDhpNnulyZ0E+qF0Vo4MnEmeqVG0Q5r2Dq2KiAE2h1ag2CCOYQu9t8O4541M/eRZLyCm0xHVBlRHbJn9bz+5p8Lb4lY+sQ2b/We9rvndDTqHVTJ7Fwhs5Fg9/MPh3FU+exUJi5FAweZbI9Pc2hJ1CI9uGbe8hJjFeZSOhGFru5FksssTQ0rYNojqZYmgJ2wZhzB9w7A6fLCMHj55JuLMgCEMzycNlHSfkbRsAEBY9B9QpxdC5BWvQj9LoOaCrHUNHPuiPBMTRMx4eQzNpKeqFFSR2YOoYOhg9h6qjjKEF6DmwMcyVQoWNGHoOqGvH0MaUqdRdHDx6xktRo18XrQUX5tEztP8RwufJxrRULUh0m3Dj+Vloysq5iiwFK7XG0EjejU4FCubJGjWyRdvYohL/6ZPGCdda3l7jv3A+8/6bjKM1PJAAAHkff5/38bpnMya5vYeaTp7907ChVMwb0nmyuHTbsRMAkD48ad7txvRrNL+07Njju2XJ+wBgHD9y4ysval0HAFzpzul/fxEAjONGbFiZrXkdNohmPSVaoGdhY/sgGjFoWsNnqcbAW4Wdc7cAAHA1Bxo+Z815Xou/6MTUHIqHz6JFgWoOiJDoX2EiAPq/HPQRfN+YxMlx92tUsb/Reayl6lhz1bDYtCu6pRU3/KeLTjeyB6PG9SydnWe5wxe8hy/4RvQwAsCJ5qrxvRjFomeSbDvDAkDpaVt8V33dee89A2YqszyTx32yEAA8J2wAkNhd/8eBMzWtg3YldNU5r767nu7kWbTxnHf1wVUAoF61QRI0hY7RAQC0AFwVp6fOnfGgKXSMDhCDJrkuqCb4NnnvGR+0qzbUj6zFIjhOSGvyLJZgIweVybNYio4deqDoa8FxQvWTZ7FIGDnEDgyqrRM3cqADg8yweJA5eZaItBg6+MCgyvAYevPCP4o9htC2QVRHJoZGtg3F6DngRa3ebF5dmPOXm8JiaB49y+LOgsjC0Ag9I4pHiJ4Dnj3/09z8TyHyEf//cHj0bExPM6anhkTPeDiHi3M6rYvzFXuT5R6mo4KhpdFzcB3ndKkXQ0ug58BGahhaDD0H1LmKWNcWy7KXmZQpVAbRIdGzoJE6hubpc8j/Q61LC6gPogXoGQ+PoZm0ZLo6Dh49C5wb0r5mlcl9+S0b52LGj+THufyW1jDqKi1IdN7H33MVP0/u1zt16KCUoYMAwF15aFlhcdPJsxMv7aPRFPrf+yvf2u99cvRVfx19FQBsrT/6WsW+2L69NMXQi77iFn/Fzb3NkHZ14pJv7I49VcbxI7Mfv8c4fmT4Z1Ya69trLO98mj3zHnb7Tq50l3HciKyZdxnH0b88EVC6am1Un36sp9jfpXtmZqbRqPlUDi1qWwGi/K3Ut88hwzmcN/zudvTzjV9+0jnfCYHUHABgTE/d8PXnmjdiag7O4dTuywkh1RzQbouO5GJOBED/94NG0NQX0PsbnQDwc5NjWGzapTGJl8YM4X/rQKNzf5Mzo/fDdBn0zrMcAOw4y47oYewXk9Sv/YXvOsftPsvdfNkj1Bk0z53H9TQBwLieDADUnff+cGy1RgvomkZvdVOl54Rt8iUmAJhyielgk/fLI+9qOn+2Hy+0H7clxOoTuukHxw4tOlk4LE5bAM0eK/Sd83rPedMvNVU1ervo4IlEbQn7xvZZ99Ae+sqz3n/oH72KzJusOPsavD+f9a47bAOAYT30TyY9qmkdymu+d/ef9Q7roac7eRYLmkJfHaff2+ClOHkWCz+FHt0rkeLkWSK8kcNRV09x8iwW3MhBeGBQTYIxdNgDgyoTLIbO/aLItrvGNCYJlE6eJcLurM7I+U/O/Qb8PqEy2wZRnTiGlmvbIIx59WbbzuqQRg5k21CPnvHwGHrT56FNzbxtAxSh54AXFcHQ/5ORi54FsS7Jl4uh5aJnPIoxNDl6Fj7j0oK2G3fyB9GE6BmPSgyNTg4yyZMl0LOwUbWXIyx6Dq7z66IFuhW5aQPBxF9LANUYug12tzQHo+eAOlcR8ioYU5PVD6LF0DMeHkMzyROoWKGR7lnCC4FINN1BND98fm6acNzgrjzkqjy0vLB4Qt8+FAfR/95fCQAxPbpM7t938oDL8N9CGHrr4WNzbzcahidRJNE8ep5za8CpFcce35Jv7FE9emmBoXn0nPXY3fwTudJdllVrwO/XCENbV621vrt2wdN/yX76LwDAeootL73OeoqNBoN2JNqal5eXlzd3fua8+ZkOO7doYZ7DbldwWE9e6eKlnN3OpCUbU1Ms+SsA/LJuFSoszV/BurdkzXneuqQAADRaQAtyw22/NxiMdocDQKf1lxMiao5fXSIA+r8f3sIBAFfGpg/rpupvPZw7A8AVIi/teHN1ccPHVFwcOHcGgGu7h3iBRy74dp/jEroNpSLiqD3vrT3vE3BnPHXnvdvPsDFRcM8AatgUeZ8Hx+oHxeqnXGIS/O6XR96NjgLDpRlJ9JbX9uOFAGA/bkvubZoaCNOLThbWnfcyfTPo+jfYY4UAwB6zpV9qSuo+NLH9bbEfL3Qct/0lcaZG8o2Nv9imXWYCAOTUrjzn3Xy0cHhPrRbQ647Y9jV4m1tB313P9M3wnvOyxwqjdaAdg95wxAYAG36xmfqamL4Zqw+uitbBDf1MGm2f+VLk/QCAbw7b5l/5yAiC04tq8nkd+9MZX7foltKT1bOunER99Rycl/cVe44dKjp2CAA2PnyDXOeyskx/bwPnqzcmDVBv2yAJ56uf/sEGZthAdn+tStsGSXgxtGlEApo8m0YOYUYOCf+cSmP+1MXursm532Cr8IE62wZJeAy9edljoM62QVQXJIbOfWOdrXifaco1INO2Qdq4de+0mSsWPH/Pguc7cACJ6FlBIhj6fyc4es6aM9uYroLNLcm3Ls4PS2nVoGc8sjC0YvQcqpHUy6EAPQfWtWFoJi2Z8EqhNX85AEBLC5M6xZgaXr4kbFSEoWWhZ0Ed2l8r0EOTo+eARnUY2rq0AFqaAUCaPgc0qvNyWAtWsk6PafJoQqaMdBm5K99S4+UIi57x8BjaOPpKw6irFJNoCfQsCD+IVo+hBcNnsbxasa+4/iitQfSirzjHT970a5IE9JkPwtAUB9Ho/yNm3LU4eg58wC7LqjV0B9EC9CwIItHUB9E4ehb8FiLRWgyikQdZcEuWc7o5l5t1egD82l0vwI3PmCgjVSMSbV1SYF1SkDlvbtb8uQDA2R15ixZzdkcnfDkhLd3gdNj5J0Y+NL1oEwHQ//3gABqUMmhC7iwI0nFk9H5Ybh0AHL7gO3LBJ82dBeFOvR+j06nRcWw7w9Y1ef0A8V31wdxZkO1n2O1nbCp1HLxqY/IlpmDujGfLKdvWUxRM0Dh3BoCpIjvumkYvxSk0e6wQcWcACPn6VzV67ccLKU6hN/5SeOCsd/9Zr+CWI5+3a1ZF6+CmfiZaU+h1R2wAsO6wzdTXlNR9qD6Q3bPHCm3HbE8mPUoXCiMKbOprAgD8/ylEva+Oo7+D5mE37oDe2+D9pp6N1sGd8Qx1DL37jG/3Ge8XdexjiakTeg8Z33sIALxd5dp5xjvrqkkaLaDR9nn+pNEAMH/SGPuh+pu+/pG6eQOPlSsHAAtblpkyxjhkQJ67HKIAHRvUqBHafdCZKWMAwHH4SEgjB93wamnmmsGmsXrqq+eQmZbzH9vOagAwjUnavETJv0eyG+e8Zyv3AYB26BkPj6HZ4p9z/noLM/lqZvLVmjbmvvqt+dXvEIPWAj0HdEUw9G86FNEzHokrhW1Ads5zoA49B9SFw9BU0HOoRikMrRI9B9a5OafLsnR59gvPGFNTRBvb0TMAyAXBwkZiDK0YPYdsJPRyKEPPAXXtZhVy8C3h3CBqlI+hOZeHcxXpzjcwUycq4MjKvBy5L7/FerYZRw6Tew2PK93JbdvFlu5UMIgmR894EIZ2Vx5SNogmRM94eC9H+jVJyu4Tig2fxUJlEB1y+CwWWoNoafrMh+4g2pqXx3LcvPmZ6QbRl0N9EG1dvFTXekHib2bO6bbkr+Cc7uBbhcpL81f4o2LEjg1qRKKtSwr8UTEIPQsb7Y68RYuRmoP6VxSaW/0vzGv7coLTbl+yKI8n0SaTyWQyMQwT+ej04kkEQP/3IwDQAECuhD7WXHW8uVoud8ZzoNF5urVGlhJ651lux1m2X5eky7skkXBnPMp0HLhqI75rUjzx8yrWceDcGQCk0TOfg03erads0VGgTAmNVBvS3FmQtfWrYqJA8RQaV22QcHP1U2hetTHtMtPQHkOHSr7alee8b1evuqm/SeUUet0RG+LOEEiBBaE4hRZMnsUexh4rrG70UplC7z/r3d/g5SfPwecHAdNA03Jx8JPn8b2HPJ4o/Nil9GT121WurtEtFDH0y/uKAQCh5/mThKx5YXG548jhbIYyFEbmDUSBs1I7Srnq+hmfbtRCwdEGu+1lmSlj+Eauuj7PXa7rGloMrT5tGujbJwPAgtumAEDu11vMX22l5X0ODruz2raz2vypM+cBY86DRrbCZ/6QAx3kPMgwY7Ra65s/4MwfsjkPmdpehwpfziMy7hMqLEVK6JnXsaUH/F26IAataWPuq98CgG3rPnbr3k1fmplUDWWRKNfdmcM6dwJA5KPK30bMZjMAaIGe8QgwNI+eaVFgYR0va8ZOP1FHz8GNwRiaInoWxLp0Get0Q5CXgyJ6xoOgMOsqyn72H8FXCmmh5+BGCQytHj0LGwkG0SrRc0Cdq8hSsJJ1FYX1clgLVnKcXb1MQ5aXI/flt9ClQTWTW1leDl73LAs9CyJ3EK0APePZWn906+Fjr1Xsk3WoUC56xqN4EC0LPeNRM4gmRM+C8INog9FoNBjkEkyJ4bNY1A+iQw6fJYJItMpBdPDwWbLRRUXNIRg+i9bZHQCASDSVLyfk5eXNmTefp894gkl0ZCRxkSQCoP/7wS+J45kcd7+EEnp/o/PnJselMYl9o4co4M54CHUc+GlBudwZD7mOI6TiWUF+OLaaXMeBVBuyuLMgW07Z6i94yXUc9uOFvkZv1TlvsGqDJDWN3rWHVzGSoFMQMdUGSdAU+po4vdybhMGqDcIonkLjk2dZ7xzFU2ieAoeF3XzUT6E3HLHtP+uN1sE1cfqQ3FmQZQdWq5xCh5w8i+XtKtc7VS71Rg5k27juissAIBg987Efql9YXKHrAuoxNOerR7cHcQocHKurPM9dvvGPdAQgVq6craozDBoAgbC747Wqrs9zl5tGDKLl4mD31yLtRs7tkxF3FiT36y3sz3U596ZRFHGYP3WxO6sgKooZnZTzYMC/JghDM2PoWzh49Jzzx47/TNhyr/l9FqJ0WmBo8+rNAIDQc87M69oaSw+YV21iUq/Vwr8B7dvnnL/eAgAL/vq7NjF01y4LZt+rHYbmR9AQAdC/laBthHboGQ/ncN1w6x0AYExL3fj1Wk27UNplzcmc06Md7+aDY+j2nTJ99BzY2KGH5lxuAProWRBLwT/xK4WWZa9w7iJjarJGjSH10NTRc0CjCIamiJ6FjeKDaBLds9yE9XLIcm6QhORQobLhs1gIDxX+e3/l9tOnJg24TBl9xkN4qNCxx2f/yQd+f9rViSr1HeSDaDRIB79fLnoOejkyBtHc9l1c6e6oPv1koWc8rKeY8xTLulXIcRxnt7f4gRw941E8iEbDZ0L0jEfNIFp6+CzeqGoQLTF8Fm1Ureaw5uXZWG7OvMw0Q5gv2CxdlOew2yMk+uJJBEBfFAkeQaME6zj2NzqPtVQda64aFpumkjvjOd5cvb/JObjr0GAGLXZaUGUkdBxhFc8KElbH4T5ZWNPorWn0hlVtkITkMiGu2hgcO1SNJwTpOGKi4OHBYSB7WNUGYezHC2ubvNMvzwg7hcYnz7K4Mx5ZU2j+uiA5BRaEn0KTb5MRBW7xt3ml5TYqoN745PnqnklXy6HzyMgxsleS3Cm09ORZIn+v+ETZFLro2KGio4fQ5NkwaAAis2GzsLh8YXGFYiOHlStnvXXQCoaEARLomQ+CwiqNHLxtwzhkgHFImBeCqLdKJTSybbC+w6bhg0KiZz7snoPmr7bqYqLUY2jzpy40eTaNSWJGi/5rYv6QM3/EUblDaP6AA4Bg9IyHOobmJ88AwKPngAes2mRetYniBULA0HPwy9QIQyPozKNnlMhHlb+NdBqARkrozHlzjYb0vEWLobVV5f03otKlBZYlyzLnzc1btFiBWVhZpt92F+d0AcDGrz5TcDNQQTine/rtdwMAkzp149oPOqPRVXT9XX9kUqaATpf93D8UCKbl1vF6aM7p6sSvJQCTngIAGqHngMZADK0FehYk2MtBHT0LEnIQTRc945E4VKhy+CwW/lBhyEG0muGzWMIOohUPn8VCMohWNnwWCz+IBkmlg4Lhs1j4QbQxPQ39T+yRcofPYuEH0SS3CmUNn8Ub2wbRxrRUY3pqeNkR2fBZqlG+mkN6+CwWp93udHBLFi1Ev0QAOkKi/yuJAOiLImIAGtoZNK54vjQm8dIYTU5C4ToOktOCKhOs49h2hi09bYvvqidRPMsNukyo76HHdRy4amNwrH5wrJ5iY8jLhL5Gb9W5SrmqDZIUnSz0nLQ9MnhmsI5DrmqDJNJT6ANnvfvPViqbPIsl7BRacF1QZR2CwjdcbpLYJuOqjWCvtKyQC0DkTp7FgowcJMcJZU2excIbOT6aehvJ49HkuWu3FsOg/hKTZ4nc9PWPcqfQvG2DhAILwmPojX+8gfy5Qto2SJ/XVa5MDB1s2yAJwtDKxNDmT10AwNs2SJ/rQ47d4VNs5DB/wLEVXgSUxdAzHioYmkfPIbmz8MGrNplXbdq86hk1Rg5k2xBDz3goYujc/E9Z107k3BAk8lHlbyP4x6UaYWgePeOfuLZ9LqoZhubRM1+qdSNfmjV3dtac2cg6wjmcWo+g2ywfs582pqVY8lfokKxZSyJsKfgn/3POXQQAncCg20qjolinB3RRnfy1BCZ1avbzs7R+GwGR/d8/gH6+6aPXlZ0NlBUeQ7NFJdqhZzz4oUKN0LMguJdj27HjWqBnQQSDaC3QsyDBg2jq6FmQkINouugZD+spBoCQtwopomc8Djtnt9sddi6kmoNzOK2LlzKpU1Si54CXSXCrUNnwWbzRxTlc6G85iUG0guGzaCOxmoN8+CyWiJrjv54IgL4oImbh4ENFtUGS4ob/HG+uAgDtuDMepOOI0eniY/Vo8kydOwuCdBxobqxStUES/DIhUm20tkJCNz1F7oxHcJlQjWqDMMFTaKTaGNpDP7S7ngp3xhNyCi19XVBNJKbQYtcFVUaCeuPXBeVOnsUS9jih4smzWJCR46Opt4lNoZVNnsVCaOTADwzKpcDCF+Uqz3OXk4ih8QODiktliaH5A4Nitg2SyBVDI9tGGwUmRs98lImheduGaUwSM0Yvr7Hca36fZcYPlXWckC2rtG2vJEfPeKY99ZYyMTRCzyjkS2qVGBq3bYRM5KPK30aChxEUMXRI9IxHCygcjJ61boRA9Cz8rSX51sX5xrQUiSuFSkvb0DPvuQYAzuWx5K/gnB66RmY+PH3mX3jblULNMDSPngEg6/lZ0PY2rtQUQ1uXFgAAtLbgjTrwa4qhLQUvA4CuuXHBrCdYT0nuyjfA75d1NlBBcl9+CwD8Z08DgOWt/8g1CyuL9e01bOlO8Ldy23enDB30XMaklKGaHLLGc/c7X7srDwHA5P59nxx91eQBl2nduLX+6GObitDPv3n+QZXODZLgg2gAf/bMe4zjlR8PJAk+iDaOu9b+ky/76b8wyRp+RUFwq5Cz21mOSzcY6dJnPMFqDlrDZ7GEVHNQGT6LN4ZWc6gfPos2iqs5OI6bceONcofPEomoOf5biQDoiyUSI2iUSXH3azR8RjnQ6DzWUg3g7xOdeKKlKr7rUK3p865zHADsPstdHpP0S7Pvxr6PkF8XVBzk4gCAwbH6O/o9qnUdAHx55N2DTV4AUK/aIEzRycK68217Z1Cn2iBJVaP3w0OrhvXQX9FDr1K1QRh+Cq1StUEY7znv6oOrEBQmvC6osk5AvRHslrguqDLBxwmpTJ7FInacUP3kWSwSRg6xA4NqIm3kUDN5lm6UEEPnbtjG7q8zjUoAOZNniZCIoQltGyQhxNAktg3CmD9gze/bch7JCIuhkeiZLfMy46+Qi575IDE0OYYWiJ6VNMrH0GHRM0rko8rfRsQ+KFWJocOiZzy0oLA0etaiESTRc0Bj4BlGNY0ggp6Fj8lfYcl/iUmdSosLI/uzGNfuuFJIFXxbCv6Jo+fARq0wtHVpAbS2BJdqiqEtBS/rmhsBYMGsJ/gnao2hc19+C6Hn7D/dj57Cbdtheetjf6tfOwxtfXuNv/UCAGQ98nsA4Lbvtq7+4sLJk5pi6GWbi5cXFj+dNnZW6hhPdf1KZ1lL0wWtMfSrFfteq9iX+fDtxjHD897/qrXx7JxbDVpj6CXf2Bd/bf/x9TzLWx/7W1s7gUEDgPWdzyyr1jCTx0F0jNYAms/1f/g/NIv+bt0P6QZtUQaKw87dctONAGBMS9n4ZfgPk9SHV3MAgDE9XQv0HNTYcauQc7hoDZ+lGgPVHJzdrkC7QRKBmgMiJFr7RAD0xRL0sf6lMYkAgDbIwaHrfUY50OgEgP1NzqGxaZfGDOEZ97aG/8ToooyXPES3DgCOXPAdafbtPssN724AgOHdjQDw0znup3N27Rj09jNs3Xlv3Xnv6DhmTBxTf95X0cAmdtdrt30+2OQ92OTdeso2vldbxZHz3qm9MzQF0EXIZN3knXyJ6VCTd2gPfSfQZ9+5SsdxW2I3fVWj9/EhM4fSGyCLZfPRwspz3sqzXn13/SPhtNe0Yv45BwD03fVU/B5hg6j3sB76/We9t/Y3acGd8fBT6OE9k+hOnsVSerL67xWfoOOEL+8rpjV5lghu5KA4eRZLsJGDyuRZIiGNHLxtg7lmMHPNYIp1YmJoZbYNokbx+4QIPUOUDshsG4Qxf8CyFT4xI0dY0bPckGBoCdGzksate82vfseYxi2Yfa/oY1w7WedOEvTMTLqKLd4X+ajyt5Gwq4iwaFUQWegZjxooTI6eaTUCMXoOaFSNoUnQc0Cjy6PeyyGNnkM+WD34biud/XQwesaDoDDn8lBxfLddGpQs5Ruzn5/FpE5VT6ItBS9bClYuePoJHD3jQRia9RQvmPUnZupEKiS6Tff8pz/w6BkPj6GZ8SMpSjmQFCLr0TsReg5obMfQKfpBdI0cOHrGn85j6EkDLpvcvy9dEs2j56yHbuefyJXtQRg6/Zok9UcIg4PQM/7/Kfr/kS3ZgTC0FiQaoecFf3t0wd9mAgC7ZXvuv1axW7czyZM0JdGWl15v7dYLlx2lGwzz5mdqSqIXLcxzsZuZtBTW6eacbmNaSvbsZ7QW/Vvzl1uWrjCmpXBOt7LLgQpyw22/5xwuY3oa6HTocoPWjZzd0U6i4evvflCs3SCJQM0BkUWFZokA6Isl6GP9YbFpx1qqxQA0AFwakzgp7g/q63DuDABXdAvxd9aBRldlk9N4yUO0Dg8i6fPlMUmXd0kcHjSv/uWC76dz9oRuQylaOLafYQFg+xnb6DhmQBf9gK4Bb0h5A3us2Yfsz7QaoV27MbCrPj5WPwF7W2rPe78/ujq5t4m6f6MImaxPCk3WvIRaI/lGVaMX/DCkmz7t0gwAqG70fly7SrsFdOU5b+XZys1Hbal9TACQ2ifjk7pV0Tpg+mZQ1G4IgjQmtmO2lD6mIbFDP61fpd32GS+1HbPNuNz081lvtA5uHcBQEW5I5Nt6FgC+OWwbfUlijM7/yuj7NK1DebvKVXqyuvRktWHQgHW3Xd8JjfZD9Td9/SMAGIcMIDwwqDK8kYPu5FksvJGDGRYPqm0bJMHF0CptG4RB9wkLlzyMptC8bQOoomc+IcXQskTPshtDYWhy0bOCIKi9YPa9Agwd8sYgnpy/32p+5RsAyPnLTQBgfn0dRD5e/61Ep9MZ09M4h1P6YSSYVTF6xiMXCitDz2oaQRF6DmhUhKHloueARqUYWhZ6DmxU7uUgRM9BjaoG0SToWfgsBStZp0fNIDosehYkd+UbrKdE5SBaGj3j4bbtYEsqqHg5JNBzQOP23VzZbuu7X1DxcoihZzye6vqi6npPVR2tQfSrFfuK64/ecKMBR894uLI9XPlP9rI9dAfRS76xdxkwmJk42jhhVPDvWt76mNu2g/ogWkCf8SASrcUg2vLS67kvvR781y/6e7VVF6UFhl60MG/xwjyB0J9zui1LlwGARhgazZ+ZtGRe9NE2iNbpCC8HKot1SQHndKNvgeL5vtGQrimJti5cnLdoMX+mmLM70tINagTQJLnskjj0k8gHtBolAqAvlvAa6EtjEo83V6EfQz7y0pjEYbFpynQcJNwZz/Hm6m0N/xnRw6hGx7HrHPfLBd+RC77h3Q3B3FkQx6kPYqJ043oyaqbQdee9ded9iDsDwJg4USpR3sBWNLCTLzGpn0JvOWUDADR5niDO0L8/ujpaB3cNoLPbRYcHJUzWB5u8Xx55l+LtQfvxQgBwHLel9TEldh86JAht/6d2VXQUTLssg+IUGk2em1thSDd9ap+AN6S60ftJHX0o7D3n9Z2rRNwZAFKxrxl8Wq8V9eZh9wzMAb3/rHf9Edu1PVXdG5QI8m88MDgdAB4cbACADw/ad5/xPZ6YSte8gQeZoJ+9ZgIApFw+cPmebTFdW9ECWqPGhcXlALCwuCIzeTQA5HkqOgEHW13lAJDnLjcMGqCLBnTbUNNGaEfejD6e9da1vP03retQpi39kt1z0DQ6KedBo0rbBmGibrGaxiTZyn3qbRsk4TE0M1avHXoOaCw9YF61iUkN+ISQOnrGgzD0pi/NTOrIsLaNYPSc86cZbMnPtm37X3zxxZycHO1ez0g6IegjUmN6GmLQijE0FfSMh4fCTHpK1guhv+lYPXoO2SiNL1Wi54BGYgytBj0HNMrB0IrRc2CjPAytDD0HNsrG0ArQc3CjXAwtFz3jUezlIEfPgqjxcljfXgMA/tYL0uhZ2KjOy+GuPOSqPNR6/gIASNBnPFS8HCGHz2LhB9EqMXTw8Fm0se3/x1Zm3EiVg2gJ9IyH7iBaDD3j0WIQvWhhXpfmc8a01JB/USMMTX0QjYbPITXTHbcKdTq6g2hkfA75Hm77B0ubQbR14WIAEPxTjv5RbvHrAEALEr10UR6v44hgUo0SAdAXS2w2W0ZGxrDYtP1NTgn6zEeWEvp4c/Xx5ipy7iyIMh0Hr3ge3t1weUzS5cQzajU6DqR4HtBF379rkgR3xoN0HDFRoEwJjXNnAJBAz3y2nWFLT9vu6j9TsY4DV22ERefIBBIdBQ8OVEW97ccLEXcGgDRJnO08Xug8YVOv49h8tBAA0OR5SLcQsJsPxSk0e6zQe87b4oeEbvpUka16daOX7hSanzwDQPD5QQDYcMRWec5LcQrNT54fGJyOuDOeitNVHx60U59Cv13lAgCEnhF95rN8z7ble7bNnzSarv0Z2gXQiDtnJre9cK6mPs9TodNpBYURBZ43aTQAzJ84BgDsh+oXlVToomH9vdOp1wEAV12P5s/ZprHZprEAwHnrr393vaYL6NyvtwCA+autOfek5tyTal7jYn86qDWDNn/IAQC7w8eM1rMVXgBdzkOM3EuDsks/YNkyLzNWz5Z5mYnDtKbPbaWrNplXbQIAZvLVm1epAkzkiR71ZNjH4PQZoWcAML+13jRuqG17ZQRA/wbCA2j0SwUYmjp6xsN/T272nOdwDE0XPQsaxcA3RfQc0CiJoWmh54DGcBiaCnoObAyPodWj58BGIgytEj0HN5JgaDXoGQ+PoZnkCQue+lOYBxdtY4tK/GdPy0XPeDp8Do/da5xwLQmJFuieZTdu321d/YXcQ4Ukw2exIAztqa6Xe6hQFnrGgzA0V/ZT+jWJckk0OXoOaNy2gy2pUDyI5kp3caW7dD3ipNGzIOoH0ST0OeD1pDGIDjl8Fm1sH0QzacnG1BTFJNqav5x1evDhs1QjulVIQ82BD59FG2kPovnhs8SlYgBAJJoWhhYoOEwmU2FhofoXG0lwIgD6Igpu4egbPQS5OCRgNIkSGj8tKJc7B74c15nWmhHdjWF1HDh3hnbFs9zI1XHgqg1C7iyIAh0HUm2Qc2c8tee9pafZpO56WToOMdUG4Wtbf8GrQMeBVBtV57xpfUzS3BlPdaPXebwwOgoeT1BCvTcfLcRVG4SNaqbQAtWGBOzmo34KHXLyLBZaU+jgybNYPjxo/+ig47HEVPUyaHzyLEDPfNxHaylOoe2H6u2H6hF65rmzIDyGpgWF+cnzvEmjEXcOfq1u/uZHuuNrVOqoPWzUD0DoGY/FVsbV/oIc0LQaASD36y2IOwMA+hGF3VVtXuOCqCgtMDSSb+Q8yAAAr4Fmy33mD1kA3eb8R+jWtZWia4QPmUxjkhDmbnuKliNohJ5zHp2W8+h1AGB+d5NtZw3hfULFQQto6ccwU64xTbjC/Po6ZtJVpvFXtL22b61H1xqRmSQCoH8DMZvNm3/cyDmc/AgagjC0tKBDI/QsCPocNXvOcwCgEXrGIwDfGqHngMb2z+p50qEFeg5odHks+Ss4pwcHzdTRc2Bjx5VCJnUKT2npoufARlE9tHVpAetwM6lT6JbyjUzq1GASzbmKWFeRrrlRJXrGw3pK2KLi3JfeYKZOFBtE5778FutwGyeMUkOf8bT7HKQG0YTODcIQDqLVoGdByAfRitGzIHIH0dLODaJGbBCd9djdJM9COHwWi7JBtFz0jEfxINph5+x2e5fmcyToOaDR6eacLtbpBkVqDonhs3QpUnMow9ASw2fRRhokOuTwWbTR7qCi5sCHzygRRqpdIgD6IkpGRobPfaGyyTksNg0AcAwt9ixiSmix04JqgpTQEjoOpHhWw50FCavjwLkzSKo2SFJ/3vfjidVhN8VbTtkONXkPNnmlVRsk2XaGJbxMGFa1QRI0hSa8TBhWtUESuVNofPJMyJ0FUTCFRuvjYNUGSaobve6ThcN6yD5LGHbyLJYNR2zrf7E9d8UjcqfQ0pNnsfBTaGVGDonJs1gQhs7QX654Cr2wuNx+6DBEgTGhvxh6xpPnKVdv5AiePEu9hiXlzvrD6sfXbYJp01gACEbPfDhvvcVWBrHRVDA0j55x7iwIwtDM2KG0TNA8eg4+P9jWWO7LmPMeRR0HW+61lfsQeg75MtvuE868jmnnsBRKSw/Ytlfi6Lnjt7ZXmt8Nc59QWXi7dNhH5vzlJlvxz2zxPmTbYCZeKUDPOfcbAEB3zXURAP1rD1pAb/j2KwCwLl4KGG4mXENr7YXkgxh0ZzYCwIybf4fmVxu++VJiFEYxaFEOAMa05I1ffNIZjfkrLPkvMalTERrWAj0LYin4J+cuAgBjylSN0LMg+CCac7oAAFpbjKlTjanJmjbig2hLwcucw8kkT6RIn/GE9HIodm6QRMzLQRc9BzSKY2iK6BlP2EOFr1bs2xkVbRh7jUr6zIdkEK1s+Cza2GH6vlZiEK0SPQtCPojmjw2qbJQ1iJY1fBZtlKnmUIaehY3yB9Ekw2epUkVqjrDDZ6lGFWqOYPoMEQCtZSIA+iIK+oh/QtwfKpucfaMTAYDXcRAqoeUqnuXmeHN1ZZMzvutQnEHLUjzLTUgdB7niWW4kdBy4amNg16SBKhTVeKQvE8pSbRAm7BSaXLVBEjSFvjJOL3GZMPi6oJpG14lC1wlb2Ck0PnmWy52FjScLa5u8JNRb1uRZLGgKHa2D564gmnyST57FUnG6au7uD2VNoUkmzxJBRo51t10vawrN2zYMCQOMCTKeUbGRgxdfiE2exaLGyMHvrHnbBtGr6q232MpMY4coM3IIbBskz2Je4zKvceU8YFSMoZFtQxo9Bzz+A46t8Kk0cpg/YAEACTekcXbHfULVGBqpNtjSA8y4oQL0HNBIFUOHRc8hRc9tv3f+fMcrv7ow535DzgNG80ec+WN7ZAH9GwhaQAMA53BmzX3BmJ4WEkOjB0vALQJ6ugABAABJREFUaE2hcNtnqpmZmZmZAMBxXF5eng78nXEQKTMzMzOzrdHfqvhTdNLSJfnWxfloq2tZsgygNXv2M9pB0rbS/BWW/JeyZz/NujwKrhQqC8+g/aDLnj1L67cRhXN5pt95PwAYU5M3fvFx5zQiDM26itQ7N0iCezm0Q894cC8HALClO41jr6aOngMag7wcyzYXu36uTk6Mp0uf+YQ8VEhr+CyWkINouuhZ2Ng+iA7G0NZ3PuN27Fvwt5nMlHEUG6UH0WqGz2IJO4hetDDPYecyUiarQc/CUoJbherps7AxfwXodAAgQaIVDJ9FG+UMomUNn0UbZao5QqJniPg3NE4EQF9c0el0l8YMGRqbdry5+kRL9bDYtOKGjy+NSQQAaSs0ItQacWdBkI4DOZ0VKJ7lBtdxbD/D1p33+v1ArnhWEHSZ8I5+jw6O1R9s8qLhsDLVBmEElwnVqDZIEvIyIT55Vs+dBXEeLzx03ht8mVDiuqCaVDd6XScKxabQaibPEo0SU2j+pKGCybNY0BT61v4mMSOHssmzROb+9GHYKbSCybNYyI0c+IFBksmzWGQZORAF5nz16YP6y0LPeOQaOayucntNPTMsHiQnzxJRYOQQs20QRpkYOqRtgyS8kUMBhuZtGwBAvqRWiaF52wYASKDngEbVGDqsbUMMPaPJc9urUeZlRiQAAI+ec+5KzrkrZdqbpZGP2n/t4RfQCD1bFy+9qDC0AD3j0Q5Di5VqiqF59IyLpzmnS1MMzaNn3vIh60qhsnCuIta1BZGR7Oef4lxFloKVnYChrQUrLfkvZb/wjDE1xZK/Avz+TgDfqHTBM39jPVvA79du/ownd+UbuS+9wUwazRZXMBNHZf/pfsWKBlmZ/mSm3w/Q2pL1yJ3GcSM6oZHbvvuGZxYCQPKQAR//4YZOaOQH0VsPH9MOPePBB9Hp1yS5Dx6nqFIJ3dj+FQU0iOZKd1EcPotFMIi2vPQ66yk2mDK0th616qLSDUaDwYBINJXhs2ijyCCaLnoWNAKAmJpD5fBZtLR9EG1ITzca0gX/OqsZPos2Eqg5xOgzRAC0xokA6IsrOp1OH5vibXJPiPsDmhuTK6GHxqZpjZ4B4ECjCwAqm5wAcHlMUvolf9S6Edp30AAwOo4Z0EU/oKuGF65QkI5jcKy+1Q/xsXqNuDMedJkwubdJvWqDMF8eeTc6CgyXZvjOVVKcPIsFn0KTXxdUE8EUmuLkWbQxaAqNThpG6+DKHnoq3BkPP4UWHCdUP3kWi8RxQpWTZ7G4j9be4/xO7DhhyAODKhPWyCHLtkESEiMHb9tg9PFGvSpxB7mRg8S2QRJZYuiwtg2iRpkYmkfPig0eCjC0QPQsu7EdQ8u6T0giejZNGGbbth+CbgwKbBum0UnM6CQcPbO7ajKsayIftf8GYjabUyeNR7iZR88hMTTyRPPPqDWGlkDPeOhiaJJS6hg6JHoOaNQAQ1vzV6CfhBRMa4eh0fDZmJqc/fxTgY0aYmgePeN8h/9e9ezZT2vh4uDRc/azf0NPYd1bOPfW3BX/YpInLZj1BJM8kW4jSu7KN/znzmQ/8SD6JVdSbnnjQ/D7NcXQlrc+trz1n+zH78v6v/u4bTstb3/SCRjauvpz67tfzLvTZBihX/SF7cKZc9otoPGsdJX3GjWKKylniyuMY4dnPnS7cew1Wpda3/8q772vmJTJcP5cZ35FgS3ZAQCb3l1Jd/gsFn4QDQDG9LQN33yhdSPncHFOJ+dwteqiHHa7RuhZWIoNojmXm3V6FKiiZTdiag7O4aI1fBZtbH/H4moO68LFdodDu29dCqnmkEDPKIWFhSaTSYvXJxKIAOiLLWaz+d1F6/vEDPE2uS+NTrw0Zsi2hv8gJfT+Jie0L53Fnv3SmCETQimh1ed4czUC4vrYFADQd0s90VztbXLHd9FT127w+ekcBwA/nbNf070Nou05Z7++zyOaAujyBhYAKhrYUXHM4fO+aB3cfJkmt63wbDvD1jV5a89747vqh3TTa42eUdARRQBI7Kb/w0ANv4KN5z+1q6oavUO66elOnsXCT6G957x0J88SjWgKDe2qjWFxevRLjbL/rPdV37u39jehX1KcPIsFHSd8ZfR943sPoTh5lsg9ru/wKTStybNYQho5wh4YVBPeyCHA0MpsGyThMfTmF+4Q/JYC2wZJpMXQcm0bRI3lPvOHLDN2qBhWRrYNleg5sNFrfp9lJg6TuE8oIXpW0ri9MuPpf+f89ZYFf/2d9CMJ0TMzbqj5nR8lbgwi2wZb4bNV+Hj0DADmtW7zWk/OLZPYhp4RAP1rT7ADWgxDZ819gXM4rYuX8hhaWg+tGEMTomc86jG03FIqGDoseg5opIShefQMIvS5o7EdQxtTpqoXQ7ddGnx+lgA9BzYWWQpWsq4iWlA4JHoWPiZ/Oev0UBxEWwtWAoCu+QKPngVh3VssK/4Ffj9dDI2Gz9lPPMjTZz7aYWgcPQc0bttpefsTbtuOrEfvNI4dQZdEc9t3c2W7W04en/97E/9E+26vfbd30Re25CEDZqWNTVZ3eCNkVrrKX3KW4e9h9I71X7igHYZG6Jn/SkbbH57z57TeQaP/ZxfM+jOTPDF35Zusp4SZPI66gkOQ3H+tyv3Xux3fpqCL0tp6hGJdkm9nWQDwR0UzaSnGtFRNcTDK9NvvRgtlQkM0lXBO9/Q77gUATelzQGO7mgMAjIb09d9/q3kjpuZINxjE6HNausHpsENEAK1xIgD64gr6oF8fm6Lvlrq94VMdwIS4P2xr+A+mhB5yvLlaGkNPiPsDlauDKAcaXSdaqvwAfaIT9EEL6+0Nn8ZAFPUdNJo8I+58dbcOlHa02ec6/eHoOIa6f6P+vK/+ghdxZwAY1aPt5e84y+5oYG++7BFa0mc8286wAFB62jaupym+axLyXG8/wx654EXyDeqNgMmsJ11imnyJ6VCTd+spW4wONGXQzuOFAOA8YZt0iWlwrH7rKZu+u+YA2nWisLrRW93oHdRVf+i8V7vhc0DpycKaRi9C3n9NelRT9MwH6TgAYPQliYuHCz/H0CLICg0AKZcPTLlsoHbomQ9v5LAfqqc7eRYLwtAIB9OdPIsFYWhj0oCs1DGEBwZVhvPWX//u+pzbJyMxtErbBkmCxdCKbRukjR9w5g9ZAWI2f8AiyzPIsW0QN7Lm9205M68TYGhC0bOSxnc3md/dHBJDy7gx+Nj1bOkBW+kBQCQ61I1BZNsAAHZ7JXNtggA9L/jdJHbvodzSUxEA/WtPRkZGa3MzgB+xZoSYgQxDcw6nwWAAALvdbjQYAICz2wUvXxaGVoCe8SjD0GpKFWNoWeg5oFEFhuZcHsQ7IBx6Dn4uS/5L2c89xaROUTCIJkHPQc/yMufyqBlEk6BnPG3KVNUY2lqwUtd8AQDE6DMfihhaAj3jQbSULa7I/tMfmImjVZJoy1sfc9t2GMeNFKBnQaz//oQt3UlxEG1d/TlbVJo+XI/TZzwIQ184c44ihg5Gz3j4d2zmw7cbxwynSKKt73/l2HeISZ4i+OPUsabXQLHCo+cFs/4cUFpUkrvyTWhp0QhD5/5rlT/uUmNqCo9isd1umkYkuu2v4mf/lv3s3wGAc29B71t/VHT2C89pB4WtS5dxHJf9zJNM8mTWs9Wy4jV/dBcmLRl/8+mXtrk+njWmpbbJQDR7xwb0Lsm3Ls7f+OUnlvwVEBWTOW8uAGh9Rpj3coR9ZASQapoIgL7ootPpesckXBo9RN8t1dvoOtlSwyuhEXRuh8s6CQatXsfBqzb0sSl9Yob0ESfa3kbXmZZDw7sb1GugfzrH/XKh6pdm3zXdDTh3FsR1+oMYXdT1lz6ssg4FGZ/7d9H375rEc2c8hy/4djSwg7vRFHEg4ca4niYAGBf0YuvOe384tpri4UEA4GXWky4xAcDkwJe89ZTt8Hlv2qUZdG0Y1Y3eqnOViDsLSreestWf96b2odyISqsbK10nbBN7mQZ11Q+M1QNAbZO35LQtOgruHaAJZ3edLAQA9wkb09ek7z40qbved87LHiu8Jo6+eYPPhiM2AFj/i+2ueObugcZdZ3xra9lxvYdoPX8GgI8OOp7QJwPAG16PpttnlOV7tqEf0+MHOOrqNRo+C8LV1Ntr6vM8FQDw/a3yziEqDmLQ9kP1jD5+46Od4S6EdjE0u+cg3cmzRJAYGgkcKE6epRrb7xPayn1o8mwak6TmViFBI8tW+JCRQ4HoWUnju5tsO2t4MbQ0emYmXWkaP8z81noAyHnsegAwv/NjzsMZAMCWVTLjhna82MAbgzl3JQNAMHpGD45+8vWIguM3kIyMjB++/pyzO62LlijA0AZMtmgPos98wmJolegZDzmGplUqC0MrRs8BjU6XZckyzunC9c1hevNXsC4Pk5pMjp5DvgRZXg4F6BmPMi+HtWAl6/Qw6SkKhKpqMHSwc4MkCEOz7q0Lnn6CmTpJLokmRM+CWN74kCspVzOItrz1MbT6jRNGGSeMJHk8FS8H79wQQ894EIa27/Y+nTZ26pABikk0Oj/Ya9QoZtJoY7hdAnrHUhlEC4bPYuEH0VQwNLdtB1tSoetxiQA9BzQWlVAfRPPDZ7H/ZttP6lEeRFuX5OvOn0XoWdjo3mJZ/i/WvcWYlkKXRFuXLrMsXb7g6Sezn3kSfzrr2cq5i1nPVn90Fy0G0ehbPQRvS5sMRBcFAFqQaDR/ZlImC84MAAAi0ZoeLg75W3PmzXfY7ekGAwA4Hfbrr7suckxb00QA9EUXnU6X3vuZioY1OtCNi7vX2+jCldBDY9NOtFT1iU480VIlPYVWxqBx7gwAwZPnkDnRXL294dPh3Q3KdBy4auOymMTLYsKD7L2NdpU6Dly1EZI7C7LjLHv0gm98L0bNFJpXbYzraQrmzoL8cGx1tA7u6Peo4jqULadsh5q8foBBsfrJ4kQbTaGHdtdT0UA7jxdWN3qb/VKlh5q8Xx15N7WPidYUGkmfEXSe2CtEaclpW8lp270DZlKk3q6ThYg7A0DwBUL2WCF7zEZ9Co0mz3fFMwBw98CA/+g+q+X2nq18cLBhdK9Eio3Qbt5A3PnPSR2fg/257LOuMS3PXjMh5bKBdBsBYPmebe6jtUxCPwCYN34MADjq6heVlutiIDN5tDFBEyic5ynnag77myE9fsC88WPaGqNg3sQw5xDVZGFJOQA4Dh1OH9TfMHDAopKKqK66bNNYlcZn6VhsZejHBTeMZ/fX6brF5NyTylxL7RtoQsa8xoV+NI1IgC7ROQ8yzBjNtf4AMG3Oe7ZyHwAU5j+iKXrmw5Z7M2avBgDTuKGbX/q/zmhsF0OzW/dKPCznTzNComfze4U59xvMH9vbLg2eb4agG4PoJQSj59xvi83fFS+YNo5r7RMB0L/2ZGRk2Gy2Dd99YzSkycXQfl1UusG4aGEej6GNRiPHcWIkOiSGpoie8UhjaC1KeQxtTE8N+a3N1iX5AKDzt6pBz8KXubTAsmSZMS1ZYhAdfGlQTQj10CrRc2AjKYbmXB7OVQQ6ncoVIa6Hznp+VtjHK0PPgliW/wsdKiQcROeufAMAcN2z3Cjzcog5N4galXo5rKs/57b/lDZ0AAl6FmTh5zbHT15lg2jp4bNYVHo5CNEzHv7LGGoG0WLDZ9FSGoNoJH02ZmSQfLmI4iBaMHyWKnVvsSz/F61BtHXpMt35cwL0LAgaRLOeYlpqDn74LKa3brtVuHQZXcTf9k4W+acH/VPCOT0a3S4O+7B0g8Fht0cE0FonAqAvupjN5hXWf4+Ou6eq0X2q5SACwbgSemhsGgCcaEHcWQcAYgyaXAkdrHiW+2orUEL/csH3S7MvpGqDJMp0HDh3Bky1QZLDF3ybT6xWoOMIqdogiRodB67aGByrH0T2ElROoQWqDZLSr468G60DNVNo14lCAECT55DcGQ+tKTQ+eQ7mznjQFDpaB39NelRNIwRNnsUeRncKXXG6qvyUD6FnnDvjKTlR84bPwwzoT2sK7T5a6/6ldvmebXPHjTEMHJAeL/z0AEFhRt+f7hQaXSAMWYoaDQn9qVs4FpaULyquCFZ8oDW06ep4LRQcFlsZ4s4AsOCGtv/X2P21uRtKTROGauffYHdVM8MHQ/uElt1VY17rZiYM024Ebf6AAwDzh2zOfWk596WxO6vNnzghKorwPqGysOXetqn1/QbT6CTzx3aIjsp59Dp8WaxFkItD+jE4fRag5w7WfL8BQqFn81o3AIih5+xp4wBg+o/eCID+taddwQFZ8+YYDWkAQIihs+a+0K3P5QaDYV5mpp2zK8DQGqFnPMEYWutS9Ibn5eXhhk0ePQMARfrcUSri5aCLngMaxTE0RfQc2NiGoZm05JBQ2FqwknUVMWnJCobPYkHgxpiaLMa+qaBnPIReDnRpEAAU02c+uJdD2imsBj0LIsvLYV39ecvJ44YResMIveJGuV4OZegZD/+OlXWoUMy5QRhlg2i56DmgUcUgOuzwWSxqBtFtm9wp48Ki54DnUj2IFhs+S4RXc6jB0CGHz2JBg2j1iD94+Cz1YLSJpjGIlkDPaekGAOCHzwDgsEcE0J2RCIC+GKPT6UbH3dM7JuFkc01FwxpcCX28ubpPzJBLoxMBoJKGEvpAo6uyydknZkhIxbPcEOo4kOL5spjEy7skyeXOgpDrOJBqQwF3xiNXxyGt2iBJ3Xnv9jOsrMuE6LpgSNUGSdAwOa2PSdYU2nm8MKRqg7xRwRQaTZ4RdA6LnvGomUJLT57FonIKLTF5FstntdzaOnbxiAcVT6E/PGivOF3VNap1Up8EMfSM502fp/yMT+UUGtk2tpw8iNbH0g9eVFq+eHv5D3dfr3IKnecpBwCEnqVLF5WWOw/XU5lCo8kzQs8SUHthSbnrlyMUp9A8eua5syC5G7blbigtfPE+ilPoNvXzXcmmEUOYaxOEv4vmtLRdHG325/vSAAD9yAdhaGb8FVoIoAEpkkcl5jzQ8eawFT7zx3Zm4jCNFBxi6JmZdCVb/DP6OX9j0DT+CmZ027/RQvSMDOAPZ4REz9DYDABi6BkArn/7B7ayLvKB5a89gQoOeRga0edFeXl2u33e/EwA4DG03W7nfyJWbTAY1q9f3wlvI4+hObtDU96NJy8vLy8vz5ieZkxP1Q4948ExdJu1WQP0HNAYiKEtBf/k3EXG1GS66DmwsYh1FVkKVuJQWK7uWXZpKC8HdfSMRwJDK3NukMTyxoeWNz4MOaEl1D3LTVgvhyznBkl4L4fEocKVrnJPVd30m6+n9R4mHEQrGD6LRdYg2vLWx1zFvgWz/sxMVSUilzWIVoye8SgYRJMPn0VLFQ2iSYbPYlE8iA47fJYIr+ZQgKGlh8+ijaoH0WGHz4g+p6cbAGDxooVz52d6XM7IikLrRAD0xRidTndJTEKf6ITEbiknm2uqmty8Etrb5B4fd9+J5uoTLdV9ohMRg0bPJEsJjas21HNnPOiVDKnjIFQ8y420jqO8gT183ld/wUuo2iBJWB2HLNUGSUim0ILrgiobvzrybowOwk6h8cmzmlIkAInWwX3x4YfJsibPYpE7hSafPItFwRSacPIsFjSFjo7yy7pMiE+eJ/ZOmNhHiAslgqbQyowcy/dsQ5NnaLdtkESlkYOfPJOXqjdyLCwpR6oNILtqiKbQKo0cuG1DDD3jue6179UbOdhd1bad1Qg98/YGsZjXutl9tVSMHDx6FnBn4cM+cbK7D9KaQrfdHmzfDod+DKK6j06jhaHN724CgLCrZ8BuDOY8nMGWVTJjhwaj55x7UtFK3bazGkfPaPIMkugZACybt7OVdREA/RtIRkZGesrUrHlzoAM6k2Lobn0uBwB8BC0XQxsMhszMTKNRWzU8YsGZmZkcxwGA0WjsBAadl5cHANDaYnc4oLU1e85zxrTO0O5Pv+0uzukCgI1ffqLmmB55OJdn+h33AQCTOjX7+VkKrhQqKm0bRHMuj3boOaCxHUMzackAoGu+oAV6xtOBEZMnLZj1BFtUrBF6xhPs5ZCre5bdGMrLQR09CyI2iFY/fBaLxKFCiuhZEOlBtJrhs2gjwSA691+rbNv3UNQckwyi1aPngEbiQbSC4bNYZA2iZQ2fxaJgEG1dkq9ruaDmC58KSDQhenbY7XPnzXc47OkGo8FguOWmG1988cWIAFrrRAD0xZiMjIwjWy+rbipCDBoABEpoxKArm1wT4v5Q2eTkldASLxMxaGWKZ7kR6DgUKJ7lJljHgas2+nfR91d9IFEQpOMY38uET6EVqzZIgi4T3tHvUQGDxrkzKJo8i2XrKVvxKdv9A0PMhCWuC6pvvC9edJisePIsFpIptLLJs1gIp9AKJs9iQVPoBwanhzVyyJ08i+VNn4f8OCF/YDDs+lgiaApNfpyQfPIsFmVGDt62YRg4QC68VmzkCGnbIAkycui6xWzOkb1vQqJndkcVc21CWPTc0birxrzWrVgMzZb7bOU+EvTc8Sw0jBw8ehbjzsLHf8Sxu2tUGjmkbRsSNwYBAC40d7ycQPTMXBlv++mQadSQnLtSQoqeASAkes7dvD0zeTQA5HkqIh9Y/tqj0+kAADmg0VPIMXSrLurb739w2O2LF+XpAHAMbTAaFiEC+1/F0Dx65okzr8jQbgrNo2cAyJo/FwA4uyNv0WKtMTTyQSMa20ZkwC/hhqbWiy5KAQCAJf+lzsHQloKXLQUrs194hnV6AECLm10hM/2Oe8Hv51wejbbPIXP9vY+w7q0A8ONbi8PewaMSHkOzJTuoODdIwns5jOOGt5w8rhF6xsNj6OTEeADQCD0LIjhUqB195sNjaOOEUczE0cYJo9CknUlPpYiehaWhBtFUhs9ikRhE06XPAaWSg2g1w2exhB1Eqxk+i4XkVqGy4bNUKZmag1C7oQOA9uEzACxemAcAEQF0JyQCoC/GmM3mfy9aN6Tb1OrGotMtBxNjU3rHJCAlNAAA+AHg0ujEPjFDShs+wZXQSNBxQpxE01JtkMR2ctnlMUlo7wzyFc8KgnQc/bsmqVdtEGbzifeidXDzZY+oV22QRKDjUKnaIEnwZUKk2hgUq5c+aaiyUTCFdp0orG70Vjd61UyexSI2hVY/eRYLP4We0c8kwNAqJ89i4afQYscJ+QODcifPYiGZQiubPEvklnUbw06h0YHBtMsHUCklNHIQ2jZIghD2j4/OIJlCh7VtkITdX3vda98jRknyeN62Ae2iZ9mN8sXQSPTMllUyI4cQoueARqUYWi567mis8CkWQ4cVPec8ZGJ3Vtu27Q95Y7Djcc0tAIDQs3mNK+f2ycw1g5lrBud+vYXdW2vbXROMnv3nmgEgJHrmv/bT46UPIx9Y/tqTkZEx/7mnrEsKAKJ44gwEGBoAuvW5PN1gmDsvEx3zuagwdDB6lvsAxb04esajHYbG0XNAo8YYusMxjUmZOZfHkr9SB36NMDSPnvk3tv3N1BZDt2Gd9jcWKTiYlMnZz/yNSZmiUall+b8AAC6cW/D3x9gtpbmvvAOtzdlPPKg1hkY6juyZ9wCAZdUa44RR2Y/fp9ECGo/135+wJeUA4G86N+9OkxrpM3luXvguANh3e5lJozvhfYvClZRf/6e5AMCkTP7x09Wd0Mi6t3DuraxnC5w/x5bsoDt8Fi3FBtHMlHH+uEs775sVdFFZc2ZzTqdG6DmgMWgQTXH4LBZ+EM2kJfNnV9FfUxu/+kyLvwklbhWqHz6LlooPotE/qZzdEfaFzJ03HwBAp5s3P3PRwrwoAIPRcNONN0Y+gu2ERAD0xRiz2bzc+u+Rcb8HgOrGopqmIlwJDQDG3s+WN3wKoJsQd9+2hk8ESmjpFz4u7t4+4kpoKkEz7d4xCQBwsrkmtdeDWqyeBdnbaP/lgg8AjjZXTevzCPXJc8jsOMvuaGABIL6r/sa+j3RCIwD8cGx1tA4ONnmpqDZIgi4TDummV6/aIG9EU+jqxko0eR7UVT9Q/iVG8uBTaLqTZ7GgKfSMy0039DMB1cmzWHad8Vn2vYdPoT88aAcA6QODahLyOCGVybNYeCPH+ruvF/yWxIFBCo0iRg6xA4Mqc/M3P0oYOeTaNkiSu2Ebd/AXaSMHj56VcWfhSyMTQ0uInuWGXAyNRM/K0HNAo0wMTXRj8CETu73SVuGTujGIRM8Yel5w2xQAyP16CwCYv9rKXD1o8zO3oRfI2zYgHHqG9v/KIh9Y/tqTkZHxw+f/AQDO6ZKLoc2LC+bMy1yyKE+ng4sHQ8siy+jBVNh3W++8ucHoGQ9dDC2GngMa24eBFLdpIdFzQKkGGNpS8DIAQFRUyDe2482kva8UoOeAUvRm+lu0wNCW5f+CC+cAYMHfH+OfiDA0u6VUo60uj56zHrubfyJXusuyag3oorTD0NZ/f2J5+5OsR+/KmnkXAHDbd1lXreW27zaM0GtKohd+bgMAdOEQDaKj4nppjaHRCJoxGI0pk9ssKxp/JaOtd/m/clf8C30xA6Ki1HufCZO78s3clW8a01LbvhjWKd+swDnd0++4FwCYlCnZz/7NqPH7tq20fRCta7nw4yfvdEIj69nKuYtZz1Z/dBfO6aY7fBYLruYwpqfSHT6LlrYPog3p6UZDetu/pKFiNBgMBgNrt6elG5wOe3q6AR8+z5+fOT8zs2dcD4hcIOyURAD0RRqdTpcQO3VIt6kAcKr54M6GtYmxyUgJXdGwJik2Jalbiq/RfbKlZmhsKq6E5uGyxA6auvcZxdvoAgBvkxu9quiJ6BWmK33Gs7fRDgB7ztmv6pZ+WUzSZTGJR5urPGc+pGh8Ds6OsywA7GhgR/Zg+sUkAcDOc+zg2KHabZ8BoO68t+68b/sZ29ieJgCoP+9N6KbJBlkQxILH9jR1WiNfOqCLPloHv7v80U5oBIBvf3n30HkvAFCfPIvFd867+uCqYT30+8966U6eJWLZ9150lH90r0TEnQFAC/SMhz9O6P6llu7kWSy4kUO9bYMkAiOH/VC9vbaeyuRZLCGNHIptGyThjRwCDI1sGxTRMx4JMTSh6Fl24ydO8yfOnIdMITE0iehZbsJiaHZ7pW37gZDo2TRWbyvz8r/Mud9g/thuGp0EUTpm7FAIhZ4RfQ6Jnv3oxuCMCZZNZQt+Nymk6BlE0DPKjM9+tNfURz6w/LUnIyMjfeqkrDlt9/FkYWjO4fj6ux/SDAan3S4XQ6PvjUXH6IOjjAgrHjWjK4UAoAxDE6LngEbVGJoEPQufJX+5ZekKY1qymkF0WPSMhxaGRrcHISoKAMK+ve1vpryDXRIvKuwbSx1D86AQR8+C5L7yTu4r79Ad7Vre+BDOn8fRMx6NMLQAPQtLt++yrlqrxSB64ee2RV/YgjXT/KHC7CceZCaNpk6iEeIXODfaLBkAGmFoNH9GU/q2p7R/JYNJnqgdiUboOXvOc+gEa/uhVD8+2tUi6L/cBX95KPsvf2SLyy2vvw9dunUChrYsf8Wy/F/Zf36AK6lgSyqY5EnZzzzJJE/WtBQALCtey33pNSZ5MuvZGlZLTTHTb7+bc7pV/psiK5zLg07sSj/MmJ7OORxo+Oxw2OfNz7Tb7U47Nz8z087ZFy7MMxgM1113XUQA3QmJAOiLNBkZGSWOvTqIQjtoANjZ8DlSQlc1uquaPH1iEsbE3etrdPsCldDbGv4zNDb1eEv1CUkdR5+YIePi7qXyquLcGQB49IynomFNDESl9vojlUYAONrsO9pchbgzhPJ7eM58GK2LmtbnYVqNKGjyPLIHAwDXBl5ZtJ16L1qn02IHvf0Mu/2MLb6rfkBX/di4DiZS1tB2mXCQBtPgradsAIDQM1+qaSNeyuu8yxvYoxd8E3uZOmH+PLW3Cf2y6KTtkcEzk7pr2AjtC+hb+5v2NHj3NnQSgP6slgOAtXXsmEsSU/oO0ho9o6AddMmJGgA4OZPaXwLScdTV37JuIwCkxw9Ijx+gKe/mg4wc6YP6oxuDGqFnPLyRg/XW0Z08iwVhaNOEoR37WRW2DaLGQDE0sm1ogZ7xBN8nVGzbIAzC0MzEYfh9Qhk3Bu83ABI635eGXn/0xOAbg4C+WoChZ/NXWxfMGA8AC2a0/eG57vV17N5DwaJnABBDz2j7PGf02CUVZZEPLH/t0el0xvTUDV9/jj+REENff8vtAOD3w5x5mTyGdjrsc+fNnzs/UwJD2+325+fOL1i8kBaGpuLTUIChFaDngEZFGNq6tAAAwN+qbOer2MshCz0HNKrD0JaCl1n3FiYtWdbbq9LLgU54MalTyd9YHkMzyVMU+3xJ0DMeWl6OkMPnkEEYmivdRcXLYf33J/6W5pDoOaCUKoZe+LnN8ZM3fbheWjONHkZxEB0SPePpODtJdRAt/Yeq7Y+QBoPo3JVv2op3MOkpiD7z4ZwuzuliHW6NBtHW/OW6U79k/yXgcxCEodnico0G0Wj7bBx9ZfafH+h4YkmF5c2PoEsskzzZmDJJCxKN0POCZ/6a/cxf0VNY91bLilf90TGaYmjkGEGD645BtPYkGv0zJPa7RoMB/H6jIc26aAl+b3DRwjyjwTg/M3NhXp7dzmVmZubl5eXm5kYE0J2QCIC+SGM2m99c9B0AnGmpHRI79ZKYwQCAlNAA0Ds6AQBOtdQkxaYAgK/JzSuhAUAfm3KipYZ/URIMWh+boljHcaK5Gh0blODOeKoa3Q0th67pblCp49jbaN9zzn5ZTGLfmETpVfXeRvu+RgcVHceOs+zh877DF7wjezAC7oxn1zlu51n2xr6PUDk/uP0MCwBo8oxzZzxlDWzZGdvt/R6lRYQPNXkPNnkRdwaA4N768971x1dTF3GgyfPoOAYAxgSW1p/3VTSwCd301O3PJadttU3eQ+e9U3ubpvbumDwfbPQWnSyMiYKHB8+UeHZlYY8VAgBCz78b0PaW7m3wflPPxuj8dw1kru2piT0GnSJ8KCEdAP44OB0APjjo2HXG+0RSMhXpc8i86fMUn6jpEt2afNnAZ66euGJvyUt7SzRdIgPAotJyAFi8vXzu2LFp8QNuXb9B60a+d/H28jmjxjkO10XF+L+/VegA0SK8XRoANj15MzMstG6beq577Xt2f61pRMLm7Hs6p5HdVZNhXWMak8SMSADVtg2ixnYxNDNWryl6xoNgceFL/yc2eUYxjdUzY/Tm920QhJ4BgC33QUw0MyoRAm8MAgCcvwAAAvTMc+fc9dsAIHd9KTM0/sfHb+TrEHpuOdsCABLoec6YsQDQ98P3Ih9Y/tqDFtDWJQVZc57nd9AoYTH0ZoebB808hgaApYvylixaKIGhAcDGcegokEuEPvORxtDUVc6EGFoleg5oJMbQPHoGgiFwmFI5GFoxeg5odHks+Ss5lyf7+VnZzz9F8izBumfZpYowtDV/Ofj9xtSpCkgK5/JwriIFemi56BmPGgxNjp4FUTmIlh4+h26k4eXAnRskj6fi5eCdG4RfmaA1iCb/Q0V3EC0YPouF+iAaHz6LPUaLQTQ/fMbpMx+0huZKKqBLLN1BdDB95oMwtEaDaOvSZazTHfxitSbR0vQZALLmzeHsTiZtqmXJMgDAtRsGo2FhXp7RaMzMzJwxY4bdbo98+No5iQDoizQ2m+226Q8Oj7vjdPPBnxq+Ghl3F8+ga5qKACCt96yTzTU7GtYiHQeuhO4TnQAA3ib30NjUyiaXdJECJbS30XWipcYP/t7RCWG5Mx41Og5ctUH+7Cp1HALVRj8CkH3kgk+9jgNNnsUQsCD1571lDax6OQZCwME765DZcHx1lA5u7/eomkYINXkWC8UpNILOaPKcEDt0cLfQL7DoZCHdKTQ/eQYAHj3j2dvgXXZgNd0pND95fighHXFnPOWnqt4/6NBiCv2mz/OG1/P01RNTLhuUjB0h9BytXbG3JKZLy7zxYyiKmFEQAp47diwAzBnb8SnBkrJyR32dFo2A8e45o8a9MLrNhuE8XHfbpvXa+Tegffs8H9mlJ42xH6pfWFwR1T1q05M3a9QIALkbtgFA7obS7Ixx2Rljp7+zXtc9JueuFOZarb6GgdLmg755EgCYvy/WdPvcUfqJE/3IjEjQxUTn3G9gRnfGaQHEoCUeYBqjBwBbuTd49YzW6ABgXusJFj1DOPTsb2wFgCzjmBs+2IgANG/bgCD0zMttePSMEgHQv4HwDmjrkgK5GLpVp0PODQCQi6FT0g0paelup0MHkJpucDnsYUm0gDJrdEWw7Q0Ux9AU0XNAY/s9pZDUhiJ6DigNh6GpoGfhy0Tn+1KnSgyi1aNnPOQYmtC5QVRK7OUI1iMoSwdDJPNyKEbPeBRgaAXoWViqaBAt5twgCe/lUOA8CTt8FotKDG1Z/i/W6Vrw98eYKeNllKoeROeufNPfrZc0esZDZRCN/hs3jb5SAj3joTWIDjl8Fn0wvUG0BHoWhO4gGh8+SzwMkWiK9285l2f6HfdJPwZpN7LnPAcAha4t361bj+4NouHzwoVtHy2gf8FNJlNhYaH6VyySsIkA6Is3Op1ucu+/AsDp5oMHm7b2jh4iUEIP6Tb1ZHNNdVNRn+ghvBIaAJB8o090grfJTVEJjas2escMQTcG5eZkc01Vkzu+y1BCiIxzZwil2iCJAh2HhGqDJLvOcUebfeN6MrKm0NvPsHXnvXXnvRKTZ7EolmOEVG0QNqoZX0tMnsVSf97344nVE3uZFE+h0eQ5SgeDu+nxybNYqEyhQ06eJbLswGoqU+jgybNYPjjoeL/G8ebYu9VPod/0eQAAoednrhb9INVztPY+9zcUh8k8esa5Mx5Hff2SsjIAoIihF5WWO+rq0y4fCAA8esaztKLMdaw25HFCxeHt0vMnjZ4/SfjG2g/V3/T1j1qIOHI3bEPcGQCyMzreWK6yzlJYphGGZnfV2HZXI/S84JaOP06535WwVYdz7ktjRmpyULdNA/37ZABY8PtkAGB315g/95jGDdV0BB0WPQN+Y/B+gwA959yV0kbq75jC7qvdnHOfQPTM7jnI7jkYjJ5z15dmM2MBIMvY9ifqhg82MkPjJWwbANDcEAUAOHoGgCXlZc7D9fa6WvXvjUj+i+EBNAo5hrYuWsI5XADQCiAXQwPA32fPW7FkkU4HCjA0AGiHngPe6kAMrRF6FsS6cHHeosVoDY0G0dalBdTRM56QGNqav4J1eZjUZIroOaBUxMtBFz0HNEpeKaSIngNKw2FoRAmZKeNV0mc8JINoad2z3PBejuzH7zNOGCVGoq3//oQt3Wkcc41i9BxQSoyh1aBnQWQNohWjZzwKvBxq1vRtpYoG0YTDZ7Hwg2i5GJpk+CwWNYNo6eGzWNQPosnpMx8qg2hC+syH1iBaYvicOX++3W43pqcCgK61GQAsS5YZU5M5lwcA0L3BhXl5Ol3HRw4AYOc4c8S/0VmJAOiLN2az+T/5pb1iBqNf/tTwJa+ERjtoxKABYEfDWh0Ar4QGgKTYFF+Te1zcvd4m96XRQ463tNFnBUpoEsWz3JDoOJBqQw13Frw0Eh0HoWqDJOQ6Dly1Ed8laYBSfYfcKTR/XRAIdtZUGlHpoSbvoSZv2MmzWH48/l60DmRNoUtO29CP0pNnsSieQoedPItFzRRaevIsFjSF7hLV+uZYhZ948JNnAJBAz3juc3+rcgqN2zbE0DOeJWXli8vK1INv3raRNmBAWv94iUc6D9ctqSijYuRAtg3HocOGQf2D0XPAI4vLncd/WXDDeCpGDh4949xZEIShTRP1tEzQ5rVuALCVV5muGoSjZz7svkPm70p0sTF0MTSPnhF3FiT3c4/5c0/hwj/SnUKbP+IAICR6FrsxyLP+YPS84PYpABA98xUAENwYtO2sYYbFB6NnnjujWLlyC1smLXqGIPSMctuPGxz1dZEPLH/tERwhRCHB0JzD4ddFZ2XO5+z2vLyFsjD0726+MTnN8MyceQCgGENrTZ/5cBx34403AoDRkL7++287p9S6cLHd4YDWVs7p0oLGBgfH0JzTDQDKHBTySjEMzbqKNELPggiuFGqEnvGE1EOrp4TSEcPQVIbPYrG+8xm7fWfIQTTSPRvHjzCOu5ZiY1gvB3JuqEfPeMJiaLnODZKQDKIty//FerYwE0fT+kNFOIhWiZ7xIAzNOV0kd0TVoGc8cgfRytCzIGgQLetWIevZev19j8tCz8KX0D6IZtJSjGmphCQaoWQmLYUQPYd8dvSPCwDI+mdl+p33cU5P2Ieh4TNrd2784uPpd97vj+6y7of1wcPnzMzMrMzMGTNmRAB0pyUCoC/emM3mF198cXjc7TyDPti4FSmhAaC6qeiS6MGnWw6OirsLAKobi3gldFnDmqTYlD4xCWUNa/SxKQCgTAntbXTR5c540CnF1F4PChj03kb7Lxd8R5urZKk2SCKh41Cg2iBJWB2HLNUGYcLKMRRPnsVCMr7m1dKj45gBXfQDuqp6D5NPofHrgiSTZ7GgKfSwOD3TN/wLkTt5FovcKTT55FksaAr9hD6Z3MhBOHkWC2/k+O6m6bKeUcy2QZJbN2wARVPokLYNkqg0cghsGyTPwhs5FGNogW2D5FkshWX2ul9UTqFx20ZI9IwHYWjThKHqjRzS6BnPtLzPaBk5JNAzimmM3lbuhVCi55DoOferLQBg/nILALS8/TcAyP16i+2nQ4y+P2A3BqXR8/zJo+21h9ffHfAlE4HoOThLysuWVJTNunKS59ghz9GDit4fkVwsCXmEEEUaQ3MOV+b8+VmZ89ueKAdDOxz2J5+b+3L+Ih3oLnIM3fZZ6/x5RkN63sJFAJA5b67RoOSfXVlp20G/8CzrdIPSS3oKMv2OewH8nNOjKZAVlt55Pxqsbfzy0855MwGAc7qn33EvABhTkzd+8XFnNGJ6aNa9VTv0jIfH0IiTaoee8Qi8HOqdG0SlQYNoisPnkBHzclAZPotFYhCt3Zc0eAzNTJ3IJE8UkGiK9BlP2EE0LfqMh2QQTYU+4+HVHNIYWsHwWSyseyvn2cq6t5KoOeQOn8XSjqFB1u2BkL9lNBgAAA2fOc7OpKdYlizLnv20MXXq9DvvB4AzDWf5e4P8dy+t/+EHo9FozcvLy8uLQNFOSwRAX7xBGmgA6BU9eHC3tr96DjZuPdS0dWTcXTsb1qb0fgpNoUfF3dU7JqG6saiqyTM27p4TzTW+JnefmIQxcfeWN3zaJ3oIECuheWB9ork6MTaZOnfGg+s4cNXGZTFJl8UkalQq0HGoVG2QJFjHQXJdUE1CyjHCXhdUE4kpNNpZD+ii7981SdnkWSwSU2h88qyGOwtSdLKw/ryX6ZshNoVWPHkWCzpOOLpXksQUWtnkWSz8FDrscUIFk2exoOOE3900PSwRljt5Fgtv5CAE3/zkGURsGySRa+SQtm0QvoSFxRUZowbJMnLkbtjG7q8zJg6AQNsGSdQYOXj0HJY7C5L7XYliMTQveiZBz3yQkUMNhiYRPYuhZ7bc17GADkTP/qYWAFhw88SYf7yZc/tkZNtgrhzIfxEiJHq2cuUAgNBz5uQxAHDj1z/yAJocPT911SQAeKDo6wiA/rUnIyOjtfkCgD9rzvMhL+CJYWjrkgLO6QJddGbmfPTZIMjB0E/NnvfU7HlFLvtFi6F59Jw1fx7/RM5u1xpD8+iZ/2yf/7xdUwzdMQSe/Qy0f/JvTE3Onj1L0x20tWAl+okxLcWSvwJA1wm03Zq/HADA728r9YPWb2Zbb8FK1ukxTRnHeoqhtUWun1dxrnv4H+yWUgAwjr82e+Y9xvE0N8hi4Up3TX/KDADGcSM2rMzuhEbAMLR9t1c79CwIP4g2ThyjHXoWBB9Ec+6tmq7p2xq3lKL/8YNojdAznpCDaC3QMx6xQTR19IxHYhDNerZaVrzGpExRj54FCavmmH773YqHz2IhUXOI0WdjWjIaRBvT0wGASZsKAIg+A4Al/6UfP3v/+rsfMhgM6N4gAMyYMcNoNGZlZkK7VisqOjoigO60RAD0RR2dTjepz1/2nPkaAIbH3YGeiJTQp5sPJcROHdJtarAS+mRzDZoto030ieaaky01gUpo/4nmGrHS3jEJibEpyhTPcoPOEgIALdUGSfY22pEsm4pqgyRHLvhsp96L76qP76qnPnkOGZwIy7ouqCb4FJr8uqCalDewFQ3srZc9yjNoWpNnsYScQtOaPIvl23p2/9nK4Cm0+smzWMpPVc3e/VHIKbTKybNYwh4nVDN5FgsyckiAb0ddvb22XsHkWSzIyGFM7Cc9hSa3bZCE3MjB2zYY/QDjUCm1iHRkGTmQbUMZesYjVwwdLHqWGx5Db14o47Od8Oh5VCIzcoj5E6fEjUEAgJZWAEDo2fzllgU3TQSABTdPBIDc70ty15UE3xgUQ88tZ1sBAKFnlLhXPzz79INy0TNKBED/BqLT6RqPH+YcLuuSfFkYGv2yTcohE0PfdvON45PTXilYTBFDGwyG4IOByhISPePRCEMHo+eAUs0wtAA9B5S6PNrxWXSNUNCLGjmnJ/uFZ4ypKVqQaGv+cvD7AYDv1fTN7OgtWKm70GhMnsQkTwIA1lNseen1TsDQua+84z97JuvxewCAK91peXsNgF9rDM2V7uJKd+liu2X/5Y+W1z/Iff1947gRWTPvouvfCBnrqrUArdz2nyS8HFrk5oXv6rrEcuV7FjzzN2PKZAVnAxUErZ4BoHMG9Sj8INofHbvx67WdU8oPopm0ZG7zpuy/PMSo/pg5bPBBNOvewrFc9p8fME4crWmpYBBNcfgskeBbhbSGzxIJeatQYviMgtAzujfIOtxM6pSs52dNv/N+Jnly9nN/tyx7xbL8n8HaDQBA22cAKCwsjPg3Oi0RAH1Rx2w2v7n420HdJh1qLD7dfGhw7GRcCY2fJaxuKuoTncAroU8216T3fgZpLvhNNFJCIwVHn5gEABDD0L1jEkbH3aPpm1bVfjKxd3QCAFQ1eZJ7Pqjd8BkF7az3NTqu6pa+r9HROfQZ2n3Q/bokRet0N1z6SCc0AkBZA1t/3lt33hvfVd9ppfXnveuPrwYAWdcF1TX6KhrYaB0MjNVTnzyLhZ9Ce89V0p08iwWfQtOdPEtk9u6P8Ck0xcmzWNAUGnc08whY5eRZLGLHCdHU2n7ocHr/eCroGc/SirIlO7Z/f+v1wVNoBbYNkkgbOdj9tez+Wlm2DZJYCssshduRJiLkA8xr3eyuGmZoPBDYNkhCKIYmt20Qle6umZb3Wc79hrD3CYluDN6Xxu6osu2s5n8JoWwbEIieEXcGHj1PG5e7eXvz8sehHT37G1sBuzEImG0DAtEzAORtLV+4tQIAxNDzkvIyAAhGzygRAP0bCALQ6OeyMDT6SdszysTQAPD2Z98CwCsFiy4qDB0WPePhMbQhPV3lWUJp9BxQShVDS6DngFLafDYkeg563VawLg/dQbT029vBvmnrR9Dbu+Dpv2Q//RfBb2mKoXNfeSf3lXeyH7sX0Wc+WmNo6zufcRV7mElj8YEqYnn+5gvaYWjrqrXWd9dmPXpn1iO/R0/htu+2rv6C5FChmiDXR+ZDt2X98VYAsH7wjb1sjy7uEsKbgYqD6HPmw7cbxwznyn/Ke+8rdM1S61l925+rPz+A7ukZ01LR0VRNSwHAurTAsmSZYdRV9h37mEljOodBA8D1/zebLS4HAGbi6E4A0Cj8IBoAfvxkFZMi+1ahguCDaADY+NVnnVCKD6KZ1GQx+oz+U2LdW7LmzeHvDfLD5+xn/8HT5x9++AFpNwAgq/27o6ztv4wIoDs5EQB9UYcH0ABwqLH4UGMxroTeevLVS2IShsROvSRmMABUNxbxSugdDWsBIDE2BQCqmtx9oofgSmhvk7tPTMKJ5hr0o1j76Lh7qO+gqxrdAFDV5EmMTe4dM4R/+WgKTd37zAcdIRTsrD1nPozvOlQ7Br3rHAcAO8+yI3oYUcuuc9zx5qqxcYziS4MkQQoOpLru1yWp8OR7Grk+BKUAUHbGNqK78cgFX7ROd/2lD2vaiIJG0PFd9XXnvXf1nyn3wKCyFJ0sPNjorWnyXh2nf+6KToL7ALDswOq9Dd4xlySOvSRRU/TMB02hJ/ZJKDlRQ3fyLBF0nBDhYEddffqAeC3QMx5Hff2t6zcg8E3FtkGS2zatj4rxIyOHetsGSYKNHEj0zO6tNQ6Np4ie8YQUQ/O2DebqgcxVg+g2Soih6aJnPLmfe9h9tSGNHFI3Bkcl2nZU8b/MuSfVvMZlGjmEuWYwu/dQ2w461I1BAXrO/b4EABB6zp42DgC6ZL27YMZ4NHkGEfQs4M4AkLe1HACaz0Yv3bn92IMh/gJH6LnxXBcACEbPAFB07NDKfcURAP1rDw6gUQgxNAA0HqsLeEZiDP27m2+ckpr+9+fnTUlNh4sDQ8tCzwFvtd3O2R15CxdlzpurAEOTo+eAUtUYmhA9B5TSwNAk6DlEqWoMLevtpagfkUDPeBCGZj3FtACiGHrGgzA0V7qTohXa+s5nllVrJNwIGmHoYPSMRzsMLUDPAaXle/Le/0YjDM2j56yHbg8oLduT9/5XutjuGmHo3FfeYbeUGseNwB0UCJX6u/XSFENblxa0Vu3KvP/mttKKfXkfr4vq1l1rDG15/YNNm2wv3JSadtUQ577qpetcMZf06QQMbXnzI8ubHy14+glm6qTclW8A6LKf+WsnYGjLildzV7yaNW8OZ3eCvyWsIZpWOKd7+u1Efwuhe4PQ2pL1/CxrwUpoaeHR84Jn/pq74lW0fRYMn/lfdu/RI0JEOzMRAH2xB1k40M9PNx/ac+brQbGTkRJ668lXB8VORkponkEjJfSp5oNVTR5oh8gVDWt0ALwS2tvkBoCk2BRfk1u6nZYG+mRzzcnmasSdQeSkIVJCx0BUcs8H1Tei7G20H2uukjhpuLfRfqKlemR3htbhQQA4csF3pNmHuDMEqaWPXPDtPscNih1KnQjzCHhUD2Zkj4DSwpPvRWk2vka8e0R3IwCMaH9jd5/jdp/jru/ziMp7g2Ipb2ABoKKBHdfTNL4nAwB1572lZ9ik7npNF9BFJwuLTtquu9wEANdflvHj0cLqc95bBzBXx+m1K/22ngWAbw7b7h1kvLZn0ppabkLvIZ0AoD846Cg7VRWja53Qe8iOBt8zV09MvkzJOTu5QTvo1Mvjo2L839xwQyc0AsCSsnJHfZ2jrj6tf/zX183onFJ0nBDtoKnYNkiCjBzMsHg0eQb5ome5wcXQtt3V6m0bJMHF0MpEz3ITLIY2f8SxO6psFT6xZ+EBdM49qQBgXuPKaX/1zJ97gtEz+9NBds/BYPQMTS0AgNAzAFg2b8/dvF3ixmBI9Lxwa8ULI8cBwOyR4/p9+q4AQPO2DRBBzygPFH1ddOzQiy++mJOTE/5dFsnFGp1OlzV3dtac2YKnK5BytD0jAYb+3c03/u25uSvzF7X6QYChp6alPzV7HgCIYWi3w/7snHnoJwCQlm4AAGcoJE2IoRWjZ+E7ZOEiWRhaGXrGowxDK0DPAaVKMbRc9ByiVBGGVvz2qgTuhOhZEPWDaBL0LHxV315jeedTlXpo6zufsdt3mqZOJNHy8o5d9V4ObvsurnQ3QGtI9Bz4yN3W1V9Q9HIs/NwW1fOSYPQcUFq+J+/9b7jyPcE3AxXHsvxfts2bDGOvEdDnjtKyPXnvf8WV/UR3EM0Pn0MakPnFLvVBNBo+Z95/E0+fO0or9uV9vE6jQTRSx7xwU+oLNwe8LQhDO/dVazSIRu9JxpC6YNYT/BNZT0nuyjdYTzGTPFk7Em1Z8Wprt15Z8+a0vSZ2p3XREs7hEDNE0wrSfYT8LaRT17VcAIDclW+2PTFo+My5PD9+ugoAuiSOMmL/9Fvz8uwct379evSMM2bMiAigOzkRAH2xR6fTXdPztl4xHRuxPWe+RmcJDzZuBYBLYgb91PAV8kEDAFJC945J8AMMiZ2K1ByJ3VKqGt28EtrX5EbTYx1WJDaFVsmgkQakd0xC7+gEkpdT1ehuaDl0VTeDGh0HrtoIe9LwaHOV58yHVHQcu85xhy94AeDyLknSL4079T4tHUf9eW/dBR8/eRagZz47z3I7zrIzLn2E1vganzyPCPXGItQ+MFZPV8SBJs/jepoAAKFnPKVn2F8ueKf2zqA7hS46WQgACD1ff1kA4D5w1rvpaOHInnqN7M+IOwPAPdgdwjW13E9nvA8NTh9ziSbWmg8OOt6vcfxfYsqEPgkTeg8BgG0nq//tcxsHDNBuBL1ibwkAvLS35LkR458fMR4ACnaXFh0/NGfs2PQBRFf7lAWh5+S+AwEgtd/Agl2lOh3MGT02rb9yCTJJkIgDIb+lO7drun3mYz9Uj3bQ6fEDorvpsjPGqnE9k8dSWMZV1rHeOuaqQZuflvrEjG6mvfSNLjbG39JqGpGgHXrGw2NoCe4MADwWD0bPtp3VpuGDzF9tzbkrWXBj0LazhrlyYIDoedo4CELPWWljuKr6jY92fPGGBD3PHjmOfyIOoEOKnoPz8r7ilT8XP5aYCgCJj90QAdC/6uh0OmN62oZvvgj5uxIY+obbfr/xi08Q3ZOLoQHgvc+/A4Aipx1haDSIBoAtLscrBYt0OhDD0ADg9wPOowEgLd0QkkGDJIamhZ7xIAxtNKRL6KHVo2c8/PcvZ7/wTNbsZ6VeN3XoOaBUDpxVg55DlBJjaGv+ctbpYVKnqulVgKHRWUXdhUZZ6BmPMgyNDsTxume5UePlsL7zmS62m3HSGLkEUOUg2rpqLbd9l3Hc8LD0GY/6QbTE8Fm0lMYgWmz4LFpKaRAtjZ6FpfQG0cj7bEjsHYyehY+kPYi2vP5Bo29/2lVD0q4SlbxpMYjmh884fcaDSDT1QTQ/fObpMx5EosHfwqSlGNNS6ZLo6bffzTmlVpJM8kTWU7Lg74+xW0r9MbHZs2dxriLO4cp+7h8AcP3dDyFBdpvGuks3hJs5jptx44388Bnap9ARAXQnJwKgL/aYzeYXX3xRwKCRErpX9GAAQGvoYCX0qeaalN5PAcDOhs91AKPj7hEooUfH3VPV5NYB9I4ecrKlGiSV0HLPEuKqDbn8Gr2eynQcIVUbJFGj48BVG/1ikgjH1Op1HGh63L9LUv8uejHujOfwBd/Os+xAdeNrnncLJs9i2X2OO9ZcNTqOUTmFDp48i4XuFFoweRZ7GN0p9N4G794zPoSece6MZ+dpH/Up9AcHHQCA0PP/JYX4z/bfPve/q9yfpNxKdwqNJs/PjRgPAAg983EdqV22uzQqxq8FhkZHCJ+/dlxqv4Gp/To4bMGu0oJd22kdHhRkaUUZACD0zCM/55G6/J3bo2L88yeNDhZDU8nC4nIA4GoOp8fHzx03BgAcdfWLt5dFd9NtfEzDxTcyQWcmjwaArJQxVnd5nqdi89O3UjdvCIIW0AtmjGeuHJi7vhS6ROf8PpkZoflx3dzPPebPPRIP6LgxGIiezZ97cm7v+LTB/NVWHj2HvjHYbtsAALayjqusQ+g5K3UMANzwn40bH70B3RiUhZ5REICWi54fT0wFgLerXBEA/WuPTqfLnD8vb+GikDtolJAYGgFo9HO5GHrGjTclp6XPmj1vapoBAIqcdo/LsXLpor8/Pzcshr7vtpuT0wzJaekepwPH0MjOIfZmCjC0Fug54A0XuVJoXbjY7nAwKVO0OOvUfjMqxO0+a/5yAAC/Xz16xhNWmoxQLGDn/miVAuiYtGQx4M453ZzLDX6/MS2FirSaHEOjS4MAoJg+85GFoXNfecfmLGLGj1RGn/nIxdBhnRskUYChpZ0bJFGGoRWg54BSpRjasvxfrGdL+lWDCNFzQGk7hkaDaLnPnvvKO/7zjczE0bIYKz+IRhhaAYmWGD6LltIYRIsNn8VCaxAdcvgsFrqDaMuKV21by7PmzTEahDq7gNfQ7uQcDopqDonhM/qvg5kyDgByV76J6DO7pXTjFx9b8lfi9wYRfUYAHQDW//CD0WgUaDegfQoNABEBdCcnAqAv9pjN5mXWN083HxrUbRKSQaMgJTQATO7ddv/0YOPWMy21I+Pa/tF1n3z5kpgE9Eukh8aV0Ei+gYQYp1pqAICKEhrnziCi2iAJ0nH0j9ETQuSwqg3CFyJXx4GuC4ZUbZBEmY5DQrVBkp1nuV+afQrAN7pq2Nzq79clKSx3xqNyCi09eRaLyim0xORZLFSm0N/Ws3savF2i/CN7JYmhZzy0ptD85BkAQqJnPmgK3TWm9ZOU36lpBADP0Vr30UP45FksBbtLl+0upXWHcElZOQAg9Pz8taF7XUfqqE+hl1aUOQ7XpfWLB4Bg5AcYhl532/VUGlEWFpcvLK6YO24sACD0jGfx9vLF28vonh9E4dFzVkpAKVdTn+eu0HWPzrllohYYmkfPC2ZM4J/I7q/VFEOzu2vQ9ln6YfyNQaR7xtHzgtum5H69xfzV1pybJwGA+fvinDumiN0YxCfPAGDbV2tMHIDQM8oN/9nIXBHfcrYVgm4MgiR6Run36bsAIBc9o0QA9G8gOp3u3JlT0D7dJcfQOIBGIcfQ3eN6fvnduvxFC1v8fh5DA8DK/EVhMTQA/GP2XPRzAYZG3+onjaHbGLS/VSP0jAfH0JzdAQBRLeepz8cEsS5dxjrd0O7l4NEzUKXAwtJQ0mQt6DMfzuXhnG5L/kvGtBTBINqav5x1upnUZOq9OHA3pk4VkGhlzo2w4fXQCEMHk2gFzo2w4fXQEl4OKugZD6GXQ9nqWSyyvBwkzg2iUpleDrnD59ClZXvkHiqUNXwWi+XNj7iSClmDaAXoWRDFg2g0fCZEz4KoGUSHHT6LhR9EMymTjcmT5ZJo6eGzWKioOSToM8qCWX9mi0qYSWMBIPeVd7KfeNDyxocAwGs3dP6W7Gf+it4K8LdmP/2XLvpx586etQaeH+Q4Li8vz2AwZGXO7x7XM4JDOzkRAP0riE6nu7rnrbWNJb1iBuEMWqCEBoCDjVt5JTTyQfNXCtEveSX0yeaa9N7PVDSs6R2dAABVTR6VSmg0W1bJnYNfprSOQ5ZqgySEOg6k2jhywcdfF1QTNIUm0XHg1wUVoGc+hy/4yC8T4qqNy4n33cGRO4UmnzyLRdkUmnDyLBZlU2h88nxtz6SRvWS8k9EUOlrnzx8h+2PBsJNnsaAptOKzhMi2seXYwZR+A6XRMx8qU2h+8gwAYug5sLSuYFepYUC8yik0b9tI7R+f1i8Mzs7fuX3pzu3rbrte/RSaR8/B3BkPP4WmYuTgKutYb31I9BzwMNoYOve7EgAIRs8Bj1m/LXd9KV0TdO7nHgAIi54h8MYgekowekZq7DaGLn5jEDDbBgDg6NnqKrc6ywEgePWMbgxKoGfnkTrX4bqlO7cDwP6bRHHJy/uKASAYPaNEAPRvIDyARrEuXGTnuKw5s43poT8D5zE0AAgAdNtLIMDQM2686cjJMwDgdNjlYugH77hF4ImWi6EBYP267/hFttaZcdPNiD4b01I2fvVZ55TyemgAvxYoNnRp+0yYSUum4tyQUQq67NnPcC43LceIdKz5K1iXhx9Ea4SeBUEYGh9Ea4GeBQk5iOZKd3Glu3Sx3WihZ0EkBtHWVWsBWo1jRxjHjaBbKj2IVjl8Fi0NN4imgp6FpQReDnZLae4r7wiODaoqJfZyWJcW2L772jj6SsX0uaNUziBa7vBZLHIH0bKGz2JhPSVsUTHrKZGl5iAcPkuEV3PIwtBh0TNg2g0A8F9oQvSZK9+38bP3g4fP/N+9XfTjACBYu5E5f35W5nzObl+0eElEAN3JiQDoX0EyMjIOFffqGTNo35lvAOCanrfxv4V20DiDPt18ECmhe8ckVDd5BsdO2d3wBTJEIzUHr4Q+2VKTGJtysrn6ZEtN7+iEky01vBJaYgctYNBqVBskQVw7ueeDArisWLVBEjEdhzLVBkl2neN2n+XEBM0qJ89iCXuZMOR1QTU5csFnP/3+6DhGYgpdf95Xf8GrYPIsFsIptILJs1hkTaHlTp7FsqaW+/QQlz/iAcIpNPnkWSz8FFrWcUIJ2wZJEIY2Dh4gawrtqK931tVLT54lgowcX183Q+4UOqRtgyQqjRzItkGCnvGoN3JYCssAgN1Xa0joL4Ge8SAjh8qbhLnfldj2HWKuGAAAYugZz3Wvfk9lCi1t28j5Qzr4/WKi5zDoefp49kDtpqdvk7gxyNs2+CD0PHfcmHnjxywqLY/q4ucBNELPzWejQWR9n79zOwDYag9PvXTw34dNfqj4y4+n3hb8MISeT5/vCgDB6BklAqB/AxEAaOB3u36/NIa+4dY7gsenfKQxNOdwffndOnQ/EGRiaAB48tl5/1q2KCpwGS0XQxsN6Znz52mNoa0LF+laWwDAmJ5mXbwU/K2annLq6G3XcbBOD4A/e/YzVEwU4XvRFDotGdAEu1NKAWD6nfdxTg8AbPzyk04r5Vye6XfcBwBM8qQf//PvzinlvRzMlPGKdc9yg2NornQXV7GHmTRWI/rMR4Ch1Ts3SBKMoTVCzwGl7YPoBc/8zZgyGZFo1r2Fc29tOVpDET0HlIofKqQyfA5dKnmoUP3wWbQ33CBazfBZLCSDaMXDZ7EQDqJZ99br75spd/gsFlmDaELtBrQ0Q/vwGQAsb3xoHD+SyZgGAPjwmXVvyX76L0zyJACwvPS6rWQnf28QAKx5eeD3Z2XOR7+cceNNEf9G5ycCoH8FMZvNbyz+dmC3iQBQ21hypvnQoG6TkBIaWTgA4HTzoeFxd7T//ODBpq29o4fUNBVN7f33U80HDzZtuSQ6ARmikRK6d3RCVZMHAEbH3XOyubqqyYMroaWn0OiiINBQbZDkZHNNRcMa5NagotogiUDHoVK1QZJgHQfhdUE1CXmZMOx1QZVBBxivv/RhwdPLG9jD5306HcR31avnznjqznvXHVs9tbcp5BRa5eRZLGGn0PyBQbmTZ7GQTKEVT57Fsu1k9V/L14SdQgcfGFQT8uOEyLbBHapP7RevAD3zkWvkCGvbIAnC0ExiP/LjhNK2DZIoM3IIRM+yGtVMoXHRMzNMhpdcpZEjrOiZGT5YFxNt21EldmOQuWYwu+cgj5475tvTx2dPHw8A17/xPbu/TuzGoAR6Rk/hATRv2wBx9Ow8Ujeh1xAA+Puwtk9LggH0y/uKPccOjeypB3H0jPL3ik9uf+bxCID+VScYQKOExdA33Hpn9vOzLPkroN32EPwYMQzdrW+8wWBo9cPsefPlYuiHf3/L5NT0vz03DwDIMTRqCT5UqB2GbleavJA19wX+iZzDqTWG5tEz70fmnG5L/gqtMTRCz/z6uH2YrDmGbut9flb2809xriJLwUq/TtcJ7NuavwIAoKWFSZ1iWfZP9A3giINoHctLr7MOFwD4W1qyH7/HOH5kJ5QCwPS/v8iV7gQAitqNsGGLy6//v9kAYBw3IuuRO6kPn0MG93LousSuz38+/PPQiPWDb+xle3RxlzDJU6gPn8WCD6LR8FkL9CwsDRpEW5cWtFbtMoy6yjj6Kq1K2zE0M2ksfzCT1vBZLGKDaCrDZ7FID6KVaTdIIj2I5pzu6bffTfJy0PCZ9WzNfuJBtriC3bI9+/F7kBQIvzfIJE9Ew2fWU3z9H/4P2gXQEDh8Ri/TmrfQbrdHAHTnJwKgfwXBATQA1DaW1DYW82cJi0+8PqnPX9BZwsGxk3vFtH1vL9JxTO39d/TL3Q1fAOhwJfTJ5ppRcXdVNxX1jk7oHTOkomGNQAndOybhpPgUundMwui4zvgaO7TvoAGAlmqDJEjH0a9LEi3VBkmQjmNAV72s64Jqgl8mpD55Fsvuc9zuc9z1fR4Z0DUJnzwP7JoUr/QkY9isO7Y6Rgf8FJri5FksIafQ39azACB9YFBNxKbQHxx0lJ2qmtJnMCidPEvkr+Wfik2hVU6excIbOb654YaQD5Br2yArrfs9u076OKEs2wZJCI0chLYNksgycoiJnuVGLoYOKXqWGwUYOix6BgDkbjaNHMJcO0TsxqBt10HTVYMQerbtO8ToBwAAQs+WjaW5G0sB4IL1Uf7xIdEzV13PVdcL0DPKotJy5+F6+6F6ifU9+qP1j2GTp/QdNOXSwfhv4QCaFz1P6D1kfG/Ry+8ob1e53qlyAUDkY8tfddARQjEhsgSGvuHWOzd+8R/o4JsyMHS3vvFnz55FZka5GPrh39/yxLNzX1u2WKcDBRg6mEEDbQwdEj3j0QhDB6PngFLNMLQAPQeUaomh2xCw35/9/FOBpZpjaGv+CmhpAYDs59o+8+LcWxCGZpInaSfisLz0eu5Lr/P8l5cmZz92r3HCtdqRaOvbayzvfIq4JFdSwSJ2puLOG3ksr38A3eKyn/4LMpD4Gxs6B0NbV39uffeLBX99hN1a5m86l/nQrcYx12hdCgDWD77Je//rlKGDulxySeZDtxvHdkYpAHBle2Y8vwQAsv/8gNx7g8pL2wfRAGAYddX6hU+FfRYKpRX77Dv2cRU/IxJNffgsFnwQjf4Lojh8FovgViEAWFa8asiYRh094wk5iJYYPhsN6Yb0dEfhRmbqRNa9lZkyHg2fmUmjLW98aBwzIuvxe9BfQT9+sopJmSzQbrT9rTjrz7kr3zx39iy03xvETx8DwIwbb+Ls9sjHq52fCID+dQRpoHvGtH1afqb5EK+ERgAaxJXQI+LuvCRmMAAcbNxyquUQroQeFXdX75iEHQ1rAWB03D24EhpvFyPRGmk38OBqaQD4f/bOO6yp+2/DTyAWFHDVKgootra2dSvITIJtraPavfvrHnZb6waxQgi4R2ut2qrV1i6rraOOagtJSNjgwlUHe7gR0KCBvH984HhIck5OkhNa34vn6tULTr7J9yQghDtP7g+/ElqsXDAWXTAWkuLjorHITSKRt3/ZpTtSSPFx9KoGgLi2Df7kX9WcvVFw9kZhF2mvlrmnaNJxAPC9LVD0yjNX8mrU+2tSQjpEuaLyzBWmCs1YngG4Aj0zYVehD14pOlhdRJXnoR39h9riRw6HjBzybt2oCi18wKAzsRxOKGTAoJN5Ur3LsgrtsG1DSHiMHI7ZNoSEH0OTbUMU9MyOpqRy1KZ9PEYOIaJneyNEDC1Q9PzZ48PRYIrblvXZo8Fx27IsZwymHCuLuqs7AELPVHmW3+WruLM7mtBzrGLQLPnAkRv+/OvtMTRj0BI9J+gPAkg5VRnp280MPQNIyjs4d//BiK6+v0eNtnqeDHpmKs9mIQBtdcYgV9YU6QHUGN0B3P/Og60N6Fs6EolELovcs2snzxqrGJoB0I1r7MHQBKAbr2gnhgZwoPQygOy0VCEYOl2nDYuUAWgBKYdN9MyOiBiaHz0321RUDM2Dnptt6gIMnbBgCU1WNKPPrE0zlAuXqfUZ4iqhG+/ypx8x6LnZpmmZan2mcvEXhKFFLESboWfzS1d+r84+4KJCdMKaTZBKLSuxRA8hkbgIQ1M11cysTQYSl2JoBj3Hvt/oLVRnHVCuWN8CGDrh++2G0vLJDwYD0J8pXfRXVtqZMvmge11NohO+26rasJWsI9qjBanHCtza+TgwSc+BKFf/0FB9Sdb/btWPuwDEvDDGdQ1odlQ/7lT9uCuoS2ePTl4RfQIi7g6IuNtVfzSxM3+nfv4uPQBFaNDsiRMUoY4r6eyKOj3nwRfeBiCPjPxz57aW2ZQpRAPQ6MzfcC+XyTTaZr+OqfjM1m6Q4H7kh3PQUC9p67Pvl3XMvEG6inLpSpgaaFxh3IrvY2JimHmDzM0mqBJViYlymczN3b1VAN3yaQXQt0ZGjBiRkpLCZtAA/qnZ7tP0KQ0nrDaWlRmyfdz9iEGTi6PaWObvMdzPcziAK8ZSRglNDLqnRyh9bKaELqpL7yC92QjjqkK7qAdNiuoqY4kZ42brOETfFE1q6dulPTtLezJbkI7jvrZyEaXPZiEHdN+2MgD3eMouGAuPX9O6SyQjOph7KkTM2RuF524UHr6qJpX27dJe6TUbXaTdYOcocfZrmn7tFAAuGAuHeCtcV3xmklejBrC/JqVn20CpBG8HvO7qHSn7LiSfuVpw+mpBP59ec+5pIb4PYM6J7/KrCwGIZdsQkm8K0w7XFgJwkzQIHzDoTJgqdGQ339TKitDO3SFe5Zl700Yjx7YHR4li2xAS3bmKx5N3RwcNICOH87YNIbE0ciiTD2jOVET63gH7bRsCY1UMba/o2d5wiaHtmDH4aHDctixF3x5Rd/UAELczG4CZ6FlxT3fF3T0Y9EyVZzRHz3Rk5IY/o+7q3lDXAIsZg5qiyvDbuwHgQs+T7x0y+b4hS0/kWn5D2kTPlJezf8+8WCYcPa8t0j/bQwbg2e5yAMt9dK1P6G/pSCQSmUwmgckmezXD0GYAunGNMAwNgAHQjVfkxtC6VO3EaTMnTm3saN95R3sA7346473JMyAAQ0+aNjNNp106P4kwdFqqdkZ0TKpWk6q1TqIdw9B2oedmd9w5DC0cPTfb1GkM3dg+BoSzXcLQGl26k0SY7dwQsl658HPlwmXyiFAn8Tc/ejYLU4h2HkOr07M16dkw1Nq0XjRKk8XD0OziM9caV2Boq+iZHQZDywffK64SOmH9Frd27Rn03GzTrAPKFevVWfvlA/uKTqKp+Dz5gWCiz+wQiXZRIVpz4Ljm4LGG6qroJ6PYx7VHC5J+S3Ephib9Mdv4zMwMlPW/23Ukmna539gw4b67AOScv5R97mLO+UsenbymjQl3KYYm+hw74aXYCS9pcg4qV22E1KNlMHT8slXX23WRyWRJiapUrVYeGenM7EHhSUial5A0j+tSuSwSJgDQpKaazRvEjRtM8XnWq48D0B4vVadnWRafZ098B4A6I+fBFyYAYGs30GTeiImJVqkSW/0b/0paAfStkbi4uDlz5gAwY9Ck4+jhGUQAmnK8ZhsAUkJnVa3o6/1omSG7g7s/w6BJCQ0AMF2pL+3oHkAMmkzQpISm1jPpnokFc51bB6l/T48wNq12OOyRhh2kAVZvs8pYUlSX1lUaKCKDPmHQAqDKs9WbJR2H6CIOpvLct63Mct8TBu0lY1G/doquYoNvqjzXm0xszk5Jr9kogasa32TeIO7MPJLnbhTmX1P7efR2XQmais+RnaIAyDqNAKC9lJx6KeXtgNfvbBfook0B7LuQ/Nf5lMd9FQAe66bYWqn+p7bgme5yUYzPPCELx0t+kQAOVhe1kTS81SvMdd1nJt8Upn1TlPZ+75CsyyVy364tQJ8p1IMGEH6H7xbFmJbZFMCT6l36cxURXX2n9hssim1DSAggAhC98swVpgot7+1LlWd5QDe5v92jEe0K28ihPlHumOjZ3pgZOfhtG4p7/aPu7RH3eyaAzx4NBhC3rREx0wkr+vr9Pe1xrhmDjG0DgBl6TtAcVKoPyPy6Sdzw5/MjmR0Z0bOse7dI32aPf1LeQQAMeqaDZgBaIHpefirri1NZgzsEDO0QYJM+M+j52eZv6WgF0Ld6JBJJTe1VrVaTqFLZhaEBWALoxjW2MLTHHQEAYmJiYppG1Tde0RqGBrAgKXH+3ETC0Hfe0T6//PKXC+euWDTXAQwd2XTvImVyUTC0w+i52R23H0M7hp6bbapLUy5YotGl2UuEHaDPZlenQYX2EmF70TM7zng57ELPzTZ1GkOT7tmuiX+iYGgh6JkdxqXgvB6acW7YXEloPn7pSlH00JbFZ859RS1Eaw4e1xw8wRSfueIKDM0Un83oMxPC0NqjBWb+YidD3y2R9/hzDRskRgwXFKKp+Dzh3ruIPrOTc/7SqqOnXIShyb/xwANy6vYyIQytzj7kukJ0/LJV8UtXzYiOmRl987dtqlaTlKhyM5lciqGt0mcqPstlkQDkkRHMSgBmxeeENZtM9ddnvfIEgIc/TZK09WbPG6TiM3OzD744IfKBUWz0rNFqVapEpg3dOoHw30orgL41kpKSMn7ki76ew07W7OjuGcT4oGGhhKYwSugrxjJITD08g47XbJNAcp/XE7SAlNBXjCUhHT4sNWRW15cFeIQAsFRCV9WXAKiypYQe4PWMMwyardoQovUoMqQ5r+NgqzYA8BPtC8aifwxaUXQc524UnjMWsivP3JsW6qs3iqXjyL+qAUCVZx6V9gmD9pJRzMY3u/LMRfBTrmxwl0jErUIzlefITlHEndkpMhRoLyW7ogq970IyAELPj3VrRtWP1RRurVQPbN/TRfZnAISeX/K7+U21sVS7sVS0qYOW+aYwDQCh5/fvHE4HV5zOXHEmY7NsTPgdriKGC4/mAVh0NI8Zgfhc2g43t4Yp9w8JdyUOXngkD8DCI/sn3zsk7A7fRUfz3NzQAgx6Qf5+APPz90++b0jauXI3qWnG4EFmINJFoR50RFdf99tMMWEDXE2fmYzatE9TUgngrw/GuhQ9s6M+Vf7gl3zmATRZntEcPdNFjB5E+ukaAFwzBpV789Sny+mRNEPP0cMHxAwfqMo86NZGQt1nyxmDTAg93zC4A5jc/CWfZ3Q7f48azXzb8KPn5aeyAHxxKuv1gIjXA8LXFeslEhMPgOZCz4231gqgb/EQgKaP7cLQo8Y8Io8I40LM4MXQI598Yc/OHQmJc1VJc+3F0ADyyy/TEQcw9HOPjQUgCoYWBT03u+NNGFoRETZr2mSuZQnzFwEATA6jZ/MbXLBYOX9J7NRP5BFh/HBWoHNDSOzycjiDnptvajeGJt2zvei52aYOYWh+54bNsPXQs960492rCWs2qfPyFcGDHBtDR7VWx/TQNovPXHHSy5Gwfotm/7Go8OE20XOzTcXA0Anfb/87NTu8tx8/fWYilpfDJno2i4iFaMviM1cYDC0f0Mf54YRmxWeuEIbOPn8x4u4AsUg0u/jMeXquKURT8ZmNntkhDO2KQjR/8ZkdslFr9+7cu3qeZfF51itPaA4cS1j/m+bAsRsF+9E0b5ApPgOIX7Y6ftlqANdqa26egCpRlZjItKE1Wm3S3HmtT1b/lbQC6FsmEolkcMe3a4zlFYYcH6kfm0H/U7O92lhm1oMuM2SXGbJ9pD1IFU1Haozlfh7DGSV0SV0mGaLpYzMldGrVEiLChIaZWjTXGTqghOZSbQi8blFdeqj3Sw4w6BMG7UVjEQDLCrDNKzqj4yDVxu3Snl3a9BK4ryg6jvyrGka1IWRfou1d2wQ6qeOwWnnmyrkbhSlXNgz2jnK+Cm1ZeeaK9lJyWV3Bg7ePEKUKbVZ55lomehWaXXlmo2cmB6uLNpZqRa9CM5VnAAx6ZpJ1qXTFmYw27vWb5TaeUNobqjx/cs8wAISemaRfKF9yIsfNrcEVVeiFR/KIO6M57NOfL190NE/WzddFCo4F+ft15ypowCPTK9efK39Ku8ulPei5+6lXe2Ba/8HT+g8CMP/wgfmHRfY+WyYh7SAAVfqhmNABMaEDVekHVemHRJQ+84R80PxriD6boWdGD9J0O3mKu3v8/cl4Qs+mG/VoPmMwVjFI3qubvFfjVdjomY4QgAbAg56p8gwL9Ezp8dvaaf0GXzO0AWATPddcvw3A6wGNxJkHQPOj58bbbAXQt3jYAJoiEEOPGjN21rRPE+YthMlkL4YmAE0f24uh7+jgDeD9yTM+mDKDjtiFoaUSyfSZMbpUzbykxMjm9044hhYdPbOjSdURiY6d9qkZhmbQMwCx6PPNG1+wWK1L5/JyiIie2bGJocVCz803FYShHS4+W980LVO56At1WqZNwOokeja/tZXfx6/8Tj6kn5BCNOmenZ9BZ6+Xw2H0zI5jGJqcG/LgwYpgzonTfJs66uXgcW4IiTOF6ITvtmqyDkTeGyiQPjNhMLR82AAHvkmEo2d2mJmBcKIQzVN85opYhej5O/UePXvzoGd2RCxEWy0+c0XcQjQPfY6ZOQOABCYAGq1OLotISJonj4yQGK6osw8xxWd1zsFZrz4hH3RvwobfEtb/Lhtwt5tXh30/fUM/G//6cZUiZFjT3VytTs+OChmSnHdiz+5djSegSgRg1oZuBdD/VloB9C2TuLi4lXO3+3oOBVBhyK01lt/tPZ4uKjfk1BjLADCsmUJKaAB9vR9ljhyv2cYoodkMmvTQbCU0ABMgAcjCQf+n23FSCS1EtSEk9uo42KoNngqwzRv5x5Bql46DX7UhcNPj17QjOrxil46DXXl2YF+Hq9BCKs9WQzoOd4lkTGc7GgdM+CvPXKEq9N1egQ4PJOSpPHNFlCo0V+WZKweri2Yc3eh8Fdpq5ZkrVIUWZRSh/ly5/nwFu/LMlSUncpaeyNmiGCNWFZpBz1ZJH2XR0bz0i+XiVqFJmzD5viHhXXytdskXHs3LuFQmehWaKs/T+g8GQOiZncf+3uOiKjShZ0pMaLM/UEf9us/N0232qCGuqELH78kFYBU9K+71Vx9r/H1nPmNwbBCaKs+KPt3VJ8vVpyoUPbsBiH1gcJtZ3wKYPXIILNAzU3nWFFZqCivN0DMAVeZBbelZbWklP3rm+m5cdDRv0bG84Z17hHTy40fPVHkGCz1TrAJoIegZQH51YXKPktbn9Ld05HL5rt17LI/bxNBtvdsbLlYA0Oj09mJoNoCmCMfQd3TwPnP+yrL5SUvnJ9mFobP0qR9PnZmTlkrr2Rg6IlLG8Gh+DK3RproOPZslYe58NoZOmL/IReiZHUs9tIvQc7NNrWFojT5do0uDySQiem6+KSeGFhc9m0W5aDnXlELl0pUAhOie7Y1NL4e9zg0hEYKh1dkHNdkHBTo3hIQwtDo926aXQ7hzQ9C+9hSi2cMGnQmDoWWD+soH3muTRNtbfLYa7dECBwYVKlf/kKLPkg/oYxd9ZscxL4cD6JkdZwrRQorPXHGyEM1ffOaK84VomjqoSU3lWSOPjNSkplLxWaNNnTVjWsLc+ZpU3d7lcwAo12ySD7ybtBsJG34z3bgR8+Ijqh/+cO8aAICt3VBn5MQvWx01fPDsj95SZ+TOWfXTnt27zIrPTWelbRVA/4tpBdC3TNgAGk0MurvnMG9pj3JDDoDunsOIRDO4mZJ9eSW7HE1UmpTQpYZMYsqMIfpo7W9sJbS/RwiAkrqM/l5PFddloAlGO6yEtle1ISSHajdJ4RbqzfejnKix8AowfxoLwrcF2qSrZtMFndvUDh2HvZVn7k2L7JpMaFflmStHrmnyr6rHdH5VuI5DeOWZK45VoQVWnrnicBXaZuWZJ9OPbXS4Cv1NYVpuVXFoZz9YqzxzhalCT75viGNGDrJt6M5Wht7enR89M2Gq0M4YOdi2DR70zISq0M4bOXTnKvRnKwg92wT3zBhGUTA0g54tuXOzMzxbMf/wARExNA0ejAkdAAv0zERTUqlKPyQuho7fk6s+VaE+WW5zpdmMQbBsG9Sbnv3AYHlvX0VvX+Xf++P/3g/gxvw3aKUlek7QHASQcrJC5tfVDD0DqL/mBkDibjKjzwLR83u9Q97vPfzN/Zu/C3rc6jIGPZtxZyZsAL2mSA9ACHqmPJ2jAtD63PKWjlwuj46Jkcmsf7l5MDQDoCl2YWi4uZsBaIoQDP34I2POnL9Cx7kwdFBY5HuTZwSFRbIx9PDwyC8XJn25aO7UGdERMtmCpESwMPT0mdEAbGJoAH/u2MqYK1sghKEByCPC9v7+S8tsymBo52cG2rEpC0NrdGkaXZo8PNRF9Jm1aYZy4TK1PoPupkvRc7N9LbwcyqUrYagFIDp9ZmIVQ7sCPbPD6KEtvRzKld+r9x8lFi/6vjyFaMecG4I2bcLQskF9Z/1vvOUCJ4vPVqM/U5p2ukx/ppS/EJ3w3VbLYYPORKCXw7HiM1fsGlToJH1mx95CtF3FZ644UIi2q/jMFccK0TzFZ7bxOSFp3qyZ0zVanTwyfNaMaQ+Pe0yTqqvTbWJrN6j4HPPiIzEvPgJg1Mwl2kP/WGo3Pvv4zdkfvQXggf99EB2n0mi0NG/Q7LnKqNFjNFptcnJyK4D+V9IKoG+ZpKSkjBgxwtdzGMOga4zlJ2t20FjC3MurhnacgKY2dA/PIEYJzbg42AcZJXRG1fLgDu8fq/2dMUSzldCHazf7e4R0kPrn1262SwltptRwRrUhJFw6DlJtXDAWOVYB5g+PjuPINc35G4XnbhQ6XHnmir76e3eJhGsyoZOVZ6sRouNwuPLMFYGTCR2rPHNFeBXagcozV47VFM47tf7ZHnIhVej86sIjNYXCK89ccaAKzdg2gjv5BXfyc2DTrEulr+dusbcKzWPbEBKqQk+5f/CU++3rX3PZNoSEIOC0foMdMHKQsTe1siLsju4OPFAOGzksbRtCojtb8djfe5w0cjDomYs7m0VTUjn6133OGzls2jasip6ZGYNm6Dn2gcEACD3HygbNkg/0UH1H9WdL9KwuqIjs1hWAGXpOzDw0fcAgANMHDgLw6F97/hjTOITQLvRMR6wCaJvomUIAmj6uMboDEIKefynX/FKmHds16ur9aG1A39KRSCQymcxqCZqJVQxtBqApAjH0yMeflcsiY2bOoL9LzcKPobVa7Y9b/wiNuPlr0RJDZ+lTv1w012SCGYYGIJfLASyam2gVQzP02SaGbtES9PTJ8ohw5bxFjcVkYVMKndp3wWK1Ll0REcoj5XBRRj7xnEaXDmDflh/k4SEtsymAkU++qNZnANj363fyMKEvujsZBkOr07PFcm7YDFsPDQBSqYvQs1nYhWhN9kHnnRtCYomhnXRuCNo064Ama3/8ivVsL0fC99u1B44Hd2kvIno2C5eXQ5TiM1f4BxUqV//QUH1JFPRsFv5CtIjomR0hhWhnis9cEViIjl+26u+cIzOjYyI5XlG2K3YVorno8/DwyEx9KoBG6CxrYtAzpgFImDtfHhmO2irFkH7MvMGEDb+pc/P3JDW+6qn64Q/VD38YT2ez7uZqiame0DPF/e4wuUzGzBtsdmKqRK1W4+YubX2m+m+lFUDfSpFIJN7S7n28xzFHGCV0jbGM2tAAaoxlJ2q2M63nMkM2fY3NZhWSEhpAD48gH6lfqSGrpr6MDNGMEvpw7eb2Uv/27n4BniH5tVs6uvu3l/odrt3MT58pBKwhhmpDSKqMJYdqNxF4FUW1ISRmOg62auN2ac/bpeIYfi03NdNxnL1ReO5GoSiVZ55Nreo4RKk8c+XINc0FY6HVyYTOV565wl+FdrLyzJV5pza4S0w8VehN5Zr86kI3iWmgT09n0DM7QqrQdtk2hOT13C1CqtCWAwadiV3DCYXYNoTkKe1Ou6rQjG0DLNGz3ZtqdtpbhSb03GCUwJptQ0hIDL3nmYfsqkKbiZ7t3dQZMbRN9Dz7ocHx+/aDd8YgGz0r/94PgEHPIKez9kCsYhCszRiU+3WT+d18rBj0TNyZyaN/7aGvo73omWIGoAWiZ8rH+T9JgLu9AmEnen6kaxSADw7PaX1ueUtHJpcDkAA8PWiKGYa2CqApNjH0yCeepzfeQiKxF0M/9PAoAA0m08RpMx3A0Le5SyZPjw6PlC2cl2iJoQHMS1IRqv53MTSDnmdNm8Ic1Oj0rsbQCQsW0wfy8DDawlLK4aLcdH1MmajRpysXLNPo08W1P1uNRp+h1mdo9Ony8FBFeIhy4TKYTLGTP2oBDE06jtkfv6XOyEW90YHBfY5vvfL7+JXfAbDKDV2XkRNmqnMOAdj30zfCRzI6GcbLAUARPHjfusUttC+rEG0oLQ+7s0d4b0daHXaFPahQNqiv69CzWcwK0eIWn7litRCt+nHnnr0Zw7p0Epc+s8NViBal+MwVnkK0KMVnrrAL0QDMSLTNeYPyyEgAjHYDJlPjb39Tw6zpUx5+9ElNqp49b1DW7y4qPmsOnRg9c6msfx837w5//bAKFsXnxvv+xTdxn68x027g5hzCmXJZZNK8Ba0A+t9KK4C+lRIXFzdnzhxvaXdfz2He0pv45mTNjhpjeXfPIGYyYY2xrNyQwyihsy+vHNpxghmYRlM5uodHsJ9nMIBSQ1ZZXRZbCQ2gn9dTVcaSK/WlAR4hVcaS6vpSRglNYwnBrYSGQ5MJnUlq1RIAruOwlmF0HGKpNoRtWnj8mrb7bb0BnL1RUG8y2TtN0aFNb1ahRa88c8WsCi1u5ZkrRYaCjWXrHuwSxVShRaw8c4WrCs3YNga07zXQR+SXUniq0PwDBp0JGTnkvl2tYtaFR/PSzpUP7+wHhyrPXCEjR2S3rlxVaHttG0LCGDl+jxrNs4xBz85rsmGPkYNf9GxX7DJy8Iie7Yq9Rg71qXL1yXKbMwbZ9JlnxiAbPZtumNAEmgk9Rw8fkJh5qC72ZVpvOWOQwoWeAcw7eGDeoQM8HfxF9CKNNfRMGfD3F8cffh92oud1xfp1xbpnusslEpNN9PxLo4b+JnqmtALoWz0yuXzHzt2pWu3cJJVdGFqjTeUC0BQeDD3yief/3LEVAE3bswtDP/TwqC07dulTtQvnJtqLob9aNHd6dPTieUkSwCqG1qVqp8+MjoiU/4sY2ip6Zsd1GJqhz5aaaZdiaDZ6Nr9o4TLlgqWK8JDYKRNdUYhWLvxcuXCZGeYmL4dLMTSDnmd/3EhS1Bm58Z9/o87IdXUVmtBz7NvPx779AgBN7mHl1z8CkhbA0AQlZ38yQRESFL9sFQAX+TfM9126Mn7pytgpExtfYLhRF/v+q65rQDfbesX6+BXrZf3uNF41hPf2c1392TJPffN72pkyADujX5PdF9gymzKFaCGKDBHDFKK1h/8RvfjMFXYhOqJPgOjFZ66YFaKJPv+xa7coxWeuEIYGwFZz8NDn4PBIAG3dbgJrdvF51vQps6ZPSZi3MGHewj8Xz2TmDTLaDSo+71Z+oDl8Uurba/bEd2je4GcfvakIuVlGif/im5T0XJOHNzOBsHEvVaJWq6EXy0eNGRsXr2z1b/xbaQXQt1Li4uJWzP0dwFnD/j7e49gMusKQW2HIIR0Hc/Cfmu0A+no/SgCaOcieVUhjCRkGXW0sLa3LYiuh27v7kxK6pC6DYDSjhCbubLMNPcDrGZd2n9F8qiGA2vqyuz1lris+M2Gq1p2lPSVA37YyF7Were57/JoWgCvsIlwhBn3BWHRHm15d29hWYIuVlCsb3CWSiusFrqg8c2Vj+TqpBL3bBbqi8swVpgp9pKYQ9gwYdCbsKrTolWeurDidub+6kF2FZmwbYbf3CL1d/EFzAJacyMm8VGpWhXbGtiEkVFD9fcRosyo02TZERM/s8Bs5BIqe7Y1NI4cQ0bO9EYKh+WYM3uWrPtXIy2Y/NNhUD2Xy/tgRg5XJ+y1nDALADRMAQs9UeYYFeibKPPq3ffveeNhh9PzJPcMyLpZulllpCRF6vlp3GwCr6Jky4O8vPror2AH0/HR3OYD4f76Lu4eTdxB6JjsHGz1TWgH0rR4C0PSxXRh6zOjR8sjwWdOnyCP4vuWsYmgGQDeusQdDE4Cm4/Zi6Cx9asnFagBpOq1VDD11ZvSCpMQFcxOtYmgeBg0xMLRN9MyOuBg6YcFi5fwlsdMm8U84FB1D86DnZvvq05ULlklgEhFDW0XPzTd1FYa2pM/sxH/+Tfzn31gak0XYtzl6ZsfVGJpBz7MnTmAOqtNz1BnZ8UtXWR3JKNrWTfSZ+UI3fmVdjKGVK9arsw5EBHaJfuYhANojp7X5pxM37Qvr3WPyg8EurUIv+itr0d9Z00aHTR0dpjtZvGB3mlsb6cwnoloAQyduSUn6LSX29WcAqPfnm27caDEMrfpxpzonH0DqiaIJ994VdEfnYV06tcC+AN7RZrf17ezm2TZ2wkvyYS30JgamEA3A1fSZHaYQzT9skAl73qAmVadJTZ01fQqAhHkL5RHhCfMWGv5az8wbpKuofvjDVG+MeW4UgNGzV4x48AF1Rg7NG2RulorPsz98Q52ZFx2fyMjBaOSgTBY5K3omHWkF0P9uWgH0LRaJRDKg42u1xorTNbvZPmgA+y9/DcCMQZMSGoC3tAfTjzabVZh9eaWPtIePux8xaADHan9nGHRG1fL2Un9SQudbKKGpBG2vElqsVBlLqozFllMN2ToO0TelkHyjj0ckgLs8IwCcMuhO1qWKLn223Pf4Ne1dHhEA7vSMuGQszq790VJ+7Yp9LxqLAHRp0+t2aU999cao9q9Yyq9FD1lN8q+qh3eIyqxybfGZnSJDQeG1M6mXUgC4rvVsNfNObThWUzCgfU8RbRs2Q1VoAK6oPHOFqUJDPNuGzbCHE+rPlYtbeeaK2XBCUWwbQmJm5HBM9GxvrBo57BU92xsuI4dN2wYTgs6KQF95r24A1AUVmsJKM9sGmqPnZm4NbTPKrMo8qC09qy2tNEPPNGPQJnqmfwjPp28zA9CMbQO86HnFmUwAX53JcAw9U7gAND96prQC6Fs9bABNEYihvb3a7dn1hyoxid5IaxeGNgPQjWuEYejwSBkDoCnCMfRrT42TukkAfDp9ZliEzAEMzXMfKY5haLvQMzvOY2iB6Ln5pmnKBUs0ujRn5hMmLFgCgEzT/PT55r4iYWib6Ln5po0YWh4W4vxkQn70zA4VosXycqizD2qyD6qz8uRD+1vSZyYMhpYPGyCWGNoqejY/vfQcKkSLi6Et0TM7zPzJ2e+/KroSmorP0c88RPSZHe2R04mb9hmvGlyEoRf9leV+m3Tq6GY/DQhD606WyO4LdBGJTtySknqsICo0eNYbTzMHNXlHlOs2uRpDk/F5+rjI6eMaf3HM25GqO1FkuFgz4b67XIqhVx09terYqejnR8c8P1p7+KTqp93awycVQQNagEQrV21UrtoYExMjk8lUKpUJEMv+bDNJiaq5iSqrF30weQaABgDAV4vmMvMG5ZERCXPnyyPCmOIzlaA9O/sCMCs+Rz83iugzAK8nPwVgVbvx14YvFMOHSO+NvFZbQ8cZ7QZDnzVabat/499NK4C+xUIAmj4+XbPbR+rHMOgKQ26NsbTGWMF2cQAoN+SUG7KtHiQl9PGabT08g6qNZdXGMj+PYB+pHwBGCX209jd/j+EldZn9vJ5qL/XLr93CVkIX1aWjqQTdkgyapg52kPp3cPe3erNVxpKiurSu0kBxcTAz1bCPRyRxZ3YuGotO1enuaNPLFQMPARB6vrP5vpeMxafqdF1co+C4YCy6YCz8x5BqZrUmB4jvbb1dV4I+ck1D3BnA8PZRAErrCjKrUtzd8FL31120KQDtpeQiQ8FtbujTLnDMHVEAvij8VirB9Ltecd2mALZWqgH8XqEmDBT3z3fuEtNLfjLRtRuW2Viq3Via+lpABID8mgKaNOjqTQGsOJ254kxGcCe/rEulP4eNd1Hr2TJLTuSkXyhPv1AW1sXXasPURdGfL39auwuAKyrPnJs2GTlSKypFsW0ICWPkkPl3hROiZ3sz6td9TBWaHz3PHjkEJhOpNmJHDAagTN4fqxgk79VNU1ipVB8AYFz8Js+MQQCawkpNYaUlegbQUOc298CB2g9vvumSjtdfc0PTjEF2zNAzpdeO1WVPvEEfc4mezbLiTOZXZzJe8Y8EsKEkVRM+lf8Rs4qeKZYAmhE9gxs9A/intmDpmW9bn1ve0rEE0BSbGNrbq921miugwpGdGFouk3FRWpsYuq1PRwBTZkRPmdFM+CgEQ7/21Ljfd+xK02kXzUuC/Rhal6qNiZ6p1Wo1WhvNL3lkxKwZ0+SRfFObKAlz5wOQmOrtRc/sOIahHUDP1m/BfgwtsPhsNc5gaAY9K8JD7LoueaKVC5fFfvqRIny4A4Vo4eiZHVEwNE/x2Wo0uYfVOYeUX//kvB5aufoHzcETitBhPPSZiYgYmh89my9e+LlGny5WIZoHPbPDYGgRvRzs4jPXGhcVopniM5s+MyEMrck74govBxWfp4+LjLjH/G8o3YmieTtSDRdrXOSDXnX01O2D74553ty8RyTadYVo6j5HjnqUPSCBGdIbKZO5jkQzkwl51gSHRQIICov8avFcAJbaDQBMCVq9cyt73iBTfG488vMeXcG5v7//kn37D/zvA0Xw4NkfvgFAnZkX9/Uv5N9IUCUCJgY9UxISk3T6tFYA/S+mFUDfYiELRzfPwfRppWH/VWMljSWsMOQCDV5S30pDno/Un42byf5sxqAZJTR92sMziJTQ93o9xjDosrqs9lI/P49GHYe/RwjpOBgldEldRk+PUFJCV9WX8GPoDlL/nh5hzug42KoNITi7yJAmio6DUW308YjsJA3ozHtrpwy6S/VFYuk4zCrPXMtOG3SX64tFFI9Qxft2ac8u3DydcHy/tgoRq9DsyjNxZ7NkXknJrEp5qcfrPT0DxdoUrMrz6Dui7vYK7NN8AuGucym7z6VMv+vVe73FL31vrVQTdwbAxkBHagrjTnznOgXHxlItAELPrzXVJPdfKf62WBfeuYfrStBZl0qp+8xYPuhTdzfTz2HjbF7dmSw5kbP0RM7Eu4MAhHbuvuyfHIlbw+T7hoR3cS37ZnS9n/YdCiD9QpnNMYxihVwcobd3T79Q7tLis1nmHz6gO1sBQHe24uonLpffMdGUVI7+dR//GsbyzEbPdJFSfWBWxMBZ4QMf/mmvpriS0LP6TIXmTIXZjEEAKacrZH5d2eg5MfPQjEGDAEwfNHD8n3/uefohsGwbEIyeKQSg7UXPL/s3/poYmT6PB0DzoGcKG0CbzRjkzweH5wBofW55S0cml8+YGRMps/6rhzC0XCaPjjEfbcQAaIpwDE3tJ35Ey4OhR44dv2Pn7rmJqrlJifZiaAClF6vpiAMYOlWrdZeYAMhkMucxtCZVp0nVSUz1AJyhzzdvUDCGdh49W96aPCJUiJfDGfTMjgMY2q7iM8+NaPTpdnk5HEPP7DiMoe1Fz2ZxxsshpPhsNYSh1enZsz95Vx4a5ACJtos+MxHFy6Fcsd54rpQfPbMjlpdj0V9Z+jOlsr69eNAzOwyGjrw30Mn5hPzo2SziFqIti89WoztRlHqiaN6O1KAuncUqRLOLz1xrXFSIZorPMRa/lClEol1RiOYpPpPxGSYEhUd+tWjue5/OAJCfqf1zx1Zm3iC7+KzR6R8e/ySA3UmfyAfcY1l8Vv28J/HnPbL7eru178QAaEa7QfQZTQBaJpOZFZ8bHwqtdtSYR5KTk1v9G/9iWgH0LZa4uLgFCSvv9L75o40YtK/nMAAVhuy7vMcCOFWzUwK3u73HM8tyL6/ylnb3kfqZMehyQ061sYyZTGiphD5Wu9XfY7gQJTQAwtAAeEi0A0poLtWGkFBX2mFJhaVqQ0ic13HwVJ65QjoOJ8UjDGoXePIiVqEtK89coSp073aBoug4LCvPVnPyasGucykiVqHNKs9cy1xRhWZXnl+z9g79b4v1rqhCrzidCSDrcklwR39LwE2FaBeJOBj0PPHuZjeecaHshYztrrNwED0k7kz/B5B2oXzx8VwJTK7D0Ppz5frzFYuO5k3qO2zSPUNp0yXHc9zdTdP6D4ro6mvzFhwOKTimU9t6wKD5hw7MO7y/BRrQqvSDAFTph/iXEX02Q8/qgopmwhDdQQA3El6jGYMpp8oVPX3NRM8ALNHz9EE37+O8AwfdPBp4bBsAuNAzpdeO1QAcQM+UKUd+/KL/c2aL1xXrAfCjZwoBaLvQ8x9nU3aeTRnROSr5Ykrrc8tbOhKJZMbM6BnR1v+UpRDtjY6OYWNoMwBNEYKhE+YthJu7PDIyIWkeYLIXQxOAZp+YcAz9wmNj03Wpn06fOXl643ohGDoiUjZ1ZrROq10wNzEmeqZcFqlKTIJzGDph7nyNNlURGSYKemaHH0PzjBl0el8bemix0HOzTYVhaFHQc/N9heqhlYuWa3Q6RchQh+kzE7umFCpXfq/OPiAfcr9j6JkdezG0w+jZLPHLVqnTc2BPIdox9MwOg6EVwYNi339V+BUFFp+54oyXQ0jx2Wp0J4v1J0vm705z2MuRuCVFV3A29vVn5EPuF34tphAd88IYWf+7HSPRqh93Gqur+dGzWZhCtJMYmqv4zBURC9HKVRsbugRyoWd2RC9E89PnLH3qe5NnAIAJAL5aPDcoLLKdu0mTqmOKzxqd/s9tW9D0InTs9MnKeYuu7ljBzBuU9Wtsqat+3qM9eCL6qRGJm5PjYqbQ1MH4L74xNZgY9Ex58JWPTB7egInmDbIvSkhMot/Urc9R/920AuhbLxKJpKvnYKYEDYCU0H28x52s2TGoY+M/wkpDXq2xsrvnMFJClxtyTDABqDWWs8E0gH9qtlcby4I63pw4fLxmG1sJnVW1gmHQpYbMK/Vl/byevGIsza/d3F7qD+CKsYTQsE36TBGu4ygypNFtcqk2hMQBHQe78iycO7PjmI7jgrHwgrFISOWZK9m1Pzmm4yDU3retDIC9V9dXf+8mkUS1d4TM2qw8cyXzSkrF9QJZpxGOVaH5K89cEaUKzVV55opYVWirlWeuiFuFJrhsUzDNVKEn3TNMFCPHkhM5AKyiZ3aW/ZOTealE3Co0g54Z7myWxcdzFx/PFV3HsfBoHgDd2YqwLj0IPbPDYOitD4yydm2nwqDnaQOa8Vbd2Yp5hw643WaKCR3A5rxihQc9zx45JH5vo4jDbMYgoWeqPMsDummKKwE0XDcBiAkeOPr3fdqySp4Zg41bW0PPAOYdODj3wIHIbr7bHnrY7JQIPdfVSQFwoWd6vQTAoQc+4rnjXOiZYgagCT2Tu1nIj53nchMA2IueR9w+AsDsfz5rfW55S0cikQCwyaBhgaGtAmgKP4YmAN00mEhnL4aOS5xvdqrCMfQLj43dtnM3NZqFY2h9qnbRvEQJACBK3ti0chhDO6x7tiuWGFqjS9Po0+hS0ekza18rGNoV6LnZpvp05YJlGn26JXkUHT0335cPQztffOaKzSmFThafrUaIHlqTc0idc0jSzkcREqQIFadeINDLoVy6Up2eLY+MEOULzRhXFMGDbRainUTP7Njr5XAYPZvFAS+HXcVnriSs/dWBQYUCi89cIQydeqLIgUK0kOIzVxgMLR82UBE0wF4SbbP4zBXnC9E86NksVHxuMGHCp9PfeXZ8O/cGUm08PP5JwtAAEuYtlMA0a9oUjU4fHzMDgOz+O5niszb/lOrnPbK+AdFPPQDA+8XY+n/S1Bm5D/zvA3bxmYn03kjL4jOAhMQkSNzkMlnS3Lmt/o1/N60A+tbLiBEjMlOPSODG7kHXGisqDftrjRW+nkO6eTbijEpDXoUhj8YSEoD29RxaYcitMOSYzSr8p2Y7gB6eQT5NB8sM2dXGsnu9HgeQVbWih0cwKaHbS/1KDZlsJfQVY0lYh49JCd1e6ne4djNTcHaYQbNVGx2kAc5YO5gcqt0khVuot403gztWeeaKcB3HCYP2/I3CBqCze4AD3Jkdu3Qc9laeeW7n+DWtXZMJhVeeuVJaV/Db2W/tnUyovZQMoOJ6AX/lmStUhe7v08veyYTHagqP1xbYrDxzxZkqtM3KM1ecrEJT5Zlt2xCSrEulr+ducbIKzbZt8KBnJhkXysjI4aQVmm3b4ELPTMStQpNtY1LfYQAs0TM7S07kLjmeI5aRQ3e2Qne20ip6NltGGJrEFKKEZg8KWWk2YxAs20aC/mCC7mB08AAAMcEDVVkHE7MORfp2G3G3eetZOHr+9N4hANq0aWB3nxnbBjjQM/N6yYTA0Hd6hQ5TL+UC0PzomcIAaMa2AWHo+ddyzaZyDYAv+8+xudgMPVPWlqw7c/WMzeu25j+bSJl8287d85NU85IS7cLQqVr1nl07eVZyYWg2gG5aaQeGDo+UWz1JIRj6hcceOVvVOK3IAQz91PgxcpksJiZao9E6hqEByCPC927bbHOZKCEMrdHpiUErIkJdh56b79uIoRXhoWp9uiI8FICL6DM7CQuXKRcsVYSHxE6Z2Khsdg16ZscSQ7sOPbNj1cvhCvTMDo8eWqzis9XwY2jni89csenlUK5Yn6zWyu6/03n6zESgl4OGDYb38Y/oEyDKvsIHFSZuSZF2vMMZ9MyOXV4OB4rPXLG3EG1v8dlqtIdPag6f1B4+aVchWnjxmSsOF6L55w1mpqUGhUUCyNKnBodFfrV47oRJM4LCIlYtmZedlmq4WEFl5z+3b5FHhDPFZ3rxNWH+QuW8RZbajeinRhB91h45M3fv/qiQIcy8Qfbu8cvXxi9fK5dFmj0PoeJzTEzMrJgYjUbTCqD/9bQC6FsvcXFxy+f9CuDajfPdPAd7SW++mfp0zW4faXcGQAOoMZYzSujcy6sGd3ybDp6s2cFWQpcbcmqMZdXGMhpLSAcZJXRpXZafR/AVY1lZXdZ9Xk+0l/pdMZYySuj82i0ASAldXV9KFg6HldBkzHBAtSEkPDoO/umCzoRfx8FWbXSS9uwkFecZg5DJhM5Unq1GoI7D4cozV347+627G4RUobWXkqnyDMAB9MzOrnMpBdcKHuumEFKF3lqpPlZT6CYx9fPu5QB6ZmJvFfpgddGhK4UCK89ccawKveJ0Jqk2wFt55snruVscq0Jz2TaEZNk/Ocv+yf5VNsaBKvSio3n68+Vht/cAy7YhJIShw+/wdbgKzaBnfu5stqnzRo75hw8A0J2tiOzqy4Oem11FJCOHTfRsVfTMzBg0Q88xwQMBEHqeMXjQjMED5+4/2MYHAKzOGLQq3ABA6HnyvUMBLDqWywBoHtEzhdDztettALzTq7Eh+M6BX78d+gR72YozmQBsomfKlCM/Du0QIMS2QTlSU3ikunBTuWZM16gxd0R9nD+HH0BbRc+UVgB9q4cANH1sL4a22jwyiyWGtgTQTSttY2iqD0fKZFzean4MrU/V/v7HrvDIm1e0C0M/NX7Mnt27VKpEAAyGlssiiT7DAkPLZZFWkbQ8Ijx2+mR+U7ZYoT/yY6d9qpy/WCzps5AQg9bo0gDs/e1Hm25oETPyiRc0+nQAivCQvVt+aJlNiVSq9RkAXI2e2WEwtCJokEvRs1nYXg51ziHXoWd2GD20IjSISLTr0DM7VjG0iMVnrnB5OcQqPnOFpxAtSvHZamwOKnSy+MwVIYVoZ4rPXBFYiHa4+MwV4YVoe4vPXy2e+/Uv27PTdKuWzB0WGuklbQAgjwg3Kz7TVegXU+2WxcyNqH7eA+N1Qs8U7ZEzYxLWWi0+xy9fC3d3RciwuK++ZwPohMQkrTY1JiZGLpcDGDVqVFx8fKsA+t9NK4C+9UIAuovngKvGs0XVf93pPZrNoA9d/tZb6ksmaCananb6SP1rjGXdPId6S7sDqDGWVxhyGCU0yaC7ew4rN+T4SHswkwlJCQ2ArNBsJfQVY2lpXWZ7d38AJXUZAKwqoYvq0umm+JXQ9k4XdDhVxpJDtZsYUbJd0wUdjlUdh8Dpgs4ku/YnN8Cs9C1W5ZkrPJMJna88c4V/MiFVngk9O8md2RFShWZsG/f79LpfpAGGQqrQZNvIrykc3L6nw+iZnW+L9d8W69YNfdJmFZqxbQR38nNSIU1Gjog7fIVUoQXaNmyGqUILN3Iwto2wLt3DHDWHkJFjs2yM8Co02TbsRc/sOGzkMBM923VdJ40cNtFzdNCAxOxD4J0xyIOeAczdfzC1oiK1otIMPWtLz0Z08QVgiZ6v17kBIPRMIQANW6Jner1kQmAoWOiZwgbQhJ5rb7QBYBM9A/iuRLehJFUgev61XAMg70rR3V433xTCA6B50DOlFUDf6mEDaIpADD1+7OhImTwpUWUXhv5z2xYuAN20kg9DJ8yd3+DWRiaXJapUJsBeDO3b0TtSJjOZMHVmtAMYOi1Vu2f3LrlMptFqGQwNQKVKBExWMTSpq/8VDM2g51nTJjcdWdQyGLpxyOHUT2ZNnaTRpysXLIEJsVMntgCGphJ07NRP5BFhygVLJCY7phQ6E5I2aFJ1itDg+KVfkfSZ1KWuThODvgGTKfbtF+RD+7fAppSR78Wocw4D+OvHr8VybgiJOj3nwRfexr/0GoMieDCAiMAurkPP7BCG1uafnvxAMAC7hg06EzMMrT1akPRbSlRosOjo2SxWC9EiFp+5wlWIFqX4zBX+QrRy1caUI0V79uwRfV+bhWge+nx/UNiR7DQyPn+1aO6aX3d8tWjusNDICZ9OX7V4ngmmdyZNX71k3uol8xj7s2XxmQTQBKDNis+UxM1/J25OtqTP6sy8B1/5aPbEt2d//PaDL74XPSeeUT+PGjNWJlfMYpH6tu3atcLPfz2tAPqWjEQiubfTCwCuGs+ev3bIW9qDUUIfuvxtV8/BZw377/IeQ6yZQjoOX89hvp43n/qcrNkhgYSU0LmXVw3tOAFNOo6+3o/SmmpjWZkhGwDpOAAcq/29g7s/WwkNIMAjJL92s79HSAepf37tZruU0ABcVHm2GlJCS+FGfWeIodoQEtJxdGnTC3ZOF3Qmpw26U3U6Kn2LXnnmygVjob56Y792CqpCi155thqaTOjuhpe6v84cFLHyzBWrVWiBAwYdDk8V2mHbhs1QFbqNW8O6oU9aXuqYbUNIVpzOzL1SzFOFtte2ISRChhPqz5ennasQaNsQEuFGjoVH89LOlYfc7gdbtg0hscvIwSV6tjf2YmiBMwbZ9JlnxiChZ1XWQQBm6BlA/Q0JgPTL5bufeAgs20aEb7fIbjdvh23bYKNnyqJjuYuP5QlBz2bcmQkBaMa2AXvQ8xO+imM1hc/2kPG/7kXouabeDRY/Ia0CaJvomdIKoG/1WAJoyvwklS5Vy0V4AYwfO3rn7j0AElUqnVZtOQLIMjSSHsCsmdO5AHTTSusYmgA0Sai1Wo29GNq3o/fF6lqdVjsvScWFocMiZZOnzwyLkMECQ/t39qH7GBMT/V/G0Jboufmli5TzF8sjwqxOKXR2axZ6Zh9vAQzNoGf21rSvqzE0maZnf/Je7KT36Ig6PUu55CuYGlyNockHHTvhpdgJL2lyDipXbVRnH4p9+3nFsAGuJtHKr39Ufv3T7PdflQcPVq5YD3fp7IkTWgZDxy9bFb90VeynH2jSsiCRtMxrDBT6WitChzVUX4p+5iHZ/Xe2zL4AxsSt1uafBvD7h8+Ipd2wGcbLAUA+5P69n3/WMvuyC9Haw/+IXnzmCoOhiUGLXnzmitmgQtGLz1yxLESnajVJiapUrdZsZf/gsMNZjVMEgsMiAZB8g7QbAFYtmfvOpOkMfTZcrEDTvMG92zY3vv9p/kLlvEUkoYqPnr47/n1m3qDs/t7MXomb/9bkn049Vmg81uyXJmk3iD4DkN41nAZRsLUb7LvW6t/4L6QVQN+SGTFixOkc93bSrvRpUfVfDIOuNOwH4C31PV2zm+2DRhOD7uM9jg2mKwy5tcZy6j6zJxbWGMvYSujsyyt9pD0YBl1qyKqpL7vP6wkAZkro9u5+5OWQAAEeIYdrNwMgzwYPg+4g9R/g9YxoDxB3mKp1B6m/O9zu8ohwUevZMuTiANBJ2jPI6/mW2RRAdu1Pl4xFAFxUeeYKTSY8d6PQFZVnrtBkQupBi1555gq7Cm3vgEFnwq5C2zVg0JlYVqEFDhh0Jlar0OkXytMulDlfeebJi+nbrVahSfSsP18Rdnt3UdAzO2kXyp/R/cE1nJCxbYTe7njb2uqm/EYOgaJneyPEyMGDnqOHD0jMbDweHTTAVC9Jyjs4c8jApLyD/DMGVVkHtaVn6Z4y6Hnu/gNT+w0GMPX+wQCe0u+S+XXlFz1b5c4AFh/L++DO4TlVJT+HjbM8bZvomfLOgV9zLpcIsW1QGPT8pK8CwJYKtVRi4vopRKLnMV2jwPHiHBtA/3E2BYAQ9Axgbcm6gmsFrc8tb+lwAWgABGolEuuElwHQALRaTZJKJbE2id4yo8aM1WhT5ZGRs2ZOl8v4vuEtMTQbQDNbC8fQBKDZ984SQ+tTtQuSEhsASwydlqq9VlvD5s52YWieiIWh+dEzOxpdmnL+IgBiYWgu9NxsU326csESjS5d3IGEVtGz5b6uwNCW6Jkdl2JoNno2P6tVGzU5B11XiGbQc+z7rzIH1VkHlCvWq7P2K0KDXEeiGfQc++mHdESTlqlc/CUkEnl4qEtFHI1f64nvzJ74DgB1Rk78stUtg6ETN+1L3LSPKqLaI2cSNyc33LgxdXRYC2DoBbvT5u9Om/3Ba4rgIfFfrjMZr8e+/ox8yP2u3hdNDFoxdIA6L7+h5sr0cZER97TQX/GEod28vE03rsc8P1rWv0/L7EsYWnv4JIAWoM9M2IVoS/TMzr3DQo/lpKP5vEGz4vPrE6etWzbfcLHi4UefVESEMdqNkY8+pYhs/FSj04989ClZ/z7MvEEKfXtH3BMgu7fX/OTDf234grmItBuEngGoM3LJv0HzBmdZPFZt27UD0PoE9V9PK4C+JRMXFzc/YUVPnweZI+cNh67dOH+n92gC0N08B9NYQjMl9IHLawGY9aBJCe0j7eEt7cG2QpcbshklNIk4qo1l93o95iP1A1BqyGKU0Edrf7tiLCUldLEh40p9qVUlNN2yXUpoEcO2Swd4hgAoNmQU1aWLLn02yymDDsDJutRAj7BAz/DLxuKCurTb3Xu2WP25j2fj68OXjEXhPv9z9aZgia0He0ftr0l5outrfh6BLbAvmlwcgW0DpW74qNdrLbMpgF3nUk5eLThZW3C/T6/P7n65xfZlxoW5ovLMFaYKHdzR3xWVZ64Q6f45bHzahTIA6efLQ27v4SL0zISMHBFdu1EVmrFtwE7Rs71ZfDw3/UIZU4XWnyvXn69wxrYhJISh5d27savQDoie7c2jf+2xWoUWPmOQoHNk927ElHUVFamVlTwzBmcMHhTp2y3StxtY6Jm4M2XBkf0L8vc7gJ7rrrcB8MGdwwG8kbfFDEALRM+rC9NXFaQPaN9zSPueNunzdyU6AGz0TOEC0Ax65n9xjgA0oedrRgCwiZ6TLyQD+OdqQYmhFUDf2pFIJNv+2B3BTY25MDQbQFMEYuhRY8b++ce2hKR5CUnz7MXQmlSdGYBmthaCoQEwAJp97wRi6KfHj6UhhGbcWTiGlkdGaFJ1XPfUGQzNoGd5RLhwoCwKhhaCni2usqQRGTuHoW2iZ3bExdD86Jkd0TE0D3pmhwrR4mJo5dc/anIPK0KGsdGzWYhEi16Ijl+2Sp2eIw8PYdAzO5q0THVapnLxlzSCUvRCtHLh55Ib1wg9s0MYWp2eI+t3p4tIdOKmfdrDp8wqosTptEfPTBsdJuIcQrMw9Hn2B43vN1Vn7icMrRjcz6UujoS1vyrXbYp987lZbz0HQJObr1zzc8tg6Hk7UuftSCXPdZMPpIUwtOqn3Yk/7Y6ZOUMui1QlzTVBwuiMWyAqlUqlMtduUPH5/qAwAPcMDQHw++ql7306w2rxOVOf+vrEqUNCIuR33QHAUrvBhtEand6qdmPGY/KZj8lTjxcyANqs+ExRZ+Q++OK7AMyKz2ji6RqtNjk5uVUA/a+nFUDfqpFIJF3a9u/ieXPW8HnDofPXDt/pPfp0ze4BHV+jg6drdksARgl9qmant7R7jbHcW+pnxqArDDmMjqPpYNmJmu09PIN6eAaRhcNH2uN4zTbyQQNglNAArtSXAmjv7k8MuqQug1FCk3+jg9SfwdA8VWjRHdBFhjQah9jTI5S4MztVxpLiuow73ANFZ9AXjUWXjMXEnQEEejb742F/7S8SSO7yiBBr6iA7pw06AISeGfoM4KQh9aQhNdznpdul4siILUNi68HeUQAGeysAVFwv2F+j7tk20KUN6MwrKQAyq24W9JIvJBfXFYy5I6pPu0DX7Qtg17mU3edSxneNAtDXu9fC0+tdpN0wCzMx7PkessPVRVK3htcCIga3b4n3331brAdw4EpRXlWxECu0iHk9d0vWpVIArms9Ww0NJwQglm1DSBgjR9gd3XVnK8K69HAdemaHjBxbHxjFVJ5hv+jZ3pgZOfjRs8yvm6x7V1JtzBwyEEBS3sHpgwZFduuWWlk578ABAIap/+MXPcMael5wZD+ABfn7P7l7WHZ1yfaHH6bjqZWVuopKHvRMlWc0oWfK/fuWF457ByxBuUD0THadjaVadwmfdoPQc7XRHQAbPVMsAbRA9Ez5OH/O2K5RdqHnaw0AENZhxKbKdcXXWhUct3AkEklEpGz6zBgeBg1rGNoSQFNsYmgC0PQxg6H/3LmN/zwJQ2tSU6OjYywBNLM1P4bu6OMFYPrM6OnN9dYCMfQLj42NiYnm4s42MTQANP0hJiKGTpi/EIA6Va+ICLNZfLYahzF0woLFQOOdEk6fWVdfolywVB4e6oCXI2HhMuZju7a+2cJ2dHIdW/dskz4zEQtDx3/+jVqfIR82kJ8+3zxb8TC01eIzV8TF0JbFZ64whWixMLRZ8ZkrrihEs4vPnGs2/609UiB6IdoSPbOjztyvzsqL//Jb+ZD7RS9EM8VnQs/NLsrNV675WZN7OPKeni4i0fN2pN52R3czts7ygfRxHYlm6POs6BmN+2pTVUlzNdpUmUzmUhJtFT1bzbi3PtnxzdKgsMgJk6bTvMFVP28HsHrJvIEh4a9/PBXAus8XnMpOJc8Gmn5DMegZTTy65gcl+5YTN//dYKyf+VjjfXxk/ndx0VMUw4fEL1+rzjrw1w9fmZ3Jgy++p87IsaTPCSqVSqWKjo5JTFS1ks//QloB9K0aiUTSVtrFq40vm0HTWEIADIAGUGnYf9VY0c1ziLe0e6UhD0A3zyGnanYCkj7ezcpZ+y9/3d0ziClBU/6p2e4j7eEj7VFmyO7r/SgpoX3c/RgGXVqXJYEEwH1eT5ASup/Xk1eMpYwSurgu44qxpKdHqEAltCgMmj3VsL3Uj79Yfbh2s4g6jlMG3cX6ogaYOrr7m3FndgoM+oK6tCCvF8Ri0JeMxZeMRUzlmY2emVw0Fp00pJqNQ3Q+7MozcWez7K9Rn7tRMLxDlOhVaKo8j+gcBQtKcuZawbqSdS6ycOw6lwKA0PP45kMIF51e7+5meqa7XKypg2b5tVyTX1PoBvT36fl8j8bfyj+VaX4q07aMf+P1nuEA3ggIz6sqXlesl7o10MhB1+2bdamULBzvBoa+2ztk5ZmMlQXpLcOgl/2TA2DZP9kf9wnKuFjm5mb6tO9QEd0XPKGxhCGde2RcLHNp8dkyz+p3pF8oB7DtwVFWjRwuChk5+NdEBw3Qlp3VllWy0TNdNO9AI01+ImW37lwFz4xBAFbR843r7gA+uWcYgMA/Vl965WWaMaguPRvWxZcHPX9g7U0A9+9bTjd17XobWMwYNAsbPdMRHgD9XYnuwJWiO9v1hjX0TGEDaLvQ865zKbvOpgAQItxIvpB85lqBr0cggLAOjYtbAfStnhnRMZEyOeFXuzD0vCSVVQBN4cHQbABNIQxtUwwN4OGxj0IiMQHRMTEyi7lJzNZcGJqgeaJKlZSocgBDt5Fgz+5doJmK9mNoVWKSPDJCHhmuSdXTLWtSdaQWseTRAjG0cOeGzdiLoR0oPlvf1349tF3FZ84bWbBEuWCpvYVZ4cVnqyEMrU7Pnv3xW7M/fsuu6wosPlsNg6HlQ/vHvv2CvVe3Cz2z4zyGFo6e2REFQwtEz+yIhaG1R05r80+joZ4HPTdfL6aXY8HutIwL12Z/8Lpi+GD+lUwhWiwMbVZ85oorCtHs4jPnvq4pRJN5Qz7+aQY9m++rTXVdIZqHPj/17qcA6hsaABzJTr9naOiJ3PT2HtLVv2x/59nxQ0Mj2NqN1z+euu7zBeuWzQdA0mfL4jMdkUeEmi5W7optnC7ILj4zW3d4I+GvDV/EL1+rCAtiF58p8Z9/Hb/s62tXr5odT1CpTCZEx8RotZp5rQLo/0ZaAfStmri4uGXzfgJQd+Mi28VhOZYQQKVhP40lBFBpyKNCdKUhr8ZY4es5jFFCn6zZAUACCSODppASutpYFtTxXTpCRg62ErqsLiukw4fgUEKnVX3eQepPSmiGBbtICW2p2hAS0nEEe73gMINmqzY6SgM6CsDKYuk4Tht0F+uLJUBnaU+r3NksJw2pl4xFfdvKnK9CW1aeuVJxvWD3xfVizSG0rDxzZW3JOqkbRKxCk23jPq9AAGbomcn2SvX2symiV6GJIj3fQ9bfp1d/H/Ov3eHqwp/KtK6oQlPlmdDzGxaAe22xfl2R3kUiDpptmHmpNKij/7u9b/5zzr5csvJMhtStYeLdw0Ju78F9A46HWs8f9wkC8HGfYDr4+cmsz09mu7oHTej5oz5BH90VDCDzYtkXp7IkEtOkvsNcyr7TLpSnXyhfcjyHRuelXyhfciJH0b2rq+vPAOYfOgBACH1OzD5kiZ4bjBJmzYL8/WFduo/o3YU+5ZoxyEbPVHlGE3qmBP6xOtK32/COPcA9Y5ALPQP48nTml6czJwSGghc9ry5MB2CGnilWATQjer7PO/A+3pe4CEADsBc9KzpHKTqP2FC67g1/Ky0nJskXkpMvpoR2jArw6O3vGci+KK0qOe1S61P8WzgzomOIwzL4VSCG1qVqd+7ezUWBKVYxtCWABqvgzI+hHx776J4//2TmJtmLodmtbQcw9OOPjGEUHLAfQ2u02lnTp2h0ekDiPIYWET2zIwRDi4Wem+0rDEOLgp4t9xXi5XASPZvf2pKv4pd+pQgZKqQQ7Qx6ZkeTc1CdfUi5aqNiWH+BhWiH0TM7jB569icTFCFBAkm0Oj1HnZFtcpPahZ7ZIQytTsuMnTJRER5iF4lWLvxck5qqCBkmnD4zYbwc0c88JOt3p70kWkjx2Wqc93LwF5+5QhhanbWfMLRjJDph7a/q/flWi89cEbEQbbX4zLmvqIVoy+Iz575iF6KFFJ/vHRYKoM+QUAA7vlkKICgsMjstldFu3GgwMcXnnLTU/3045fvlCxfNmqzR6WneIPP7K2H+QnWqLnbqJADxM2cQgKZ5gzMfk0f2bfYst8MbCQDMtBtoQs+K0CBTm7Z79tx8CZwpPjMzilsB9H8krQD6Vg0B6E6e914yHLt07VhPnweZmYTk4ujqOZjNoGuNFTSWsMKQN6hj4+tLZmMJKwy5dLzCkHOP93gzBs1WQgMoM2RXG8v8PIJJCX2s9vdqYxkpoa8YS4/W/sZWQgO4wrJwsJXQ4CDR9iqh2ZVn4dyZnSpjyeHazQ4ooWm6oFXVhpA4rONgV547S3vahc4vGosya35weCyhzcozV3ZfXO8uwRNdX3NgUwpP5ZkrBEo+CnzNGQZ98mrBP7UFVHnu693rHi8bN3WitmB7pdrdzeS8EvrXcg0AQs9M5Zkr4lahvy3W779SNKRDAABL9MzEFVVoMj6/GxgKgI2e2cm+XPJW3mbRq9AMema4s1leytzqiir04uO59H8GPbNDGDr8ju6uqEIvOZELIO18eejt3dmTHtGkLXZdFXr+oQOpZyt0ZyssL5L5ddOWVtLHZjMGCT1T5ZlZX290A/Bp36HP6P+Q3tbAP2MQLPT8SfO7vPREztJ/cgD8Gjk2rIv5l1ggen49IGJdsS5H8QnXHSf0XHNDCsAMPVPMALTZjEGbSTy54WhNgQPomY7wAGgGPTOVZ7O0AuhbPQyApgjH0I89MhqABJjJTYEpZhjaKoCm2MTQBKAbF9uPoS21IXZh6KfHjTFTcIADQ2u02pjo6Fkx0exLVapENNRDAnlEuDMY2kXomR0uDO0K9NxsX24MLTp6ttyXC0OLi57ZsenliP/8G3VGrnzwfU6iZ7MI9HIov/5Rs/+YIniQM/S52Q2uWK/OOiCkEO1Y8Zlz38XLNWlZAgvRDhSfuRK/bLU6I0d4Idph9Gx+Ow55ORbsTvO8q69d6Nks8V+uU2fud6AQLbD4zBVnCtFCis+c+zpdiB49azlP8ZlzXzEK0Tz0mYzPDSbTvcNCf1+9dNxbnwC4er3+gVc+XDP55ZEPjDArPudl6NYtW9A/OOx/H04BkPjmkwCYeYMACEYrwofTT++RTzw3c8T9AGjeILv4TEnaqkmrqLXUbsR//rU6Iy/2k3cBxH+5ngHQCSqVRqNhPxMYM3pUfHx8qwD6v5BWAH2rJiUlZezIZ7r7RAIwGM+XVaeyldDHLv3YpW3/azfOd/Mc7CW9SQ1O1+yuNVYwABpAjbG80pBHSmgyQffxHkdjCc10HMSgSQlNR6qNZYwSutSQVV1fWm0s8/cY7uc5/IqxtLQuk62EpkpyUV16f6+nrhhL2RjaSR2HY5VnrpCOI9jL9pvRzKYLOrOpvToOeyvPVuOYjkN45Zkr+2vUDkwmFF55tpoz1wqSLyTf6x3ogI6DbBtnrhbc4xXIVXnmClWhP7vnZcd0HEzlGYBN9MyEqUIv7fe8A5tSGNvGkPYBBKBtRpQqtJltQ8hV3srbLEoVmm3b4ELPTDIuln1+MiviDl9RqtCLj+emXSgP6ugHwBI9s/PFqawvTmb/HD5OLPZNxmcisGbomQlVod3dG6YPGCQihrYp3JD16KYtq4TFjEGwbBsEkZmxkFQe/7hPUDvvG2bo2XLGIBd6fq93yPu9hw/4+4vSx99kLqIZgwLR8+sB4QDk+gVWATRj2wAHeqYwANou9LylQg3gtwr1qC5Rp64VfBz4Gv96S/RMsQqgbaJnSquC41aPGYCmCMHQjz0yetvO3Y1SDnswNAAuAE3hwdBsAN242B4MLQGsakMEYuinx42xquCweiRBlahKTGRjaI1WS1pM5bxFPBia62GRR4QrIsNcjZ7ZYWNojT7Npei52b7NMbRL0bPlvmwMTbpnifE6ANHpMxMuDC1W8ZkrPBhalOIzV/i9HOKiZ3ZsejmUCz/X6NMVwYOcR8/sCPRy0LBB2f2BTtJnJsK9HI4Vn7lil5fDSfTMDoOhI+7pOX2coL+X7So+c+7rUCFaePGZc19HC9H0S/PmZAJWaOQggMff+QSAsQEAdnyz9IFXPgLw94YvAGQXXWTPGyTtxv8+nEL0+fvlC79fvtBSu8H+AT7yiedMFyu1R8+YaTcAJG3VzN2qAfDXDyvZPwzVGbnxy75WhAUTfX7o+bei5yTQXR41alSkTM6eDKHVasaMHt2KPf8jaQXQt3AkEsmdnR6njw3G85euHWOU0EXVf3VpO+CqsZLGErIZNCmhmbGElFM1O4lB77/89eCOje9rOFmzw0fqxzDoGmNZuSEHgI+0B5tBkxK6vbRHaV2Wn0dwaV1WB3d/P8/hAMyU0KRjLq7L6ODuj6a2clFdOv/d5GLQ/NMFnUmxIaOmvoxHCe1k5dlqhOg42NMF7a08c0WgjsPhyrPV2DWZ0IHKM1fsnUzIHjBoL3pm4kAVmj1gUDh3NgtVoZf2f94uHQe/bcNmnKlCc9k2hISMHBF3+DpWhbZq2xCSz09mZV0udaYKzdg2Qjr5De8sCKCLZeRg0DMXdzZL+oXy59K2T+8/2Hkjh030TKoNcMwYNEPPRJ8Z9Exfwdf2b4n09XUMPdORN3K3/B41Gk3oue56GzSfMciOGXqmfJz/05rBT7GXWYqeeXKwumjG0Y0A7ELPV40SAA/fEQXgq6JveQA0F3qmmAFogeiZsqTws9bnlrd0rAJoCj+GJgDNXikQQ48dPVoeGTlr5nS5jO8taFYxtCWAblwsAEMnqlSJiSqZTMZ1kjYxdJRcNismmnWG9mHotl7e1GKOnT4Z3BiaPuAi0fKIsNhpk+0aFehkRj72tEaXBqBl6DMTBkNDAkV4aIttzWBoeXioi4rPVsPG0OqMXJeiZ3bMMLRL0TM7lhjaeeeGkHBhaBGLz1bDYGjZ/XdGP/MQ+yKxis9Ww+/l0J0sXrA77cFRD4mCntlhvBw8gwpFpM9MNLn5mtzDyjU/83s5nCk+c24tuBCt+mm3pPdgh9Gz+b72FKIFajeO5aRT8Tk/S//mou/+3rD8ZF56zwHBqT+sGBYayZ43eKO+gdAzmuizmXYDDfVmP709uvayRM8AkrZqdCdLop95aMyc1cZTmcxx0m7M/uRdos8A2gQOvnb1qpl2g4m3VzsArU9N/yNpBdC3cOLi4uYlLKcSNKW8OlUCt54+D543HALQxXMAjSVk6zjIxeEt9aWxhMx1SQlN2g1fz8bXlyoMubXG8ru9x9OnuZdXDe04gZTQfb0fZa5LSuhqY1lwh/cBHKv9XQLJfV5PgKWELq7LANDR3T/AM+Rw7WYAbCU0TwkazZXQdk0XdDhWdRwiVp65wqXjOG3Q8U8XdCb8Og7nK89c4Z9M6GTlmStCqtA8AwYdzvZK9alrZ2xOJrQ6YNDh2FWFNhsw6My+eVXFHx/+WXgVWohtQ0hWnsnYf6XIriq0TduGzVAV2gEjh5no2d5kXiz7X9ZWB4YTmome7d13yYmcrMuljlWhdWcrdJWV/Oh58n1DFh3NQ3P0TBcJRM9oUnVbzhi0RM9LT+QAMEPPlDdyt8h8u1LlGRzoOfNSadalUkv0TGEDaLvQM4CNpdqNpan3eQdG93nF5uItFWqqPKMJPVO4ADQ/eqYwANou9JxWlZx+OcX3tsB3o1/77LPPbK5vzX8zEolk+87dPLYNLgzNBtDslTYx9NjRo2bFxKhUKphM9mJoLgDduJgXQyeqVBIJZDIZ/fltL4ael6ial5TIdkA3naFQDA2g7kI5vRkZtwKG1ujSNDq9cv5iEoAo5y0CGmKnThI4KtDJ0JDA2GmfqnVpgKnF9gVrPiEa6mMnvacIdfA5gwN56Lk31OnZAFqGPjMhDK3OPqQIHhz7/quKYJdPg6AwemhFaJA6PdsVxWerYfTQivCQxlcaXIae2VFn5KjTc+KXrZb1u5MK0Ymb9gkfNuhMLL0c4hafuWK1EO0K9GwWHi+HKMVnzn2bMDQVos0udb74zLmvgEI0F30eNDzcBBzM1FPx+Uh2+ri3Ji5+/4UHXvmo96Dhf2/4wq9fUMSLH/w487WiQ1nseYNmxefn3pucn61fEjvl5gTC5i9b0o/WyHt7/THNvKf1yPzv5APujn7mIe2R03N35TD+jfjPv4bEnUHPANTp2fFfrpfJ5RqNZpfFW5oSVSqNViN1d28VQP9H0gqgb+HExcXNmTOnU9t7O3neyxy8ZDhWd+NiuzZdr944S8MJLccSHrr8baDPqILqPb6eQ7p5DmGuS0poX89hDIBGE4OmsYT/1GynD4hB9/AMYiuhywzZ93o9RkroUkNWTX2Zn8dwRgkNwN8jBEB1fWmARwjbwkH/rzKWdJD68+s4RFRt2EyVsaS4LuMO98BO0oBLxmLRK89cYes42JVn0bmzWTJrfpAA4T7/o0/FrTxzxepkQhErz1zhqkKLUnnmClWhB7bvaXUyIf+AQWfCX4Xef6V4f1Wxw5Vnnnx8+Gf+KjRVnu2ybdiMwCq0XbYNIRE+nJBf9GxvXs7aKrwKzSN6tisOGDkEzhhk02fLGYMRd/jqzlUw6Jl5JJkv4ucnswB8fjL73d4hh2oKf4sajSb0fOO6O5rPGCT0XGeUAjBDzwBWnMn86kwGv20DgO5C+ZD2PS3RM4UAtF3oeWOpFsDG0tTHuike66ZYcHoDP4Bm0PPD1l5RMwPQ9NKaTfRMUV9MdgPsRc+DvaOGeCvyatSPT4lqBdC3aOi5ZaRMJnDwIBtDz09SWa1O28TQY0eP+nPPHjTxYrswNADLwffmizkwNAHomJiYm1vbg6HnJaqkEsjlMjO43HSGtjF0Wy9vAPTeZFEwNADX6TgS5i8i9My8kxpNKk+NTu/SNjSDnpm7RjIQjS7N1S3sxq2nTIyd8jEAjT5DuXCZWp/RAj1odXqWJi0bxjoAiuFD1Jl58cvXxk54SRE0QD5soEu3BqBctVG5amPsOy8CUK7+oSUxtHLF+vgV62dPfEedkQOJe+ynH8jDxB9zzZWRz7wKkwlomD3xHUWImCNG+KPOyHnwhQkAZPf1pmlsLRPGy6E7WeJq9MwOg6EVg/sBUB84Gvvmc/Kh/Vy9r9mgwtQTRaIXn63vm3eESDTbyyFu8Zlza2uFaCHFZwoVn3d8s/TNRd+dOZD594YvIl98P+LFD3Q/fJn6wwrNqXNgzRscODwcwPfLF+7P0D333uR+weFPDuhRd6GcmTfIftUwYcEStS5do0//Y/rL7JGDpN2IfuYhemcAA6DVGbkPvvguu/hMUadnP/T8W5bFZzJvzIiOSdVqlK0C6P9MWgH0rR2JROIh7dyuTVczBn3p2jEA93a6KTIuqv5LArc7vUcDqDTsh8TUTup77toBH2l3NoOuMZafqtllxqAZJTR9SlKOGmPZiZrtbCW0GYOuNpYeq93KpYQmEzRbCU0AGraU0C2AnpkUGzLIENJRGjDY69kW2/eysXh/7S9oKju7Gj0zIR1Hlza9XFR55gpNJhzeIaq0rkD0yjNXzlwrWFeybvQdUWPuiHJF5ZkrZlVouwYMOhyrVWiybRy4UjS4Q4C46JkJVxV6xenMrMslwzoEwLnKM1dWnslYWZD+Y8h4yyr0sn9yMi6UkexCFPTMxGYVmqk8w5bo2a4wRo5fwsdxrREierY3Ao0cPLaNiK6+zOzB8C6+obf3WHw8l8iy1RmDqZWVYbd3Z9Czsd4NTV/Ez09mZVwsI1n5e71DAAz6+/Op/QZT5RkW6Jkqz+BGz68HRABo1+aGJYD+8nRm5qXS/t6BALjQM4C8K8XrinX7q4rtQs81RncAjzX9FOIB0PzomcIAaPoRd9UIADbRMwD1xWT1xRR/z8Bnutn4QzStKhkAg57pYCuAvqUTFxdnqLseKZPPTVIBtgcPsjG0LlXD5e4AL4b28WrHhsh2YeiHHxkvF+a7tMTQbADdbGthGJoANCk4LOFy0xnyYWiVMn7v1l/ZYJcHQ2tS9TSTEC2Ooa2iZ4s1VtptImxtgZ6tn5sLMHTCgiUAYDIBIPrMDvkZFKFBLipEK5d8Fb/0q9kfvjH7w2YsMn75WnVmHhqMsRNechGGZtAz0WeKJueQcvUPcHN3NYZWrliPNh6K0GEEf8lT0TIYWrl4uXLxl7MnvR876X11WpZyyYoWw9Dxy1bHL1sd+8az8qH3K9dsMhmuRj81QnZ/b1fvS0nc/Hfi5mSqnCuCB8/+4HXF8MEts/WDr05UZ+0HIB/av2UANBNNbv7ID2IBtAB9brZvUyFae/ikK4rPnPuyCtFyuZyLPlN/ucGEH75cCODTFT/u+GaZf//gB1758O8Ny68b6xn0POzpCTm/rlr2w+/seYMApr3y5H3Dwp57fzKA/Cz93jWLATDzBhtPRp+uXLBEER46a8rEkU+8MF12NwOgk7Zq3G67jS2lGRO3ek7MNHVGTvyyr/f99I0iNIh9wsqlK+OXrrSkz6TY+mPX7kiZvIN3u1bm+d9JK4C+tSORSPw7PnzFcOqGsYrt4rAcSwjgvOEQjSWsMVZAYrrDcxCAguo/JQBbCX3g8lpvqS8poZmDNJ9QAgkAxshBVmhGCU0+aAA+7n5+nsEAqo2lbCV0RtXy9lJ/gUporjZ0CzDoYkMGnY+/x3AfqV+1sbSkLnOw17MdhU0IdCYFBj2Agrq03h4RAKrqi4d7v2jrSuLkpCGV/t+1Ta8eHr1bBj1TaCwhgMC2gZZjr1ya2f98BsBFlWeuMFboI9WF9g4YdCZMFZqpPMNp24aQsKvQjG0jqJNfUEeX+HMoVIWWujX8ENr484qxbYR09gsRZlt2IBkXy17K3GpWhXbStiEkNJzQ0shhr+jZ3jyXtoOrCs0veo7o6mtqgP58BYBP+w5Nu1AOYHgnPwDL/skGwD9jECz0TJXn4I7+QU1d+6/OZKw8kyFE9MwOg54JK68r1psBaEb0PLhDwBButfq6Yj2AzMslAAa3D7BJn8m2QdD5seY/hawCaCHomTL56JwxXaMgGD2rLyYDUF9MGd4hCoCbBDzdZ0LPBiMADGn++6IVQN/SIQA9IzoGQKpWaxeGFr7SDEObAWiKQAzt2b7znzu2JsydD4mbvRhaq9GaAehmW9vC0ABI5XzzinZiaI1Wu3frr+TNsImhZ02foknVJ8xbyMbQCXMX8NxZ5zG0EPTcfL1oGDphwRK1Pl0RES6PCLepFqHzlEeEiuXlMCs+c4UK0eJ6ObjQMzvUhhYdQ2tyDqqzD8FkUgwbIB82wNoCF2JopvhsKb5wNYZmo+dm+zZhaEXIMNfpOBj6POvNRuGkJi9fuWaTJi9fdl9vl5JoQs/sSqk6PVu5dCXqjS2AoeO/XKfOORz7ybvEvpVLV5quG1oGQyd887Nyzc+zXntKPuS+hHWbIZEoBvdrMQydsPZX9fFiABp9ulwWGTNzhlzWQm2zhMS5qqS5/Gte/GDKoSx9nbHhnqGh7HmDTPH51P7McbNXA/j6+aEALLUbRJ8BzH7jqcNZ5u9TafzpOvWTWVMmavTpcTNnkH8j9XjhI/O+Y4rPTLyfnTF74ttm2g2KculKSNzjl3xZU9vsKUSiStUAzGx8JqNZMG9uq3/jv5NWAH1rJy4ubvHc79p73kUMulPbez2lXegi6kFbMujz1w539Rxca6wI9HmYDp4zHLh6o5JRQlca8gDUGMsBSR/vZpW6kzU7aozlQztOYB/8p2Y7AFJCZ19eGdTx3eM12xgGDZYSOqNqub/H8Cv1ZQEeIe2lfvm1W9hK6A7u/kV16WynM1cVuoPUP8AjxBX2Z6o8+3sMB0DQnEIN7s7uPV3n3yDzBnHnO5t2OW3Qn6nTDfd+UZR5g1w5aUg9aUjt304BoF87OYD8q5rzxsLRnV07bKTiekHF9cL9NSlhHaMCPHoDSKtK7tMusGXqzwVXzyRfTBnZJQrA3vMpU+589R6vQFfvC2B7pRrA9rMpfb0D20hM5NxogX0B/FSmOVxddLi6EIA2QtBfkmLl48M/51UVAxDRtiEkVIUO7dwj/WKZWLYNIWGGE6adL3c1emZiNpzQ1eiZiaWRw+aMQUa1wUicJ94dFNq5e/rFcqLPZ595TaDo+d3eIe+xvqMIPb/RM3xtkb7gkZt/K/Kg5xVnMumKZh5nNoC2OmPQMoSea+vdATzTXb6pXNNG0sADoBn0/BjHq19vHIz/bvBs5lPh6BnAn+dS9pxPUXSOgmD0fK0eAEiIlHklhQtA86BnSsX1gmsDC1uf69+iYQNoikAMPS9RpUvV0sfCMfTO3XvAAaApNjG0Z/vOhsvnAWhSdfZiaI1WGxMTYwmgm23Naw7RarVmDBr2YOhRD9NTcROjb7YXQ2tSdbHTJ6tT0zQ6PdeddQxD24uem193oXLeImdwsM3is9WQl8NJPbRA9NxsX5EwtHLJV+r0LEXQQB70zI64GNpq8dlqRMfQPOiZHcLQ6vQcccXQysXLNfpMRViwGX2+uW9aliY9K37JCkXoMHEL0Zbo2SxEol1UiE7c/LeutJr4r9lFrsbQ8V+ui//yW6suBeXSler07Ng3n5MP7e8iEp3wzc/qnIOzXn9KPrjRQK3Zf0STdzTh2808AxLF2ZpU11M/mTVlYuPW+nTlgmVwl7YAhuanzwOHhxMWPJSp7xcUlp+d9sArH1Hx+WRe+gtJ3xYdytL98OUdfYcOfXoCgB3x79zhfdv8DVvo6t8vX3ij3sSgZwA/r1j081eL6s4WNjuHBUsAsO8+AWjSbuya847s/jvZ62kgp+W3ChWfZ0/6QB4WHPfFGkb9TMXnGdExM5uexiQlqjxva9PaivjvpBVA39phADSAK4ZTVwynevhEEoM2GM+TiIPGEjJXobGEAPp1utmrOmc4cPbagbu8x3hLuxOA7uY5hMYS+noOY88qPFmzQwIJmaCZg4wSusyQTWLoMkN2tbHMzyOYrYQG0N7dz0fqd7T2N3+PENJxsJXQdGukhKaPeXQc/b2eEotBsyvPbO5slqO1v7nBTVwXB7vyfKc1un3JWHymTne7tJfoIg6m8ty/nYK4Mzv5VzWHr6pHd37V97ZAcfcFsL9GXXG9oI0b/D0Dw5sDDn1VcnldwYjbR/RuK/6+AJIvJJ+5VuAuwZ3tAkd2adz69NWCveeT7/cOdGkJenul+kRtQV/vQACPdlMAOF5bsODUepfKNyiEnvv79ATwgp/sx1LtT2Xaz/s/R8oCl2ZtsX5/VfFAn8ZXUPJrCt/tHeLS7jOTlWcysi+XDOkQkFtVLHVr+LhPsOuKz2YhI0R9g1v25ZITo1zriDTLy1lbMy6WAWgB9MzOkhM5S0/kTO8/2CZ6BrDoaB4bPdNFy/7J/uiu4A/vCn45+/fMi2V2oeevzmQAIPT8Zs9wABGpCwlA20TPBqMU1mQaBKABCETP64p1z/aQA3imSfLOA6BtomcKA6AdQM+RnaJSL6XM7hPHv9gSPVOsAui0quQSQ0EXaSA40DMlr0bdMQitAPoWjSWAptjE0PMSVRJgRnQMrYyIlPHoOCg6rXb82NEzo2OSElX8HmceDM0A6MaV9mDoBJVKq9GYAJ7FPBia1NUJKpVKpXIMQ6uUyr3bNjeBZocwdEQYAI0uTR4RDkAUDJ0wfxEASCQAHKDPN+9p45nbN6XQMfTcfF8HMbQD6LnZvs5haCHFZ6txHkMLR8/sEIZW5xya/f6rse873lkxc24ICXFbRdhwJwvRXMVnrojr5YhfttpUfZkLPbMjOoa2LD5bDYODxfVyxH+5Dm08+bemfUUvRDPF51mvP2V1gWb/ESpEuwJDU/E5dupEy59LhKFdV4hm/BtWLyVxc//gcADGhgYAv3y1mOYNrpn8Mtv4POzpCUOfnpD766qcX1cBmL9hy8Dh4ZbFZ0LPz703mQ2g2cVnZmvyb2iPFZppNyhEnxWhQft++oZ9XLl0pTojJ3bSB4qw4eq0TAZA07zBmdExkaxf1o+MGdUqgP5PpRVA3/IhCwd9XGe8dK4mixlLePrS73d2epzGEnZpO6CdtCtzraLqv7zbdCcLB6XWWEljCb2kvpWGPJJy0FjCPt7jGAZdYcitMOQAuMd7vBmDLjdk+0h7MEYOx5TQA7yeqTIWM5MJ4WIlNFflmSulhkyxdBxWK89cOW3Qi6jjsKw8W83ZG4X5V9Xi6jjItkGV5wDPQKtrig0Fv1SuE90EnXwhmSrPd7XrfWfz2YOUveeTi64VjO+mEL0Kvb1Svf1syqPdovp69+prceMLTq93XRWatBvP95ANaN+TffuHqwt/LNW2cTN93t9Vw6bXFuvXFelf9Y8Y3KHnoCZfwYErxeuLdaGde7i0B03F57d7hQ3r6D+0QwCA3Kridw9saoESdCMbDQwF8G7vEDqT74MfG+569k0WDobJ5l0pnnTPsFABwwmdz5ITOWga62cWtuiZis+W6LmhQQLgw7uCl5/K+uJUFoCSR99Ku1BO/XGrMwbN0PP1encAhJ4pHx76WdG1Kw96ZkTPPCME91cVC0fPz1gMF7UKoAWiZ8obB+Of8FU4gJ5lnUYASDr9GQ+AJtEz2TbY6JliBqCZGYPdb+tl81XJdRVxAFqfXt6i4QLQFB4MzQBo+nRuompuUiJ7ZB9X5iWq5iUlCvE4W8XQZgC6caUwDD1q1Kg9e/YwUg57MTQzOxGAYxhao9Xu3baZYcf2YmgANJkwdtqnAJTzF9vE0PKIMOb2rcaZ4rPVCMfQzqPn5vvagaH5dc/27Ws/hnYYPbNDGFqdmRc74aXYCS8JvJZy1UZNzkH50AF2oWfzG1n9g2NTCgUWn7nijJdDuXi5Ji1LERokED0329dpDG2z+Gw1Ynk5Ejf/LQ3oy89/zSJWIZqr+My/r1gY2rL4zBXC0Jr9R8UqRGvyjoz8OM6MvVpf6YJCtBDtBuXZ9z4FcCBTfzwn/YFXPmJrN65dr6fic+6vq84cyLz7kTczln64+1gFe94g3cjPKxblZ+ufe28ygL1rFu797Wc0zRu0hO8jn3hBo0+31G5oj5xO3LRPPug+zaETn8VMZ5f0SbsR++kH9OlDz7464zOlTCYfM3pUhEw+s/lTjqRE1dxEVesz0v9UWgH0LZ8RI0bkphdTCZpyriabxhJeMhwDQB9cunasp8+DDIMmF4eX1JcRcQCoNVbSWMIKQ96gjo3PgWqM5ZWGPEYJTTJoX89hNJaQBhI2rWymhAZQbSw7XrOth0cwo4RmGDSAo7W/ARK2EhpNJmgIVkJ3kPr397L+GiZPBFaereaKsfRo7W+BHmGO6ThsVp654ryOg7/yzBXScQz2VjhThd5fowZA6DmcWyrKpNhQkFaV7C6B80ro5AvJAAg9M5VnrohbhWZsG492i3qU9wZFr0L/VKYBQOj5BW4DgCuq0GuL9QAIPb8aYN3aub5Y54oqdPblkuxLpYSe3+5l5a/r9w7+4roqNIOezdg62ajd3Ro+uivYRRiaQc9s0pp1qfSrMxnu7iaXYmgqPttcZjZjkNAzVZ6ZNV+cyqJHb+WZjHYe13XnKkI692CjZ6LMbPRMlWc0R89rivQA1hbp+dEzF1Ymjca6Yt1zPWTHaws+Z83ttFzJhZ4pZgDaLvS8tVJN/3cMPVO4ADSDni25MxMGQDPomafyzCSvRr2/JuW+dvJuw91aG9C3aOLi4ubMmbNj5+5IboeGVQxtBqApAjF0Zx+vGTOj5yYlxsTEzOIQYjAh1CuPjCQMbRVAU2xiaALQjYvtx9BsAM0+Ny4MrWnu60hQJWo1KQBgQuz0yfwYWh4RfhM9szE0TLFTJ2n0acr5S5zE0KKj52aPAC+GFhc9N9/XNoZ2svhsfV9hGFoU9GyW+OVr45evVQQNsFmIdqz4zBW7vBxOomd2HMDQ9hafre+blqVcskKdnjV74jvC69vxy1arM3Lk999lF3o2i8OFaIHFZ644iaGFFJ959lWnZzs8qNBm8ZkrohSiLbUbtvdtwtCyyEi5LNIZEs1Dn5l5gwAOZOj6BYflZ6X1GRLy6NuT3hzey7L4XH4kJ+fXVV69B979yJsXT+RlLP1w4PBwZt4gZfYbT/ULCqcjP69YdI93/aypk0Y+8RzNGzQ/t4XLlAuW1vxifnpUfI558ZGYFx8ZNXMJA6AZ7QZDnwG0Cbg/OjrGTLtBIfocFRXV+oz0P5VWAH3Lh/5UaO95F5tBkxLas00XANSGNhtLeNV49vy1Q23bdDXcOH9H20Fe0m7MdUnH4es5pJvnEObgqZqdDIPef/nrwR3fBnCyZoeP1I/NoAHkXl7VwzOIYdAA2ErorKoVPtIepIQGUGrIZCuhrxhLenqEUvG5p0fYodpN4iqhq4wl1LMWXnnmir06jsvG4svGYuGVZ6txWMchsPLMlbM3CpOrNjim42AqzwCEoGd2nNRxMJVnADbRMzvOV6GZyjOabBtCQlXohL7/c2xTClN5BsCDnpmIWIVm2za40DMTcavQK89kAMi6XDK0Q4BV9Mwkt6r468K0iC6+YlWhb9ZyefXW2ZdL3srbLLoM2ip6Zod4qyt0HPzoeVq/wfUNEkb0zJ4xCJZtY/mprIxLpUPb9wSrMD6kQ8Bt7vUbhz8Glm0D1tAzmzsDWFOkX1ukf8kvEsDB6qJJdwUFN+0Iwej5ar0bgOd6yAHE/7PBKoC2iZ4p+dWFmyvU9C/CLvR8vLbQzzMQwF/nUxbdN4d/vVX0TLEE0ELQM6W0ruC3s98CsBc9399WDuDCgNTWp/u3aOLi4vb99ReAGTNjeBg0LDC0VQBNsYmhO/t4Xa6uBTBu7OhUrdYuDA2Y/tyxlWclD4ZmA+jGxfZgaABmAJp9bpYYGkCCKlGVmEgXJagSJfXXZ02fotHpE+Yt5MfQTSBVwsbQAGKnTlQuWAJInMHQLkXP7Fhi6MbqscQNgOj0mbWvdQztCvTcbF99hnLhMrU+Y/Yn78VOaubjUqdnadKyYaxTDB+iGD6E6xYcDr+XQ1z0zI4QDK1csV6de1jcsX4C9dCioGfz21yyQp2WJaQQ7VjxmSt2YWjtkTOJm5NHjBrlGHpmxwEvh73FZ/6t7S1ECy8+c4XB0IrB/eRD7hdOojV5R5TrNikeelg4em52dX26Rp+h1qU7VogWUnweMDwcwH3DQgH88tXix97+BMDWr5f2HBD8QtK3ZsXnnF9X9XnkjbsfeRPAP3+sOfnHWqvaDfYEws63mTS6dEv43kjYAVPV2V2fNfs5kLhpn6SNR8yLjwDQHDqRtDWV/Buk3dj3y3qzu9Am4P5ImeyPXea/i5MSVQ0NJgDtPG9rFUD/p9IKoG/5pKSkjBr5OABPaRdLBg2gu8/Nn1bl1alebXyJQR+79OM9nZ67ZjxbXJ0c6DPKjEGzxxJSSAndx3tchSEXAMHoCkNurbH8bu/xzDKaSQiAZND0MSmh7/V6vNSQRUdq6sv8PIa3l/pRoZhRQjM6DsbCIYoSutiQUVVfYoKpvbufM9yZnVJDZk19eaBHGL+Oo8Cgv1xfIgE6uvd0jDubRbiOw7HKs9XYq+Owt/LMFapC2zWZ0K7KM1dOXy1YWbRufNcou6rQwivPXNlWqd5WmZLQ93/26jgOVxceri60WXnmipNVaKu2DSFxvgrN2DYA8KNndr4uTDtYXehkFZpEz0Oa4KmQq7yVt1mUKjR5KvjRMztv5G4RsQpts/XMP2OQQc9UeQ7q5BfU0Z++jm/2DHuzZ/iaIr3XbTdgYduAAPTMrhu3v+0GPThC0DNVntGEnilmAJopR9tEz5RN5ZpfyjQEnQWi562V6ge7RN3ZtlET9HXxug96vca1ngc9UzaWr3vNr/FNJMLRM4DMKymZVSm+twWOETCK1gw9U1oB9K2bESNGbN2xM1WrSUpUQTCGjoiUAeAC0BQeDM0AaOYG7cTQEbNmTKOhfFyxiqEtAXTjYo1GpVLJ5HKu+YS0ZvTo0TzmEJsYGsCs6VNmTW9kvg5g6JGPPkWD/gBYYmi1Lk2IGxqAPCJ877bNPAvEDYOhFeGhLio+c+x7E0NrdGkuRc9mUS78XLlwmSI0iArRrig+W40lhnYdemaHC0OLWHzmCo8eWrl4ucRkkocGK8LEt7HxeznERc/sMF6O6KdGyO7rbZVEO1l85orAQrTDxWf+fYVgaIeLz1ZDgwo1+48ILEQ7UHzm3Np+LwcPfWYbn3/4ciFpN+qMDY++PWnb10uu15tO5mXUGeuLDmVR8RlA7q+rqq7dIPSMJvq85VAZc5s/r1gEgF2FBvDkgB5W7z4Vn2OnfqLWpc98eCAzdZBdfG6844dOJG1Njf3kXeXSlYqwEHbxGYA6LVO55Mt6qacZfabi87QZ0VNnRj/+yJgEZasA+r+VVgD9/yESiaRbh8hLtYckcL/D+2b12GwsIYWU0D19HjxvOGQCbvfsd8149sK1fDMldP6lDQBoLCFzkJTQ3tLu3tIeBKDRZIVmlNDlhkYwUW7I7uv9KJtBl5Ek2t3PzzO41JBVVpd1n9cTxKAZJXRa1ecArCqhi+rSuUQcFEslNFu14SP1ay/147iqg+HRcbArz52kAZ2cdkazQwy6j2ckl47DycozV4ToOJypPHNFYBXa4cozV1YVrZNKMPlO2wjGscqz1RyvLdhWqRZehSbbxuHqwv4+vRxAz0wcqEILsW3YjMNVaAY9C+fO7DhThWZsGwRP7bouGTnCuvg6VoVmi56FoGcmjJHj57BxDuwLXtEzO1yiZ0v0TF9xNnqmlR8c+iWvqthh9EzZWKo9UXsmqJO/QPT8nDX7zZPZKk34VDSh59p6d7BmDPJkU7kmv7qwV9vep68WTLvzFZvrGfT8UPNX2qwC6D/PpQDgR88UAtAOoOdB3oqBXoq9lzbwA2ir6JnSCqBv3RCApo+FY2iCyzNmRvMAaGZlaqrWTCHNBtBNWwvF0KNGPSyLjFQlzXUAQ3MBaEojQY6J4cLQ7dq12717t0qlknA3pm1iaDaDhp0YGjcb0LDE0GpdetNt2sbQpPigZS2QhPkLlfMWySMjYGrgd1KLnpGPPa3RpQFoMfrMRKPPeOjJFwEohg/5a8MXLbYvg6Hlwwa2AH1mwp5SCMDV6JkdMy+HK4rP1ve1hqFp2KB86P3yIaIN07NMwppN6rx8s0K0i9AzOzwYWqziM8++PF4O54vPXBHi5UhY+yu6+DmPnpvtK2xQIRd6HhoakZuuo49f/GAKWPMGmeLzmDcmjn1z4ucfvvhPXvq42V93v3+Y1eJzz4deLdq3ngC0ZfEZQH6WPvaNp+XhoXt/+9H89BYuA0CPzMgnXmAAdOKmfdpjhTEvPiIfcA+zeNTMJW5eHdTp2WbaDQDKxV/GL/kSwB+7drNHDhJ9/v2PXfS6+B0dvFtp538trQD6/0NGjBhxIOvCbdIOtYaiG/U17T3v8pB2oouIQTNjCSnEoAG0bdP1ds/Gn9cl1clsBp1/aUOgzyhSQrNdHDXG8lM1u7yl3ft4j2MfZJTQBKC7ew6rMZadqNnO1nGQEhpAcIf3AVQbS0vrsjq4+7OV0AA6uvuTALq91K+4LqODuz8slNBcYZTQ9k4XdDhEzzu792QYtOiVZ6uxquMQsfLMFdJxDPaOMqtCi1V55gpNJnzd/3VLBi1K5Zkre88n7z2fMuXOV7l0HAx6dpI7m0VIFdpe24aQ/FiqPV5b8HpAOH8Vmqk8Q4BtQ0iEV6HJtuEMembn68K0rwvTNg5/TGAVmkv0bG8cGE5o07YhJNQF/jlsvF1V6CUnctIvlKdfKLO8KLRzj/SLjcc/7hP0+clsmzMGudBzblVxXlXxmqK0V/0j82sK1gx9Ek0zBu1CzwA2lmoPVhe5S0xD2vd0DD1TnsxWvR4QkXel6B6v3hCMnn8p04ztGnV3u8C7vQKXF37LD6C50DPFDEATeq6tBwB+9EzZWL6u6FqBA+iZjvAAaB70TGkF0Ldu2ACaIhBDjxs7OlImn5uosomhLRXSj44dvWPnbq6V/Bh61KiH9+zcgaa/uuWREfxGDrAwNAAeAE3hwdDt2rW7evUqmhrT9mLoUaPH/Ln9t4S58xPmzncMQ4987OnmDWhzDM0cp/X89xQtgqEJPc+aMW3WjGlgvhYthaEbZSPTPp01bXLjxy1bgp496QN5WLByyZeoN87+8A1XyDesplEMHTwYDfWx77woHzagZfaljJwwU51zCMBfP65ybGqfY1Fn5Dz4wgQAitDgfb+sa7l9m/TQitBh6vQcVxSfucL2cmiPntGVVitCg1xHn5mYeTkAqLPyxC0+82/NLkSLW3zmCtegQhGLz5xbcxeibWo3yLlxKFPPzBuc9tXP275esvXrpR8v//HuISFEn9/+KRdN8wZDJi2n6/7zx5pzR3MCHnoVAPI2xa/dTPRZufZXZgIhmpB0v6CwJ0eEsB8EpvjMHPTo1psE0GztBjujZi4Z8dDDZugZgHLxlyYJYj/98Db/+6pqrjLHSbsxdWbj71ldqnbpgnmtT0f/a2kF0P8fEhcXtzBprZdnTwC1hqKauqI7vIOJQV8xnAJQZ7xEYwmZq9BYQgD3dLrZdrxgyDfcOE9jCc8ZDgC4w3NQQfWfVhm0r+cwpgSNpuGEpITOvbxqaMcJdPyfmu08YwkBHKv9na2ELqnLpCLz4drNHdz96QOwlNBVxpL2Un8AV7ir0AAcmC7oTEjH0dHd30WVZ67k1v4kgWS494suqjxzJblqg5tEMrrzq3BN5dlqLHUcoleercbqZELnbRs2Q1XoIe0DzCYTChww6HCoCh3cyf8Na+SOQc+icGd2qAotdWv4Zoj154uO2TZshqrQUrcGkg5bjUDRs10RPpxQFPTMxK7hhAJnDIZ07jG8k98Xp7KGd+6RebHM5oxBAGz0TGMDsy+XDm7f85WACADTj24M6uSHpsGDVmcMcqHnjaWpT/kqALRvY7RKn4WgZwA/l2l+LtM+20N+v3evfgKUOAx6HsuaGfhh/py1A2dbXc+PnikMgLYXPWsvJadeSgHwRNfX/DwC+RdbomeKJYDOa3qhkQc9Azh3o1Bz5bvWp5e3aCwBNMUmhh43djS9DZb6R/xjDNEcQ89LUlkF0OyVbhx4lwHQFPrzm+GbPNGk6h4e9xiPQ4MdqxiaAdCNN2gnhiYA3XiRQxh65GNPx079xAI9c2JoRUQYeTmYLeSR4ZpU81q0izC0GXpmpwUwNBs9Wx5XhIfETpkoDxfn97tllAs/1+j0itDhDEmhN4+3AIYm9Dz7/Vdj338VgDrrgHLFenXW/pbpQStX/6Bc/QPJRhqL2G5uNl3JYiV+2Wp1Rq4iNFidngVIFGHBrm5AMyEGHTV8YEpGnul6Xeybz7i0/myWkR/O0eTlA3Bp99lq1OnZDz3/FgBFaBCpe1tsX6YQjYZ6VxSfucIuRGvyjohefObct3khGoAqaa5Gm2q2bGjozb/XTICxwdTQYHrmvclz3nz6sbc/efTtSfPfe+7OQSFj35y4c82yXWuXBQ4aXnejYdjTE3bEv80Uny+eyPvnjzXevQYGPPQKgKrTB5C3CQAzb5DJzysWmWB65r3Jc954emnMx4xzP2HhMrUuPXbqROaIRp8ePytGdv+dZtoNiuqHP1Q//KEICzaTPqvTMh969jVSvWvSMud8/g37iQdpN5jFC5ISWwXQ/8G0Auj/DyENdCevxlezrxurLtUeYsYSllz+07/jw6SEZvugaSzh7W37MyVoABcM+ReuHQ70GXXVWAGACtGkhL7LeyyzjHFxsHvQaFJCA+juOcy7Sb5RbsipMZb19X6UPmVcHPd6PU5HSg1ZZkpoYtAkbg7wCGEroUnBYZNBtySAJm5OcHyo1/Mtg54ppw36y/VFl4zFXdv0GtHB9hu9RQwx6IrrBS6qPHOFdBy92wa6qPLMFWYy4fGaQrFsG0KyrVJ9+uqZ53vI+vv0+qlMc7i6qL9PT4hXeeaKWRVaFNuGkKwv1q0v0X0z5Cl2FdpJ24aQUBX64z5BZkYOpvIMwaJnu0J3zepwQntFz3Yl61LpG3lbeIYT8qPniXcHmUz4/GQ2gI/uCs64VAogqENA1uWS8C7deWYMZl8uIUs4g56p8gzglabvqw3FuvUlqW/0DIc19FxX7waABz0/1dRTnn/6W6sGZ4HoeXzXqO1nUzYNm8WzkmIVPVOsAmgh6Jmy70KytMm2AQHoWXspGUDqpZSg9lFBPlHbzn8b0iGKB0BzoWcKG0ATeq5raADAg54pmy8kAGh9enmLhgtAU3gwNAOgKY+MGWV1mcUNNnacBQJrSwxtBqABaLSp9He4TQzt2bHLn39sT0iaB4nEAQxtBqAbdxeMobVaLQOgGy+yE0NrdGl1ZwvRSCIcx9BWIyKG1uj0Gp1erUsnTQrnMtdgaC703PwM05TzF0lMDaJjaKb4bFnig+sxdPzyteqMXEXwIKLPzU5sxfr4FesVwwa4qBDNRs/s4y2Docm5zJ79SFMf45d+pQgNjp30vis00EyUS1bEL1nx2cdvzv7oLQDqjNy4L9a0GIZOWLNJ0s6bvp3o0aYStCI0yOZ1nQxRYHlEuCJ8uHLRF2iob5l9KcqlK+OXrlQMGwDAVG9sSQYN4OGJSs3+owBip34iDw9hDzt1dTT69JFPvCBwMRWfLbUbO9csu3ajPurlD7+d+krdjYbyI9mW2g2izwAOr/606vQBM+0GFZ+ffe/TZ96bDOCZgX51lWfoopFPvKCICDXj8iOfeMFUdRZu7nuSJpmdJNHnWa89oT1ewgbQpN3Yt2k96d0ZAJ2UqNJqNFNnRpN2g6JL1T7+yJjk5ORWAfR/La0A+v9JJBKJt0dPKkEDuG6sqq0rorGEBKDRNJawU9t7GSU09aDNGDSNJezadtDZawf6dWr8QXPOcODstQOMErrSkEfHa4wVvp7D2J5oUkKTjoM5WG7IYZTQZYZsOlhmyL7X6zEfqR8AthI6o2p5e6l/R3d/YtBFdelmSujL9SXt3f1K6jLaS/0l3JMJXc2gSw2ZAJjKNoAqY0lxXUZn916uM29QLhmLScHRt60MwO3Snsevabvf1rsFus8A8q9qDl9VD/GJAlBRVxDYLrDFALS+KrnEUCCRAEBfr8AWo88A9p5PPn214NTVgr7egVMFWKFFzPHaggWn1gN4vodsQPue9s4ndDhMFVpc24bNMFVoYtCuRs9MmCo0DScUy7YhJGbDCR0WPdubFWcy864Us6vQ6RfK0y6U8beeSbUBgKD5F6ey3u8dEtzJL+tS6YozGcM79/gu6HGuGYNDOgQM7RAAFnp+hfVNRej5+R6yn8q0usib/IWxbUAYeqYwAJrQ89V6NzSfMWgZBj2P66YAsOj0etW9fCp2HvRMYQPorZVq+r8Q9Axg34Xkv86n9Gwb+FL3120uJvRsqAeAIJ/Gk8muTnGTwNK/kXklBQAPeqZ8Vxn/uu9ndqHnI9c0R69q+nhGnjSktj69vEUzYsSIlJQU9ntaLUMYOjJSxlZtmAFo2KOQHjd2NH0gEFizMbQlgKYIwdCeHbsYrlwEoNHqHMDQGo2Gy+AhEENbPTfhGJoZQkiwwxJDa3TpsVM/kUeEEYZWRITKw8PMMLQ8Itylbmie4rPVEIbWpOqcH06YMH+RWpemiAiTR4QLIdriYmh+9MyOKzC0WfGZc+usA8oV60X3cihX/6DZf1QxfAjXlEXXYWiyPytChzPo2XxBepZyyVeAxBUY2gw9Nz+x3Lgv1qgzcl1n5EhYs0m59hdu6O/uUhxM/Dd28sexUz6iIxp9hnLRF2p9RgsQcOXSlWqtjvk2Jv94i2HohHWb3dp3mv3xW+qMXPrP5H4bu+3r2t0XLlMuWGr1ojc/mY6mQsDaZfMBPPvep+x5g0zxOerlD6Ne/hDAt1Nfkfr3Z88bvF5Xz6BnAMX7NjACaCY/r1h0OEs/Z+2v9Gl+Vtrfaxbu/e1HS+0G+5wti88AVD/8IbnttlmvPvnwpMTZ0dMVTaNEGe0Gs3LkM69Omx2flKgKj5Cxi88AFiQlzp+biNYyxH8yrQD6/0ni4uLmzJnDZtAAaCwhuTioDW02lvCS4ZgJJgDXb1zy97n59zCNJbxqPMsAaAC1xsqC6j2+nkO6eQ6pMZZXGvLu8h5LVeg+3uPYDJqU0MxYwqaDN5XQ2ZdXBnV810zHUW0sPVa71d9j+JX60gCP0OK6DAnQ3+upKmPJ4drNbCU0maD9PUKIQfP0oNtL/UjuIW4YVQgAs7GHAIoNGdX1pUO9nrd2VWdDlWc3SLq06XWPZ7M/0vTV37tLJK7rQedf1QAg9DyUJYDeeWG91A3PdrONSJyJvio57XJKZKeoXm179/QMBLCxfF0bCUZ2GXFnu0CXbk0aaBJ9PNRlxL7zyUWGgke7KfpyWKFFzLZKNYBtlSnju0YBOHPt9At+shYD0D+Wan8q0/b36SWVmF4NiKDiasuEetAAhnX0/2rgsy22L4D3Dv6Sc7kEQMugZybMcEIXVZ65whg5iEHbRM8APj+ZzUbPdNGKMxkTAkMB5F0pyrxYxjNjkB89k3Dm8WwVAWge0TO40TNl/ulvh7TvSZVn2ImeKTwA2iZ6phCAJvRcUy8BIBw9h3eMAuAmsVF8toqeKZYAmtBzXb0JAA96pnxXGT/YO8pe9ExjCXZfntv69PIWzYgRI+rr603AzOgY9mAfy9A7XhnjsyWApgjB0OPGjt62c7dOq52XJAhYszG0SpVgFUBT+DE0A6CbFjuCoblGFMIWhh41apQsMoJLGCIEQ3vc3n3v778oFywBTFYxtDw8NGHBEvr7Xx4RptGlKRcsjZ02icHQTTebBkAeGQ7A0sgBRzG0vejZ6iPgMIYWUny2GucxtHLh5xp9uiIkyCZ6ZocwtDotyxIg2hWB6LnZ1uJhaK7is/V9M/Pil69VZ+bNnviOInSY8yTasvjMubULMLRyyQq1Pv2zj95UhAzlWRb/xTdxn6+RD+knbiGais88D7vrMDRTfGbQs1mIRLuoEN0Ivq0pZZgxmPLB97mIRCes25zw7ebZH781++NmLzmoM3LjP//G1RiaBz0zeWPitLwM3cDgcADrv1hgWXw+mpMW9fKHgQOHp3y3POW75QDGrNDBWvGZ0HP73oN6dmkXv3YzHczP0v/81aL7g8Ko+Nx0MO3vNQsVEaFomjdo9bSv7ljBPs4Un2e9+iQABkBT8Zm0G+z1t/nfB8BMuwFgQVKiNlUbFhGZm5HWKoD+D6YVQP8/SVxcXIJyEQBPaSc2gyYlNKPjAFBnvHSuJosZS3j60u+BncZfNpy4fuPS7W37tZV2Za5bUp0sgRspoRtvzVjJjCU8cHntoI5vACAY7S31Yyuh91/+2lvanZTQzMEaY1m5IYdK0EEd3wVQbSwrM2T7uPuxldDVxjJ/jxCqP1fXlwZ4hHSQ+rOV0FXGkn5eT+XXbiYRB4ULQ7eX+pHcw+HHloll5ZkrdOYkg3Z+XzSvPN8u7Xm71DqCPGHQXjIW9Wun6NpGTEbJrjwP9bbCLHJr1HnVKc92ez3AM1DEfQHoq5IBEHq2pDDkOX235+uuYNCnrxacunqG0PNDzavWp68WrCpa5zr7M5qGEBJ3ZtzTJ2oLtleqh3QIcKl/48dSLYCfyrSMqSC/uvDnMu2wDv4t0IAm9EzA8WB10cZS7W1uDS3DoL8uTANwvd4NwIErxVK3BiFDEcUKgdohHQKkkob3eocEdxLhR5bA0GRCqxdNvDto2T+N71mh4rMleq43SQBMCAxdVZC+qiA9qKM/WbyFoOcDV4oOVBWz0TPl8WzVGz3DeUTPAHjQM4DN5ZrNFWohtg0AluiZYgmgN5VrAAhBz5RlBd/e793LAfQc3nEEAP3lZB4ATT8Ag9pHwQI9U9gA2i70fLBWfaBGDYDf9UwxQ8+UVgB962bEiBHb/9ip1WqSVCq7MHRqqtYqgKbwY2gC0PSx/RjaZDmIySxcGNoMQDctFoShNRpNgkolk8kTEx3E0G3btbtWfRm83mp+DK3R6evOFYOYqTAMPWvqpMaPp02Sh4eNfPxZeUQYW8ohCoZ2Ej1bPgJ2cWSH0TM7DmNo4cVnzltY/GX8ki+pPmxXIVqdmafOzENDvTx4sCJ4kL37Oomh7ULPZiEM7UwhWjh6ZkcsDM1TfObcWjwvB1fx2fq+TdBfrFayZfGZK67A0GbFZ86tXVOITli3WXv0zOyP3+J6yYEwtDojVx4eKjqJ5qHP5H2mJ2F56bpXP5oKICc99UaD6d6hoUey08e8ORHArjXL/PoHUfE55bvlJ3LTg56ZkLpxRcik5cy8wQ53Nv4kIfp8/5sLAbgd3EwA2ky7wWTOG0/nZ6dZncSYsHAZAHlEWHzsLLZ8Q/XDH9ojp/9c0oiSNfuPqn7Zu++X9crFX6rTs2I//UAe1qyao1y8/O/Mg7//scvs9hckJRpNpsnTo59+dGyiMr7Vv/EfTCuA/v8TiUTS2WfYlasnrDJoZiwh5VxNNo0lJAAN4LLhxOVrxwN8RjAMmnzQXlLfO9oO8pJ2Y65bUP2nBKDKMzOc8FTNTjaDPlmzw9dzWIUhRwLJ3d7j2ef5T832amMZVaHpyPGabQCaK6HLAzxCSAmdX7u5v9dTHaT+bCU0WTiu1Je2d/cDcKW+FK5UQvNXnq2Gitu9PSKc1HHwVJ6t5oKxUCwdB1fl2WrKrxfkVatF1HEwlWfwmk+LDAXaS8ni6jj2nk8GcOpqwV3tAh/ivtlVRevauEFcHcfx2oLjNYWEnsdz0O1Fp9e3cWtwRRWaKs9cddGfyzTHawpdVIVeX6wDwKBn9kXUcm0BAbSZZoRMIKGde7i0B81M5Hu9ZzhNfcyrKl5XrG8ZDM2Dns3y0V3BX5zKov8TemYqz5RVBelv9Qx7q1dYqHbxu4GhljMGzdDzhmIdgJyq4v4+Pdno+XB14eHqwp/KtDzo2VDvDoAfPY/tGrXzbMqWIE4kROj5qtEdgCV6prABNKHnGqMbACHoeee5lJ1nUwDYJdxg0DOFC0Az6Nkqd2ZCABpNtg0IRs/3tpX19ZRvvaR66nY+BbZV9ExpBdC3bghA08d2Y+jomJnRnP/owI2h2QCaIhBDz01U6VK1ACQOYWirALppsQ0MTQB61+49ABJVKgcwNAOgKQ5g6IfHPymPCIudOon8Eg5gaAB7t/6qnL8Izd3QDmNoBj3LIyPkkaK9aE2PgDwijF8PLQp6ZscuDO08embHXi+HA8Vn6/s6hKGdoc83t3bUyxG/bDUk7vKwIEWoIxCZMLQ6PdsBPTQzbFA4em52decwdMKaTeq8/KiIEAceducL0cLRMztieTl4is+cW4uHobmKz1wRtxBtEz3npuvemDgNQH2DCcD6LxY8//7kw1n6w1lpTPGZ0W4UHMz8dsorQc+8G/TMhOxNq07vzwDAzBukHF79qU/gIP8HXgZwZM2UqbGx/YLDmXmDZuew6atFv3y1eO9vP5rd05s6jqmTEhYsaSj9h/wbmkMnVD/8oRjWn4rPFALQAORhw82Kz5q0TOXiLyGRGN1uYwNo0m58On3m5OnRAFoB9H82rQD6/08IQAO4Vlde31DLzCQEcKn20HVjFbsHjSYltGebLiaYOnreA8BgvHD52nGvNt0ZJfSJSz/f3rY/jSVkM2hSQpOOgzlYacirMVbQWMIKQy4AX8+hNJaQPZMQTWMJe3gG+TQdLDNkVxvL/DyCSQmdVbUCQD+vp4hBF9dlsJXQNO6PFlQZSxj6LLoSWnjlmSuHazc7poQWWHnmipM6DpuVZ67k1qjP3ygI6zDC4So0f+WZK9pLyeV1Bc7rOMxsGzbX7zufvPd8ytS7XnVex0G2jeM1Bfd4BXKhZyYnagsWnl7/fA+ZWFVoBj3z10VdUYVeX6w7cKW4n09PWNP7Upgq9Nu9wsggLFYY9Mx1j9YX6/JrCl1RhaaJfAPa9wRA6JmdtcX6dUV617k4+NGz2YxBABmXSoOaHnlCz1R5BlDfIAHwVq+wbwrTAORUlQzt4M9Gz8YGd1jMGHy+hwwAGz3/VKYBcOBK8b3evY7VFC66v9lAFca2AQHo+ZGuUQA+ODzHKoBmbBvgRs+UHZXqVwIiGdsG7EHPUZ2jFJ1HrC9dZ/PnklX0TLEE0ALRM2Xb+W/L6gr4Rc9M2OiZjvAAaB70TGkF0Ldu2ACaIhBDPzJmlATQarUOYGhLAE2xiaHnJqokEkl0TAydpHAMDZNp1oxpCXMX/LlzG+9iTgzNBtAUezH0qNGj2QCaYheGfnj8E7HTJhM+tsTQivDQWVMngRdDj3ziOY0uPXbap/KIcOcxtIjFZ6vhmVJor+7Zvn1tYWhx0TM7QjC0WOi52b5ZB5Qr1quz9se+86Ji2AAeEi0Kem62tT0Y2rHiM+fWdhaiHSg+W9+XpYeWD71fIIm2q/jMubWjGNox+syOM4Vo2n3fqiQHqvrOezlsFp+5whSinRlUKES7QWGKz8+/P/lwVtpPKxaZzRsEQNqNR+d83eP+IADb4t4uy8+21G74P/AK0WcAR9ZM6dml3eGsNMviM4BNXy06lpPeUdqw97cfLU977+8/070e+cRz0eNC5QPuMdNuMHl4UqJm/1FL7YZy8XLl4i9jp0zU6NMnxcxhpg6SdmPy9JlhEY1H/Dr7tD4R/W+mFUD//0lcXNy8xNVtPboDuFZXfu16WSevAbdJOwCoNRRdr68CQGMJmauQErpj274EoCkV1XqGQZ+49PM9nZ5jxhLe4Xnz/VxmYwkpjBK6xlgOgArRNJbQTAlt2YNmK6GP1f7u4+5XVpdFLg4A+bVb2Ero9lL/AI+Q4roMakCX1GWIq4R2oPLMFXt1HPZWnrnigI7DrsozV8qvF+y8sN4BHYfAyjNXnKlCU+XZqm3DZk5fLdh7Prm/T6DDOg6rtg0hcb4KbWnbEBKxqtCMbWNA+14DfXraXC9iFZpsG/zomYnoVWhyU7zeM3xI+4Ah3DzdFVXoFWcyAfC3nvlnDDLomSrPaELP3xQ1VsjXl+j0kZMZ2wasoefnm3+z/VSmOVxddLdXIIAnfRUAEk9uYAA0v+gZwJGawqPVhWz0TFl65tt5973EXmlV9MyTRafXn6gtEGjbQHP0TEd4APTpqwWnr53hQs+UYkNBWlUyDSG0Cz1nV6dkX0np76Vwl9jXemYftwqgbaJnACcNqa1DCG/dWAJoik0M/ciYUbt379FqNYnCStNsDD03SWUVQFN4MDQDoNknaVcb+s8/tstlNn4LWMXQlgCaIhxDa7XaPTt3WD1PgRj64fFP7N36K5oIKZpjaI0+TTl/CYFmcGBoAHXnihMWLFbOX8KFoXnCYGhXo2d2LDG06MVn6/vq0pTzF2l0abFTJsZO+bjxoD5Drc+Q1BsBiE6fmXBh6EaXQtBAEdGzWZQr1quzDlgtRIuOntlhMLQiZNjsie9YLhAXPTfbWgCGFgs9myX+i29SMvJsFqJFQc/s2OXlcB49s2Mvhnag+My5tf2FaM3+IwnrNkfJIwQWn7lCGNreQrRGn65csEyjT7e8aGhoxJDQSDTN3MtJ1w0eHr4/U3/fsNDn35/804pFBzL1xnpTnyEh7HmDKd8trzEYg56ZQDeSvWlV9qaVEXP/Ym62eN+GhgYTg54p6bNG9gsKY+YNMqHi8/8+nDJwePiOlfMZAE2nrYhofEGU4tG119UdK5h5g2Y3lbB+S8K3v10vOWp2XLl4Odyk9OP3Nt+7zlXV0PHHHxkTEhFJxWdKmk67fNH8VgH0fzOtAPr/T9gAGsCN+urqqydoLGGtoQiAl2fPS7WHrDJoX59wT+ntzEFSQvv7jLhgyAdwu2c/Gkvo3aY7m0HnX9oAwKwHXWMsP1Wzi/wbgzu+zRw8WbOju2cQo4TOvbzqHu/xpIRmM2hSQtOnRKI7uAcQAmYroXVVy4hN59duARDgESJQCQ3gPq8nuJTQzleerYag+VCv53kYtJOVZ6sRruPIv6o5e6PAz7M37Kw8W41dOg7HKs9cocmEE3oKnYhob+WZKw5MJmQPGLSLO7OzvVK9/WyKA1VoftuGzThThT5wpXh/VZFV24bNOF+FtmrbEBLC5d8MecqZKjSDni0rz1zJqyr++PDPzlehhaDnkM49Qjr34JkxyEbPb/UKA8CgZ+bBfCBtPgD+GYNMfirT/FSmfcJXcZ934H3eN3/obalQv90z3CZ63lyuAXCwuvBur0A2eqawAbS96HlHpXr72ZTe7QLv8w60t/XMPq6+mOzuZm5/3nchGcCJmoIAz0Au9EwhAN3TM9AB9Ny/nQJActWGhztxvhWGCz1TzAC0EPRMyaz54aKxqPXp5S2aESNGhIVHRHPAUyK8ETK5ZceZADSzzF4MPX1mTASv8XleompeUmKkTMbG0GYAmn2SQjD0qLHjAMCEWTOn24uhE1QqkwlcD5QQDN2uXTu5TAbu87SJoeURYQSgG8/QAkMDaITLHBjao2svALHTJs2a+ikXhgYkADQ6Kz1oJvLIiD93bOVZIHoYDK3RpbkaPZulkXdPmQjARcVnqzHD0K4oPnNubeHlcCl9vrlvZh6xUUXoMHYhOn7ZanVGriI0WHT6fHNrbgxNwwajQoaIS59vbs3r5UhYs0lz+B97/eBCt7ZViFYuXanOzIud/JFj8zm5ItDLISJ9vrl1UyF61mtPyYfcx0Oi7dVu2IxdXg4hxechoREAmHmDz78/GcBPKxY9OWHSfUFhqrefDRw0nD1vkLQbaELPXfoOvXGjvv87iwFUnT5wePWn7OIzgCtnDpT8/V3A7e2s0udjOenzN2wBMO2VJxfN/IjuEVu7wSzW6NNHPv4cAMvis2b/0YT1v0HiJvH02rtp/c3jaZkPPfMq8+KfRp/x2eKvfv9jl5l2g5Km0z49fmxycnKrf+O/mVYA/f8qEomk7W092Az6Wl05KaErq1K7dYgEUGsoulFfc4f3zZ/s52qy64wXzXrQxKABtG3TlTFymI0lPGc4AKD2RiWNJWSuS2MJa4wVDICmnKzZwYwlLDfkAOjuOeyfmu0A+no/yiw7XrOt2lhGVWg0V0IXGzJK6jL6ez11xVhaVJdOPWiycLAL0VfqSwlAk8HD8oGy1HGIWHm2mipjSXFdhlUdh1iVZ67w6DjO3ig8d6OQKs/db+vV/bZAEfe1qePQVyWXGAp6tQ2EQ5VnrgiZTMgzYNDhCK9Cb6tUH68tuKddIOysPFsNTSZs49ZgNi2NKwJtG0JibxWaRM+5V4oH+vS0Fz2zc7C6aMbRjfZWoW3aNmyGqtBStwYasic8lqJne7O2WH/4SqFjVWge28a7vUNWNl0U1NHfza0hpJMfeGcM8qBnYvQA/gqbzmxhEz1T5dksiSc3HK0p4EfPR2oKerfrDcASPVMIQDuGnh+4PeqB20f8fSHZ092GdoMLPVPMADSh52tGAOBHzxT95WT9ZQfRM4ULQPOjZ4qu+ntFh5ePXNMAEIieqfvc0yO0qr7k8o1im+fcmv9gJBKJTCbbaVHsZSdRpUqyMD6zATRFIIZOSlSlajWpWm2kTGYvhrYKoJndbWLoUWPH7dm5o0nKYR+GBhApk3MBaAo/hh49atSePXuoDe0Ahtak6h4e9xgAM/xqF4bW6NJZDWhBGJrLyyGPjCD1M/8DKFYam+Azp2u0Opjq+d3Q4u8+f5Fy/mIAirDg2EkfKMJcIsuyGnVa5kPPvgZAETx437rFLbYvWBhanXPI1ejZfGtWIdpFxWfr+zbXQ2vSs1xRfLa+tQWGFr34zLm1NQwtbvGZK1yFaFegZ7MoV/+gyTlktRAtVvHZaoQMKuShz6ERkem6VDI+r102n7QbdfUNTPE5ZvUvR3PStqxa0u2+YVzF54KDmX3Hvwng8JbV/d9ZzMwbbN/7Zu+w5O/vSv7e4BM4cMyYh9jmjfystE1fLRoSGvG/DxvdUAyATli4TK1PZ2YSMCH1059LouWD72t2N9dvSfj2NxLRJGzcyQBo0m7s2/ID87IHAeiISJk2VfvrNvP3bD396Ni0VG0r5PzPxu3fPoHWiJmoqKhr18uu1ZXTp23cfdq3u8dgvFRrKLpN2uG6sQqAl2fPNu7eJZf/rDNeomUe0k7tPe+8duPsZcMJ5qY6et7Tvm2fq8azF64dZg76+4zwbNOloPrPWmMlczDQ5+EGScOpmpv/+L2l3e/yHust9T1Zs4N9en28x5lgIuLM5G7v8d7SHgSd6Uhf70d7eAaV1WVVG0sB+HkGe7t3z6/dfMVYGuAZ0s/rqaK6jKK6dH+P4e3de+TXbu4g9W/v7pdfuznAIwRNAwkpVukzgJK6TCo7lxoyj9b+llG13A1uER0mBniGuII+A+gg9e/v9VQ96nNrf6Ijl4zFpw36v6oW3Obmdl9bebjP/1xBnwGE+/yvk7RnctWGszcKmYP5VzXJVRuOXdO0cZe82f2zod4KcekzgKHeigFeil8q11HHmUmxoUBflbyo8DN3CeSdR8g6jRCRPgOQdRrxUo/Xd55LJrGGWfaeT15VtO7P88kA5t0bJxZ9BnBnu8AJPV+/Vo8Fp9cfry2wumZbpfqtg3EmE8Z3VYzvpnCePgO4xytw8p2v9m5752NZiYerC7mW/Viq/bFU+1hWognYEhTjPH0G8FwP+VPd5WuK9ESWebK+WPdA2nyjSWI0Sebd+5Iz9BnAQJ+eO4fPTL9U+t7BX3KrbECu3KrirwvThmsWX693+ztsmjP26kHtAxb3e76fd6/ByctWCpvdt/JMxlt5m+sa3Ooa3LQRUxyjzwDeCAh/2T/yi9NZb+RuEX6tFWcyB/z9BU/rmbkXEwJDsy+XhHTy++JUVn2D2/u9Q1acyag3SYg+AxiasrS+QZIu+xTAN4VpodrFNxoaH8/1xTr6+t4wSf4YPpOs1huKdRuKdQ+mzatrkPweFGPmen48W1XX4Pbd4Nlm9HlLhXpLhfrl/fFGE7jo8+ZyzYt5ymsNklF3jHikuXPDMk9mq64a3VcN+EwIfd5RqZ5wKK62Hgn3xD1w+wgAvdv1/ofj3/I/tQU7z6V8mD/nqhGf9YmzSp/Z2Xcheebxz64Zcc2I8I4jbNJn/eXkhQWfXatHD49Am/Q5uzplZekcQ73p+Ttms+mz1RysVX9XGV9X3/BYpxge+kw5ck1zo6HhRkPD6I4z+OnzSUPq7stzr5uMkR0m9fRsOQzUGtFDjaGxo0dptRquNdExMdW1VyVAB+921F+2GplMvmv3npiYmLmJqkfGjErlvsFImbyq5mqkTD5+7OhHx47WabVcK6dHx1ysro2IlI0bO3rc2NGpqZwrZTL5zt17ImSKUWPHjRo7TqNN5Vopl0Xu2bkjJnpGwtx5D499VKPl+40ml0X8uXPbrBnTYDJptRqeRwlAdExMTe1Vkwnt2rVTqaw/UHK5fM+ePTExs1RJ86ye56zoGdeqL5skbp4duyTMnc8c16TqZk2fYrhYYZK4eXTxS5i/qPEGI8L2bv01dtpk5YIlIx9/ljQas6Z+WneuGBKJR9deCQuWyMND9/72c+zUSQBGPv6sPDys7lwxAI87AgDUnSsGTCMfexo36TMUEaGASR4RDhM0qXp5ZDiRaPb5PDzusYfHPaZJtfGUwMkkzJ3/8LjHIJEYrlycNXP6nzu3zYqOVi5YOvKxp206Q0TYff4ijy5+AOrOl9adL501Y3r8slUPPfuqOi3T1VsDUC7+Urnky9mT3t/38zq4t2nT/wHlivW2ryZSNFn7ASgiQhQhQ6mb3GJbK4YPmf3hG2hoUGfkKkKD5GEOTq6ze9/Q4H0/r71ReFARGvTQc6/HL1nx9/dftgB9BqAIGfr391/Omfx+wnfbPCKeGfnhHM3hf4zHUluA+yuGD/lrwxez339VufjLNoGDlUtXUvF53+bvXUqfAcjDQ/Zu/j526ifKz79+6Pm31OnZaBH6DCD2nRf3rkqa/d4rqg1bH56o1Ow/QscT1m1+eGKCi+gzAEXI0L82rjCeTP/sg1cS5i4Y+cQLbMlGwsJlHt1683Sf03WpVHyubzC9+tHU9V8sqKtv6B8c9nj/HtfrG2JW/7Jl1WLV288ezU6LevnDlO+Wz3n4XoY+lx3J3hb3do3hRsTkL7vcM/T49jUBD71K2o3QhL1m9LmhwRT02R4A9wfd/Mm/6atFc958mk2fD2bqO0obNPoMj269Aez97Wer9NmQ/J0lfZa4tanTbZr15jPKNZuYt5WQduN6xSl26V65cJkuVWs0mczo86J5iX6dfcIibLQlWvPvprUB/f8qcXFxCcoFANq4d2B60GhSQpOOg45cN1Zdqj1EYwmvGE4BJh/PO6sNp68bq3x9bv5YMRgvVFTrb2/bnylBA7hgyKexhADOXTtAhehzhgNXb1R28xzCKKHJB+0t7e7rOYztiSYldHfPoBpj2d3e4+lguSGn3JDd1/tRZiwhIel7vR6jsYTVxtJjtVvZSugrxpKQDh9eMZYerf3N3yOkg9TfmhLaegOaSQepPzk9HHzE7Q/NUewkDXBd5dlqGB0HmizPoleeubLzwnrScRCJLq0r6OkZKC50thqzyYSMbePOdr2dnFXIn9NXC1YVrXu0WxRThRbFtmEzVIUe0iHATMfhpG1DSHiq0Izo2UnobDX8VWgSPWddKh3UPkDEqYlgVaF5hhMKFD3bGxpOuHbIk/xVaP4Zg+/2DoFJsrIgHcCEwFAA2ZdLALhJTMEd/flnDN5ocEOTvYReeLhhkoA1QHLGsY1D2/esa5DA2oxBrtbzlgo1ALrW2Duidp5LaetmMgPQZjMGufLH2RQAO8+mBLYNHOATaBM976hUA2Baz+yLzlwr0FxMnhj4GvvgznMpAI5UFwS2DbTJndUXk4sMBaevFvCIntnRX04GoL+cwoj415THves3h2u91dYzO+wGtJDWM+W4QQPg2DWtXa1nNnc+VLuptQF9i2bEiBE7d+5squViZkyMjNehkahSabWamdExSYmq3dy9aZ42NCFspkydlKiam6iKlMl4rNAUakPPjI7hryGjqbItl0WatYypAc1eKbwNnZA0L0IxIlGlAhBt61FC0wPFtkhTA7rZ7va0oUlAwQwkTJi3MGHeQnvb0COfeD526qSbUo6IMLpUHhFGeJouYmHof7kNzRSfZ82cbnZRYzndlW1oLtl045TCBqNL29DKxV/GL/ly9qT3Yye9f/PgkhXxS1YoggfHvv+qIngQz9Wd3X3F+vgV6xn/AFPbbJkqdKNv5JP3Yie91yTHQOyk9xShtkcFOh/lkq/il341+5MJipCg+GWrYGr47KM37R1A53Div/gm7vM1n338ZkpGHkwmF8k3OHdfvjZ++VpF8GC08RDdvMEfjT7joaca39zp2LxBx7dmDSqUeLT9a+OKFtuaXYhWRITyoOfQiEgA6bpUWJs3+OSESU9O+HTLqsXX603j3pr4bmhvAtDMvEHSbtw7/s2+4xvBum7RB+eP55ppN6j43CPq5R6K/wHIjhu16WAjWtn01aLb3N0Y9Ew5mKmf9sqTAMy0GwAa599Om6Scv8SQ/N3N403F51lvPkNHRn44Z3b0NHVaJs0bZJz7FBr6aqbdALBoXmKaLnXTtp1pOu2XrQLo/3BaAfT/q8TFxSWpVnje1rXWcMYqg2bGEgK4bqyqrSsiJXTJ5T/9Oj4EgBh0x7Z9GSX0ZcOJy9eOmzFoZizh2WsH+jX9cVtrrCyo3sMeS3jg8lpfzyE0lpDNoEkJDWBoxwmsg2UnarYzYwnLDNnUifZx9yMXR7WxtLQui1FCp1V93l7q5+cxvL3U72jtb+3d/c2U0AB8pD0kkIC7Cg2gv9dTLQOgq4wlZA7p7RF+pk7ft62sxegzgBMGLYCLxqJzNwrf7P5Zi+1L2Xlhffn1gp5tA1sGPTMpMhRsLFt3V7vAU1cLRLRtCMmqonVt3NDXK9CxAYMOZ3ul+sy10zSZUETbhs2YWaEJTboOPbMz/dhGMyu0w6Jnu3LgSvGk/B/fDQw1G07ogOjZrvAMJxQien43MJSNnlcVpL/dK2xYR/+vC9NyLpfYnDHIfH3Xl+he9IsECz1vLNX+UJp6v08vNyCh700hDKHnugY3NM0YZGdLhfq3CvXYrlHATdnFP7UFf55Pjr278ZeLXeiZBBcjbh+RfCHZWwoeAE3oubYeAMzQM8UMQBN6vmoEAJvoGYD6YnLKxZQAz8DnfG1b6Qk9X6sHmov4uQC0TfRMIQBtL3qua2gAcLm+KMT7JZ7FVtEzpRVA37ohAE0fC8TQJLvQarW7du/m57BWMbQZgGYOzk1UTZ8ZPd1CNs3Oo2NHm0zQpWodw9CWAJoiBEMnJM2bMesz5k7JbOk4mJUACENbAujG3YVhaAA0irDZRXZiaHlE2N7ff2lcw8LQ7E9hG0NHAtCkWumYiziWkAc9s+MiDC1kzqHrMLRV9MyOOi1LuWQF6m+4AkOboWezxH/+Tfzn31BD2RVglI2e2ccZOYZLdRwMep498eZfrOr0nJbB0OqMXHVmLgCmc01ejhbD0PHL16KhXh48WBE8qFHA0oIYWrnwC+Wiz2dPfFsRMix+2dcwXrechOnC3Vf/oFz9w18/rIxf9jVgmv3xWy32kgOa/llZHg+N+D/2zjuuqXv9489JAgkkAdwMUWyr1Wpr3QJJwNaKWztu1+2tte29t7fL1lGFYJURwF1Xd7XaPaxt3XZAFqCoqNW6Wg0bVGQkISdk/f54yOGQcTII/q69fF599QWHL+ebgQm888n7ERerlYieJyaKAeCt1bnrP/1+x+Y11LzBVosV0fN3722Y+fxrM7HomggAAQAASURBVJ9fAAAvTBxEGZ8B4Ng37+lIE4WeAeDCng+rzxy767m19O0qf/2k6fLJ6KR/COPuAQCt5jTn7Hcrt31LzRt0oM8A8MbTD81JGu+AngEge80GeeGRtieUlSsOb2hjx9k7vlOcukjXnStKz2Z/tl8SP05RfGz54gUOP2xZazfJi46aCI5D9/mR2dPjE0ULl6YBwN9mT8/JyuwWQP/XphtA/9VCEEQ4fwQAkK1XLVZDWGi71vmG9jgA0Bk0AOBYQqO5QcgbxOX0AACjueG67jg1lpDycuBYQvpeldr8FvPVviEjqcmEenPdNcMpSgn9p24/flBHlgo4MZG89gdunbmmljxOKaGpXNLtwbGE1eQxAIjmjb2g+5Fi0GBXQg/nP3RW/x2ArdlchUMFq8ijzZZquhL6rH5XNHccAOgs1QDQbK5yV4gO7MhB51SQR5oslQQQPdixg+wO6BP6r9hAJAi98vZ2JhdJ5QWDclioBADuCpHgIKnpvebdhPrzCZ0cAEq1BWOEydHBcce1Bbfxbx6ARhl0YkRyBanhsHyYTNj5XG7RXG658tP1AgBYfNu8IV5PJgxI1tkdIDcHPdODVeiTzeV/74gmuzpUFRoAOil69jULz36JVehjDVXQOdGzT3EYTugNeh4b0X9sRP93NcV09Ixf+qCs6LkB8RyWDY97FD0/2fF1BUTPf4uSPBIl+bZGwSZs2H2mRM/AiJ6dJcsUgPYePe+/WjCpZzIATLKjZAYAvbdOfkGv6c+LAzfoGUMBaEr0DL6g5/HhyePDkn+49jEzgHaHnjEOALraqKlu1XiDngHgTIv8jF4OAL6iZ5xVcEL/pTsAzYCeMd0A+tYNQRAtLS30I15iaCE/VCIW27yoA6MZWSQWI4Z2CaDBPp9QpVQyYOjZ06fu3ntArVKuyc3xFUMf2r83OycvPW2Zu5XMGHrK9Nn7Dx12uFJpXlwACkMTAC4BdNvunjA0+jqcGTT4gqHRuYH2Z/ALQ3tjvegkhvYSPdMTQAztDXrusHVAMbRH9ExPwDF01ts75CWnkuLHepQPYG0z4GA0c8s24HAl8WMZms7IiJMmjg14IdolfaaCGFpefGzFq88ljR8dcDpJFZ+djR+Iobu0fu5uxCWFoSXxE7pOx4Hd5zcX/PPNV9unScmPnLhpGDrr/c+JED61e9vWNwtDu6PPznl1SeqmNbkAQJ83iPT5TEnRwre/AIC9H27c++Fb0cPHzl7xAbgqPl+/eEK99qWIO+61WmwUgMZ5g4KB92DxGYMAevi4+PPHi596efE94zv8sfPplrWfblkLAMarHYSQOHKQepbJXrPedlWDswdRu0EVn9vWl5594OWVzsVnReGRrLUb8Y01eoJL1Z/XrcpZvyp34dLUhfYj3QD6vzzdAPqvlkmTJpUUl3HYfAAgW68aTVeFoUOC2EIAaG65GMQWmixaHEtIfYueLNcZy8N4twl5t+ERo7lBS14OCeqLYwk1DXvieszCsYS9QoaHcPpS31tPniVN16mxhBiN9jAy6DqyFAAoGO3AoNHFIeREUyIOTA15XGeuRvQ8NuIFsLehY7jjUMdRRZZUG0vCOP3D2NFCTkyV8WgYOyaGNx4HCQ7nP9xkrqw0Hgnj9G82V6LTQ2uuZtZxoKPZzxvdTeiV5whObA+O49vwr5CFzZbKO0PEvTgDA7s12CvPiJ7vCunwp+A1U5mi+RPqLd5dkRM6OXJnABhDE5juvf4xhw1/j+pCFlxOasoMVxA9J9pht7ohX91Y8G/GyYQByc/X8wHgkl4zKCRuUq9JVwya/Pr8u4VxN63+vOdqwXQ7qis3XHksWjxcGPifLpfBaW8PRyad02lGhcfeNPoMAJ9VKQHgsyoVAGwY/oSXQxEDlYVnvzzZXD4qPPbe8NibgJ7pefXMVxzCWtLo+pGNPmPwhbiJJY2VKAyho2erDQDguQEJH5UXflRe1Bn0jEcQQIN72wYwomcMAl8A8B49T3LiyC4BNDVjcFDooEEhcQxnxqRfXAEA7mYMOoeOnvEIA4AubMyvIDW9g+LAFXrGUAD6mLYAAMoNmr7BA71BzwBgtFgukao5PTzgsAuk4rxBOYibCHb0jHEJoD2iZwBoMleWG4u6AfQtGmcAjfGIoYX8UENLCy7zCUMDgEgscQbQGGYMjQAaP/YDQ0tTlzEAaIw7DO0AoOlXyhsMjSslYjFdyuFid/cYOmX6zMP7fszOXZWdu8pvDP3A3Ed/+uFbO2P1B0MDABBsAJCIExVKtcseNMYPDO0HeqankxiaptVO8PXbA4Khs9ZvlRcdTYof5w19phIoDM1cfHa9deAwtLvis9utA+rlYEbPjhd143vy4uMBLEQzoGeXKwNeP8fiswN6pkdeckpRcjLz7R1JCRMCXoimis90+ty+9ZETmRs/kB85njTm7q4g0Vh8drl7+9YTRncRiab8Gy6/+tobqdTHb63O/ez7fUfUql8LCrK376KKz+eOF8n++ShVfN774caWVsuVU0fufvCf0XeNpeYN9h7SduEv7Pnw/J6PRr2y8cqB7dFJT6H32UG7QeXCjiVazWmXxedPt6w9U1I0f8GSBU/OpQNoSruBTy4A8MDcR9MfmaQ4dc5Bu9G2/qNvsrZ97U67gU9nD8x55NVly+MTxQCwblUOACzs6OLo31PYTTj/m9MNoP9qQQ00nzcIPzVb9HryCjJoHE4Ywo1qbrnokkH3FozBEjTmuu44MuhabSFKOVwqoS82fMXnRPYJGcnn9KMOohIatRsIoAGgjizVmWvvEMzET3XmmjryhIATrTNXR/HGCOz2Z7AroQEAATQAVJPHqsljDkroME7MMP6DAHBOvxsAhvEfdFBCC9hRAFBtLInmjqs2lnhk0IHyQbusPLtMg7miVP9VYHUcDpVnd8sUzZ9wCGJ6L7e/XvgReuWZzp3pOa4tuGbWiHtMGsCLC+DWAKBsyC8nNWCDWF5colPPuoLUqBvy7xTEdZGI4+fr+T9dd+xgYvLr86uNmln9krqoCn1Rr7mgK0P0TKd1l/SafVcLRofHdmkP+qtqBQAgeqZTyIstV/4eI75HOIDxuzubz6qUp7XlwwQDAeDRKMlZbdnXNcqxdhNIVweZ7BPR4rvDBvzWXH5er5kfmxBA4zNz0AftzUq0auD/qZ74cwPa/5z+qLxoXv/E37Rlzw+MP9FY6RE9/6YtP91c5oCeMRmXPvldW9YZ9AwApAV+rS/YOmIlw5ViQM+YKwaNuiF/0W1tD3EUemaoPNPza33+r/UFALDijgxv1jujZ4xLAF3YmI+iZ48u/o9qMsaGJQMAabEBgPfoGQAG88T7G3MZADSFnm9z9Tx1mSy8M6T9ickb9Iz5Tf9Nk7ly5cqVK1bcbN1TdzofgiCkUqnUDT9FHipypZtAAE1f5j2GXpYmdQegMRSG3rP/YKK4/ceSDqAxiKFZhFf2aixf+4ehXQJo+pVixtCoIhFLxLkyGWGXcrjd3RWGRgCNH/uNoZMS46nj/mHorNXrJSIR0mcIKIbuJH1uv7JKdXbuKoVK5X2LGXwvPrve2l8M7VPx2WU6g6H9QM8dtu4chvYVPXfYOhAYOmvDOwBWb9Bzx60D4+Xwnj63bx04L4e74rPbrQPq5VAUHslatzlp3D0u0bPj1l1QiHYoPnvYOtCFaG+Kz6+9kVqsVo5PEAPApjW54xNERwtVAEAVnyntBhaf73v6lfuefjl98p2zV35w7Jv3wm4b6aDdIE3WQdPmA0Dp5lcRQOO8QQf0DADV8k+rCz5xp90YEy+a/+qS0iPqXVvzftr9FR5H7QZanqhw+8SmP/Og4tTFn7asdDhP9kffKE5fAICf9naYuJ61dhOw2NRDMbd3TNUNbZFauW5VLqXdoNK/pzA5OblbAP3fHNb/9wXoToCzYsUKs0VPtl7FTzlsPp83yGCsMhhrOByByaIFgLDQIRabuUH/G/VdCKOv644bzQ3Uwd6CMVabqVZbyAvqTZrrAYDH6RUpTNCbaurJs/RNe4QM1WgP6c111JE+vJGhQf1qydJasn1Ecj/eKAEn8mTjBzpzDQAIOFFaO3q+qNujM1dTK6N4Y4YIZgEAijgAIJo39k7B7PP6H6rIEgAQcmKG8uc0m6uqyKMAMIz/YBg7BjH0hPCXmy2VTebK4fyHqo0lWkvVUP4cZNA2sIVxYvA/55uuyVx5Rr+ryVzp1w3fdoYK8oi6aSMbWLdxE0fzH2OmzwDQgxM7iv9YnUmDheXO5CKpvEgq9zTksAji4V7pd4U4Fp8dIgn7RwRnANqZO7k1AJzQyT+qyWABsAD+Fb3SHX0GgDHC5JGhyfnX85UNAXtuUDbk515eYbNBYsSkx6PmO9NnAIjlxT0eNb/FDO+Vb7/cognU1j9fz//5ev7S8yvMVsgcnDGp1yRnHDap16SEHpO+rZHvqZMHal/Mnjr5njr5D3VyC8DWESsduqKD+XGvDXpGa2a/eeHTs9oyN+fwP19VKx46JjNbWWYr64tRy+kg8pEoydx+yTsrVNhN7op8VqWcfjTXZCMeiZQ8GiV5NEoCAMOFAzOGPGWwshae/fJUcxcWMHdUqO8rWt1qZe0Zl/ZkjPhu4cAnY8R/i5J8UFa0rcIrKNyZbKsoFKvXuqPPYyP6vxDXNnIanc7HGiv/OTDeaiP+OTD+g7Iiqw0KRW2/xuHd92v8GwBwoqnyfc0Rk5X1a/wb82ITd1So8WqabMS+8alInz+rUn5WpdxZqTJZWV+NTqff6d/WKB47kX1H6KBhgjgH+vxdrfy7Wvk/TmYarcSW4Std0uf91wpePruStABpYdJiAMC+qwUvnVlpMLf9i/N4c+2tk//7twy9BbKHZHhDn3+tz0+/uKLFAq8P9IyeNQaN/EZ+xh8rWizwcuxKB/rsnMLG/LWaFQYLPBe1YrQgiZk+n9DJo4LjSIuNtNhGhHpwbpxpkZ9pkRstFqPFMpgnHsz4ouYFUvFDg8xotd4fvsQlfabnD1J1sDGv1WYWhb/OTJ/LySJV04YQTr/IjnKt7txaUSgU7r4kkUgOHTrEIkDID0WPBMOydKk0VyabNjVFqXR7wjSpVCwWq5WKcEEo4mCXEYkl+w4c2nfg4Kpc2ezpU9VKt88siSLx9/sOLFqWJsuWTWfcGgCkUqmhpQVY7BBhhELplpkCACo7pGnLsvNWTZk+G2Erw5XS6VsAQMB4KwGAWCzZf/DQMqk0WyZLSUlxd8vj7SmVpstyV6F5w2FBeupSsvkGsNi8npHZqzpIPNOXLiZv1NoIFrd3DK3SG//TD98iPn5gziOo0Uh/Y5HxehUAwe0Tm71mPeqhcUThA3MfBQDq06w1G5YveX35ktexBO1An/HyoBjaOdl5q3kRvbPzVjPcLLgGCIJsvtFJ+oyX6vD+H8nmGzZ2EP1GcLv76nXc3jEAYLxe1Rn6DPbbOX3Z0syN7wXF3pW1fqvHb8lavzUo9i4Am6n8jN/0GQCS4sf9/PX25YsXZL33+eT5C+Ulp7z5LnnJqcnzFwInyPxHsX/0GQCSJoz+5bO331zwz8yt2+9/+hX50VLP32NPZ+gzACRNHPfzV9uWv/6frA3vTH7sWXlxiU/fnrXhnaCB9/hBnwEgaeKYX754/83X/pOxZft9T73krsTKkMzNH7IHxwOA5VKR9/QZAJImjP71060rXn3ejxu8wwXYsg2sFtOZX72kzwCQNG7kz9vXL//n41l5ax94+ClFIZMIjjlZazdPfvgpL+kz4I/Z5++8ueilrG3fPvDv1Kz3P/d7awDIev/z4LEzvaHP7Vsv+Ffmpo/u//uLDJ1l78NAnycmivC/195IfWt1LtJnq812vrYJAIaNjZd+8DU1b/Dd4itIn8+WFD637pP7nn4ZT/Ljyn/S6fOFPR/+8K94ij4DQOMfJ5uvnC5Of8AdfTZUnblnfIIDff50y9qpQyORPgPA9o1r8BXK7DUbuH0HAkE40Gd8riFYQQ70GbUbBJe3/D9PQzCv/XjhkeDI2+n0WaEuiheJ163KeWTWdGf6vH5VDgB0tx/+y9MNoP+aMZquOjBok6XJbNaZLVo8GMKNYrP4DfrfWs1NeCSYE87nxjYZ/tCSl6nzCHm3BXPCGw0XqCPODLpXyIgW87X+wuQ6w4lrZPvvN314I+OEKQBQ15FB3y6Y9oduby15AgAieWNqyOOIm2vI4zXkcWqlgBMdxRuLxee2C8OJHhvxgtZSRTFoISe6yVKJ3DmGNx4ZNFqhAWw4kFDIjqkylgzlz9FaqoTsGAG7vWftMmf0uypIn58+K8gjZ/S7Ko1H2cC6L3zxIF6Cs3DDXXpwYkfzH2u1Wgq1n9ab/aGEFHem0LOX33hXiGQwT7y/fgc2l/1ITauGQs/InRnQM5UobtzM3s8YzPBZzXb/9sUoG/Ip9PzGoIzEHpNiPbWqE3tMmhA+6b3y7ejK6Ex+vp7/Xvl2sxUo9MyweFBI3LP95/+m1ay7vOOiXtPJrQFgT538X79lWAAsAK8NeoZBUzCjb/Lk3pOWX/gUq8oBCYWekTs7dGAxdwkGLh/8NGlhLz3/2WlteaC2Bhp6/naM9NEoibNj5NEoyYORkg/LC3EWYgBDMVkKPdO/erdwYM7Qp0gz+9UzX5U2BR5/b6soZEbPAIDoGUXPWHlG7gwAdPScoFqH6BlrzvcVrTbbCABYP/xxRM8Lz35pshEO6HnZ+c9MVpbJylox+B/0tjuiZ6OV9eE9K2b3c4GejVbCG/SMgJiBEfuKni/qNX6j5/hwD+vlN/LlN/J/vp7PjJ4rSA1+4ICemU+Oj6ukxVrTqukbFOcRPX95LfO/AT23EqZ7I/5Jd21151YMAcAAQwFAKpW2tLQEEEMfOHjowMGDXmLo1DRpYDF0ulRqaGlxx3Y7XCMahlaoVMyn7WoM7eKK+Iih8Xj6siVZa/zH0JLEeLzR/MDQU2bOUajUzscDhZ5d3j4MGDqA6JkexNDG61W2IC4zhs5avxXA9vNX2zuDnumhY+igEfdlvb2DYXHW2zsmz3/dG+OzV1vTMDRnqChzyzbm9ZlbtnGGioDDNZWd7uRQQTqGDhp4D3aimYPAGsBqvnLCD/pM27odQ7MHx2du9hZNZm7+sOBI6a+fbvUJPXfYmoahOUNFPpHothufUbvBtDUNQwdHDfaVRCsKjzzw8FOE2WD+86iX9Ll9azuGJkL4wWNnPvDvVMXx3zx/W8dkvf+54tSFXz5/16fdKQwNBIEk2j8MnbnpQ84dE53p88RE8cRE8cREUbFahR9bbW3SZ6vNNj5B/PRDM44WqqTvf33uWNFTo2NbLbaZzy+4eKJ4/YtPtLRanlv3yaCR4wHg151bet85es77RXT6TJqskzYqKPqMabp88s55axzos1Zz+lhGCjeE47AYAD7dsjaIzVL8eQ3pMxVn7Yb9+PoH5j4qGTXcWbvxwMsrkyeOWf6fp+nHs9ZumvzQkz/98G3Ht++0/QVUeUNLp89FamX/nsIgFpEounkGyO74l24Fx18wGRkZWZmrAYDDFvCC233NqITuKWzvJRmMNYbWahxLqCfLbWDjc2Mb9GdDgnpRPmhwGkuIQSV0f+GkevKsDWy9eHcBQKW2QBgUTc0kBIBr5KmrhlORvFGUiAPa5BulAk4MABBAUHMIL+n2CDjR9LGEJxrfi+KN1Zmr7xTMpg6iEnoofy6SaACoNpbgKMJmc5WDEnoof06zubraWIIfaC1VEDgltEfLs0+5QhZeMRYmCP/upRKawfLsU66Zys4ZFL7qOE7o5LVGDQEQxY3zBjq7zHFtwXFtwd+j5/uq46AGDAKAy76zx3xZs93vyYSUbSPOO40sPVcMmu2V22f1TfbPCu3OtuFN3rryMZdl64wV2qVtw2N+15XtqpF33gpNiZ4fjRY/6t3uX9coLurK5sUmdt4KjSy71coCgCc9XZHftGVfVCk5LNumEY91cl+MN7YNjzMGKdEzpddAt8bf7W6N6Udz5/VPRNvGPWED77brUyjR813CgXcJ2n94vq3BsXUsAKBz5+dPZ3xy75uUbQMAmF3PLrUYH1VuX3zbM/jxvqsFAMAs3KDnikGjabmSf6MAALKHeCXQQOHGxIhkB+78Td325/o7PkrIb+QDQIsFAMBj5XlLxcqEiGQUbnij3UeBPvWormj+5G5+ct8g1/9mcczgYJ7IHXSmKziYhRsOuUwWXjGqwzn97+b/jXllOVlUbiyO5I1xmPHwwrJZ3SWUWzEEQRj0OoVSKZPl2DypIQBAJpMpFIpUqXT61KkGV/JoTLZMJpPJxGKxs5Rj2tSUAwfbZvHhgD4bAM4nZNiXknJ8v+8A8x+c7qQc06empHe8dh7n/tGTMn0mAOGNZgRcSTmmTU1xKQlRKhVeSjlSpk6ViEQuBySCd1IOuboofdkSSWICACjUhdmr1oLNRtcleyPlUKiLDu/9AQCy81YDEM4Y2qOUQyJKTF/2hkKlDohww8vg7SNJjKeub/bqdXJ1Ed1J0lVbr16XtXp9Uvw4upej884Nb5K14e3MDW8njbvXwcvRSeeGN8GCp0tbsfxoaeaWbUkJEzvJnd3F45RCn4zPPsUbPbQfzg1v4r2Xw6Px2eetffFyMBuffd7aRy8Hg/HZz6199HL4NG8QAIrVypcXpx4tVG5Zm/efhcveWZ/30L9fR/QM9nmDqN0AgF93bvl152YASFy8FaXPOG8wbup8B5pcuvlVi9l657w1DpuidmP0q5t6DB51YtOrqcuX4+DB00cL33j6ofkL3nBAz5Lb+0gSJyYlxjugZwDIXrNeri4GgOVPpEhGtatcsz/6pq34DAAAk59dtDxtqSRhgoN2A4NSo7GiZOfi8/pVuT/uOwgA69fkdfs3/svTDaD/gsnIyMjJ3hwc1MtgrHRm0BarIYQbhWMJAcBk0WpbLgq4A4I44TqyvAd/OADojRVmi663oB0EX9cdBwBqLCGmkbzYaLjQK2REi6muvx1B1pO/G0311FhC7ETrTXUEwO2C6fTL+aduPwBBAEEfQogTCKkjJxrfGx3xb2osodDuicZmtJATLWTHxPDGoRK6P3d8DG880JTQyKCjuePCONFVxhIhOwYCpIT23vLsUxrMFVeMhf2C4piV0F5ann3K7wZFo7l8lNDDW8KBNmAwOjguiuthscfUGDXHtQW38ePEXnBktHY4DBj0O+qG/JpWzQO9J3k5mRBL04ievaFg7oKTCbksoOy03gT1Hef1msH8OF/RM5VLes1bVz5+LFrsqxX6q2rFWW35nfw4APAePdPTGSv0Z1VK5M4A4CV6ptJ5KzQlegYv0DM9n1cpv6hWbhrxWGes0AzoeX5s4nZ7xdvLGYPu0DPYb2SPMwYx39YovqlRzO6XDB3RM+b50xkAwCB6Bkb0jEEAjejZYAZwUqu7TH592xTQ/ry4CeGTNpavYAbQv9bnA4BL9IxxANCU6Bm8QM8AcLS54GiTn+gZ4w5Ae0TPmGLdZ2LhP7xHz5fJQgC4YlT3504AABYQDMVnl+gZ0w2gb90ggMaPvcTQyG2VSuWhgweZaTWFoSniDB0BNMZ7DB0uCEX6vCQ1zVcM7Qyg6VfHI4YOEUb4NHQROmJodwAa4w2GDgkNPXTwgEyWAzab3xja4UvMGFqSEO8gg5YkxnP7xEpEiQCAZme/MTQASESiw/t/ZFgQ8FBTChXqok7qnn3e2q6HTpo4/iagZ3roemgAUJScBE5Q16HnDls76aE76dzwYWtXeuiuQ88dt3arh87c/CEABBY9d9iaEUP7anz2bWtPGNon47NvW9sxtGTM3cv/9aS7ZQGkzw5bezOoUH7kxP1/d/FPHh9OFSr1xETRxEQxABSplRMSxEcKlePiRS8vTt2yNtdihf8sWvbOurx31uc5zBuknBu/7txy4XjRuEdfKPn63bhp83sPGY3zBh3o85UD2zUHtwPAnfPWCOPuoV+Savmn3BDObdOfxU8pAP3plrWfblm78fPvR03o8KSzfdOa7RtXuyw+Z63egA+w3N4xRvU3eFxRejbro28cis+Tn10EwTx54RHnB2R8JgKAyhta+vH1q3KCWMQbqVIAUCuV3QD6vz/dAPovmIKCgsn3zwjh9geAVlO91UY6zCQEABxLSH0LjiXUGcv7hrX9dYoMWsi7DccSopfDaG5wYNA4lhAABvdoL0nVk7/fMJyNE6bgWMKzDTuH93gaxxL2443CyYSYOrK0liwdIpjlPIEQD6KUI4o3RmeuvqjbE80bG80bi8u05uoLuh8BYFz4iwCgNVdVGUvC2f2RQVeRR5stVWHsmCZLJQAgpz6v/x4AYrjjzut/iOaO01qqCCCazVUMJHoAd2Isr/1ZM7CVZ3c5of+KDUSC0FHAFKjKs7tcM5Upmj9xx0q8GTDodzxOJsQBg7HcOPC38uwyXk4mZBgw6Hfy6/PzbxQsvm2ex8mEe+rkWHkGAL/RMz1Yhc680/EHzGW+qlZg5dmh/epHfteVZV3a+feOiJM5FHr2lTs7xL8qNIWefeLO9FBVaD+GEzK3nu8Njz3Z0fLhcsbgqPDY0qYKb9Dzo9His9ry1cOepA4yo2dn7gwAP9bJf6wrAIAtw1e6vNg4Y5AZPWM+qtx+pUXj/T86RM8GCwDABDtKZgDQiJ6xxcxg26AAtLsZg+6C6HmkIOmUTv5clAcO6xI9Y5wBtJfoGVOs++yGudx79GwCMwDgs14FecQdgGZAz5huAH3rhg6gMV5i6NDQUIlYBEB4LE0jhqbqwM4AGuMNhg4XhF5t0hWqlGtyc8BHDJ0rk7kE0G3X2hOGRgBNX2wDcHlFHIIYWiwWexyTyIyhQ0JD8Z7CO8gPDD1l9kMSkSg7b7WXGBqNzw4zCRXqIrLxOvaXwQ2GpuJFG9ptp7srgreMNC1VqVSC1UK/vjch9lGQBGExLX/9xaR4P4fm+Rd5Ucnkx+aD3ZVxU7e2Y2j50dKbgJ47bE3D0IqiYwDWpAljkybejKEFDhi6i4rPrre2Y2hsoAPVOh97T1eg5w5bl5zKenuHvOTk8kWvJiWMp0h0YIvPrrc+ckJ+5Hjmxg+SxtztUIhWHP8t6/3Pk0QTu3R3hkK0N8XniYkiAKDmDb68eBkAYPHZgT47FJ+vnDr6687Nve8cPf7RF6rOHlN9/nbioq30eYNUrhzYbjVbYyc/rV52/9gV7U9eWHweNG0+RZ8bLpWai79cvfM71G44FJ/BO/qsUBdlrVyB9ufsj77J2vb1m/952kG7EXTPZPobU9rPs3qdjcWRiBJX5K395sf9eLBIrfzbrOlLU9OQPgPA7OlTs7Myk5OTmW/b7vz/phtA/zVDEIQgpA0Tt5rqW831fN4gDpsPAE36M3zeID15JSQ4OoTbzoKbWy6aLVo+N5bPbaMkrebmxpYzvQVjuJweCKCFvNu05OVWc1OksP1PWdJc32i4EBoUiRYOjMF8rVJb0DdkZB/eSI32cJ+QkXxOP9Rx3C6YRmfQf+r268y1DgwacXOUnTWjlENnrq4hjws50Q4MOpo7LobX9kvbef33BBDD+A8CANafAWBc+ItVJE4jnIsfxHDH0QvRzFVoZNBdVHl2FwcdR1dUnl3GpY6DqjwDQMDRM5Uao2ZP/cfOOg7KtjEgZJBHxbN/cVeFvtyiudxypfOVZ3fBKvTdwjiXOo7O2DY8Zt/Vgv1XC7LufMqdjsM/24Y3ybq0k82yMVeh/bBteAxWoYMI2/rhjzOvRNtGJ9EzPViFnj8g4dlYzw8dOMOQGT3fGzbg4wo1AMzrn4gX1aVtAwCON1aNDItFrTOupNCz8438dY2CQ9gAwG/0nNI7eUqf5LfLPn590DMOCxA9kxYA8DBjEG0Y/Xlxg0PjvETP+TcKJoYnAw09Y3bVbX9hoKNAg7JtACN6xhQ15fNY4B96voefBACf1GUyAGgG9Iz53aBgEwQ6oH1Cz5dI5SVSBQCj+Y8zv1bqjJ4xLgG0R/SMOdn4wcqVK7sB9K0YZwCN8YihQ0NDDbpmhVIpy8n1iKGR2CqUyrQ0qVKpYOC2zBgaATR+7CuGVquUUqk03e7EYLicLjE0HUBTi1OmTqV7Nhgi4Id6w6DBPYamAHTb7r5j6CmzHzq890cAyM5b7SWGtjPTdgz9wNxH0aEhESW6w9C4O/qgFSoV9YG7q3wTMHR27iqFUi2WiNPTUtuuGv7o3iwM3dYrX7oo/Y3FCnVh1qp1NxNDo4vjzddfksSPy9qwFawWn7wBnU/mpg9tHK6iqARsVndmjK7L5MeelRcfA4Bfvvjg5tBnKoih5cXHUNl8U7c+ckJ+9ETGpo+Sxo+SHy3touKzu2S9vUNecgqCuJL4CYqiI11RfHYXBy9HVxSfPWzdEUMz2KKlqcsAQKlSoVgftRtWmw2Lz8Vq1X8WLRsXL3r2kZkjJySWFquSn3754okjZ0sK73v6Fcr4/OvOzeMefWH8oy8AQNXZY9+veB4AXBafB0yeFzv56abLp8oOf0z5N3De4OhXN9EvWMOl0hObXgUAZ+0GALz65Nxx8aLjxapVyxbQHzyz16wHIOjzAxFAO2g3qGS9s7Pg9KWffviWflChLnpgziPpy95IX/ZGdt7qFhsb/RuUdiNR3P503w2gb4l0A+i/ZjIyMlblfsRmheCnFqvBYKxABo3DCXnBffXklSB2OJ1BG4w1Zouez40N5oThkVZzs95YgUroqsafYyImAwAy6IiQOyklNLo4eoYMd2DQ9YazwqA2rIxiaL25TqM9RFdC15GlOnMNAAg5/en2Z8TN+DHd0XFJtwcAKCU05eIYyp+LR6rIEp2lOoY7HrHyOf1uJNRVZAllgnanhGYg0V1aeXaZBnNFqf6rXpwB9ebyLqo8uwvqOCK5cdBllWeXoes4Amvb8JgKUvNFzfYHeidjFRptG5f0mkEhXiGwziS/Pr/aqJnVL4mqQgfEtuExl/SafVcLnKvQnbdteAxDFRqpqMlGgO+2DW/ydY3i62rlhuFPuKxC+yR69jVp5z9lrkJ7RM8A8Exs4snm8pNNFRR6ntdftKNS9c+B8c6iZwBA9HyquWK4cAAA0NGzw438dY3irLbcBjBcMNB79PxjnRwAKPSMBx0ANGXbAO/QM9owipryQ1geus8Uep7ghiM7AGh3omd3KWrKL24siOHGPdj3GY+LjzYXAAAdPWMON+yc6Uqv7xE9YxBAA4Cv6DmOGx/HSzip//o2bqK7Zy536BnjAKC9RM8AUEueqCWPdwPoWzQEQUjT0tKlaS6/ipRTLJFInRgrAuj2Zb5g6AMHD3rsArvE0HQAjSlUKefOmJYoEnvE0HNnTCMIYHnhuXaJoZ0BNMah3+0u06amLEuT5ubICHCUU7uMM4ZOSUk5dPCA40X1BUPzekaSjdfbv+QXhs5auxG5AAAwYOj01KUKlSo7dxUqnuk82t1V7joMTRWfKfrcfn27HkPT0XOHrW8KhpYXlSiKSwAISfw4ykAtLzp60zA0dj+XL3xp+cKXAUBRdDRr/dabhqGxAZ00ccybC/5NseCuVnDQk7nxvcy33nvz9RcBIHPD20kTRjPooQMerEInjbtXfrQUbDYHFfhNyOT5C+UlJwHgl8/fvZkveEAHOcaYXz73PJeya7Ye7XFQoTR1mVKlundie/F5fIJ4y9rcMRNFVPH5udeWPr/gjfhBvYaMnth/xDi6dkNLmhA9Y75f8bzeaB71SgeajPR5xL/Wh982EgAoAK3VnK6Wf9J72Biq+EzlxKZXB/YMnb9giUvtxj9fW/r8629MGNjLeK3trZn04jO1+IE5j0BLs6L0rHPxOeudnZnv7ASAn374tgPCXr0ua/X6w3t/QDPJlJlzXlkqjU8U07UbVGZPn6pWKbvZ5n9/ugH0XzMZGRkrV64M4cbSGXSrqZ7DFuCnKIbWk1cAWGGh7UqNG9rjABAROoJi0ACAYwmN5gbKyOEwlhBL0LygnkZTY6+Q4SGcPtT3VmoLDOZrWIWmDmq0h4WcKGTQOJDwdsH0P3X7HRg02HUcoyP+7XCQUkJXk8fwYDV5bCh/jpATAwB0JTSlgaZU0c5KaFRLo46D4VYdxX/spgFobEAP4iY2Wso5BEsS9o+bsy/md4PiXIsCAKKD42b2fuZmbg0Ae69/XN2qGcCLi+XF3QT0TA9OJrzsyxv/AxJqMiEABNa24TH0KnQAbRvexKEK3RnRs09xWYX2W/TsU37TlqWd/8y5Cs1g26CrNp6JTfy4Qk1HzyPDY081VeyoVDHPGLw7bCDDjYxQfm5k0nld2d3CARR9xhmDzOjZaAEAmNLR9UwBaI+iZyrOaJgZQHtEzxgKQPuHnu8VJANAMNuD7hnRs9FiAwA6esY4A2gv0TNG0fzJNVOZH+gZj7gD0MzoGdNsrqo0Hrmb/zdf0XOvkBG9eMOfXDCsG0DfiiEIQiIWO5NNerJlObKcHKlUSsfQU1OmHDqwn77MSwydkpICAN5olJ0xtDOAxqzJzVmTl8OMoefOmLbvwEGVUpmXK/MDQ7sD0BiPGFrAD23StYB9mqIfGFomk7m7m7zE0ABAB9BtX/IRQ+MQQgfu/F+LoRnQMz1dhKHb5hyKEhzQc4etuxJDU8Xn5Qtfcv5qV2NoB/RMD2JoedHRLjVyuDM+IxROmjj2zQX/7rpCNIWe6bLvNh+3zXITMDRKP958+Vm6heOmYWh0cSTHj3nzleeRg8uPnLg5NWRM5qYPMjd+8ObrLwFA5oatSRPGvLngnze39f9B5sYPXH6J/vYaqvvsMG8Q6XOr1fb8gjcA4MONqz96a5XDvEGq+Ay07vOkjQr6XpR2gzpy5v2FkeKntGWnHbQbmIZLpVcObG+4VKr485rDxd6+aQ2HIJ5//Q0AOFGs/mJT7k/ffw12+uyAkgGA2zsGAH7+aJ3Dz1vWOzvlpWd/+fy9+5/8d3pqKt37ZGNx8BkEw4vo/c2e/Q7aDczqXNmq3Jzk5ORuAfR/f7oB9F82BEGwWCEcVmhwUC/qII4lNJquhvNH4BEcS0gx6Bva48LQIdqWi3QXBwDojRV6Y0UY7zYh7zY8YjQ3aMnLlBJa07BnYI8ZTeTFRsOl/sJkOoN2UEJjUAmNYwlPNW4bGfEsANSRpXpzHb3vDHbcHMUb4+yJvlMwW8iJPtb47tiIFxx0HJQSGgCshBUAtObqGO44AED07E4Jjedn6EF3qX/jStsAqEK6svMyWaizVg4LkfRxmkMV2PxuUADAuRYFkhHUcQQRxM1h0Me1Bfj/ewXJUcEDD9zYcXO6zxh1Qz4AqBsL+nPjOCyY1GvSoJC4m7M12PW1+TcKAOC1Qc8M9mSFDmyQQQNAwG0bHoNV6LvDBvzWXB5A24Y3oarQJ5vKA2jb8CafVynP6zVYhfYePdtscKq5YmRYLKJnPF7aXH5P2IDTzeXjImK8FD3Tb2QKPT/YLwkAdtfJgwjbI1ESRM9GKwtczRikbBvghJ4xh68VsFleiZ6vGDRXWq64RMPuALSX6BlzpCk/lMM0Y9A5FHoeJUgCgFKdnAFAM6NnDB1A+4Se8YXAO7giggCP9NkZPWOcAfRlspCaMegOPWOazVVn9bsAwFf0jEeiR9Z1/xlwKwYb0LKcHIYeNMYBQzsD6LZlObmynFyJWOyO8GKTl1J8eIOhp02dKhKLU9OkM6ZNdQmgMcwYGgE0fowYOkkiYTZyAA1DAxCHDnkwPjNgaApA2y+AzxhaqVQeOnhAInb74OARQ/PCegIAvrXZ8ZJ7jaEfmPsYAADYnLmz9xgaACRisUKpdHddOo+hvUTP9AQWQ7srPrveOtAYmhk904MYWl5U8uarzwdwMiEDfe5wOddvyVq/NWni2MAWor0ZNtjmaAboCgztkj63b93FGNoBPXfY+mhp5pZtXW3kyHp7R+bbO5yF13jBbgILztz0AbCC6T/89pdbrDcBQ7tDz9jqBYIAALFIBAAE2CQi0ZQZs15evMx53iAWnwHgw42rjxWpmknTc+s+Adq8wZjhbZLSo1+/W/L1u3c/+K/fdr9PAWi6doN+MdTL7o9O/gd93iCVy/u3XTmw/d6H/31y13t0AF16RL3gyblYfMYjH25YHRncKkmIz1qzISkx3nmg6wNzHiGMLT9vW+dwfPKzi5ISJ7y54F8AwLltrPF6FdgfLZ2fm3gRvQHAQbsBALOnT01OkigViozMbv/GLRDW//cF6E4XhhcUZba2tJrqqSMh3P42m6XDmuC+bFbIDe1xk0ULACHB0WazThg6xGhu1BvbJ1whj24mLxvNDXiEy+nRWzDGYLraSF4EgIiQO5vIi+G8If2EEyu1BfXk79T39uLdFcLpo9Ee0pvrqIN9eCNDg/qdatymM9cIOJFo4ejHG8Xn9DvR+J7OXO1wXS7q9lBGDgCI4o0ZIpiF/g08IuRE3ymYrbVUVZElACDkxAzlz22yVDZbqqrJY1iXPq//AQBQ1nFe//1Q/lwhO6bKWAIA6OIQsKOBMVeMhciIA54rZOGvTWsBCADi/vAl9IFRt/ESYoPjFc2fICDuivxuUOyqz8aPH+6VjnCkT9BASdg/wjkD9l7/uMao6aKtAeC4tuD96pUWG1hsMD9yxShBUmRw3PzIFX+2aL6s2d51+2LUDflf1mzH3RcMyHi43/wxwkk/XctHKNzVya/P31a53QpgBXjzjoyknslvXfn4kl5zE7YGgH1XC/ZdLbik10zvmzy9b/I5neZ3XdnN2RoAvq1R/K4tAwCTlTVcOHB413euHTJcOPD1s1/sqFTvGZd20+gzADwZI/5blOTVM1+J1Wvd0ef5se1/Zs/rn4jGZxsAAIHODQuABeCpGBEAnG4uP95Y9Wv8GyjcuK9otdlG7B+fSgk3ph/NNdmIb8dI6a3nR47LWq2sHSPffNCOmIfx476pUTx2IttoZRmtrNn9khzo84918udPZxgtsG7Yyil9kt3R50PXC87pNNlDMhjo86/1+b/W5x+6lt9igdcHZjjT4VjuoCsGDf1Ifn3+m5dWGCywYECGl/S5uKngol7j8vzOKWrK31C2gjS3PQoxLz7aXLClYqXRYjNabPfwk9zRZwCIDB54Qic/oZN/VJNBWqzUAyxD8AHZZLGmhC+9nccEXOrN5ZdI5f7GXJPNkhy+KM7p9dEIdv8Gc9tT+WWy8JemNSYwx4e/GsubwEyfK8gjZ/W7BJyoeyP+yUyfa8kTJxs/MBHGIT0eo+hzd27ppEvTUC6cMnUaAxNsW2azpaSkKBRufz9JT0s16JrFYlHK1KnZMpm7ZVi7Tpem5cpk06amKJVuTygWS3T6FolYMmPaVAAoVLm9hEtS06426RJE4rkzpqEemh417RtFYvHe/QctVltIaCjDhQQAiURy6NAhsSRJoVQyX3EASJdKDS0tBAECfmgO42lFYsm+A4eWpUlzZLLpjFcfAMRiSapUKhaLs2U5DPcR3qTSdGl23uop02c7zAMEAIlYZNA121hsXkRvxMTtl3zZG2TjdSBYvJ6R2avWtq1PTDj843fpy5ZkrVn/wJxHFOoiPH54/4/pqcuy89ZMmTkHAA7v/QGlHA6fZuetTl/2RvqyJdm5eQql+vC+PQBAYWiFUikRi93xdIVKNWXGLJfXwmMUSnV27iobwfKJPgPegAf2S9PTs9a+Rb++viZ79Tpu7xggCGN9jTf0GQAkiQk//bgrPW1Z5qYPJj86P2tDp4YEZm14G4D4+euPPdJnAEiKH//z1ztMFb8Dm8u5YyKDr9bLZG76kHPHRBuH21p5jpk+A8DyhS+3Vp5bvuiVrLfem/zYs/Liks5sjcna8I68uOSXLz5g9mwkTRzzyxfvv7ng35kb37v/iX/Ji48zLPY+mRvf4wwaDQTbVH7GJX0GgKT4cT9/vX35wlcytnzMHhyfudnDeDrfLoB7+gwASeNH/bJzs/m8CljsoBH3TZ6/UF5yKoC7y0tOTZ6/kOBwLJeKnMctvvnK85ZLRSteeTZz4/v3P/mfTv6kuUzmpg84t493oM9g/zlfvuiVzM0f3f/kfzI3ue4mB+QCuCs+K1RqhUqtUKoUSpUsN48AGwBMmTFrfIIIAIZGhlP0+UihcusXPz6/4I0PN66OH9TLbLECwH1Pv3Ll1NGPFv1DS5rmZnxIp8+kyfr3nSX9ho6OuONePIjF58S8Xxzoc8XPOwHAHX0ODw2e//nxqGFj7qWZN7ZvWuNAnwHgeLFKri5+YO6jzvTZ/gDoSB2z3tkZdM9kij7LjxzH1/myV6+TFx7BJw76+ikz5ySKxPXNejp9Xp0r6xXGT07y/OJxd/570t2A/ssmIyNDlrUxiNPDZG6w2owh3P7Ul1pN9VYbyQ3qi2MJAcBs0eNYQvwUxdDNLRe5nAh6D/pqcyEA4FhC6iAqoXlBvQGs4bwhAECa65sMl+hjCevJ3w2mq84uDlRCAwDdCq0z1/ypOxDFG0ufPRjFG1NDHhdwoh0cHZd0e7Tm6mjeWGoy4QXdj2CnzACA6mfsStNb0p1RQkdwYkfzH/Pl3nCbBnNFo7nCofLsbuUVozoyeFAAZdDXTGXXzGVU5ZlhmaL5k64wQR/XFmDl2R3uKdXJb5g1iT0mdcX4QXVDvrqxYGJ4cgx3UH+n8x9pyq9t1XRdFRqLnEk9k+NCBg2kbVFm0Mhv5Aex4DWnMW4BDLae0fUx3Y4RL+k1+68V3CN0VAAHPN/WKHbVyudGJgEA0s/zurLcP3fcnBL01zUKADBbWQDwUKTku1rFd7XynKF/v9vNPMbA5vMqJQB8Ue2WmIBdtQG0GYNU5XlHpeqp/qKnYkSfVqkA4GRT+QjhQAA4ryvDcjTVej6tLf+tucxj65nK7jr597XyOwVxS25zUYGhzxh0eZn/bNH8qdccul4g6ZkMABzCre751/p8AGixADDOAKwkNSXN+c/2n0+9P8DL1jPY0TMKNHgcD5MGi5ryAYDeeqantlVzWi+nO6AdZgwy57ReXtta1pMzALybH0u1nuncuUT/xUTB3x1WXiKVAHDNXBbB7u/MnaloyEICWACArWdm6IypII9UGo9g6/kP3d47BDPdrXRuPdPT3YC+RUMfQthWoQWQStM8Nm0VSuWhA/sYloG9De0w+s9hmB51Qm/a0AJ+KAAsWZa2JJWprA0AD86YplYp36Ct7BMuaNTqnVfm5cjycnOY5xMqFAqZLFualuqNYwTj0IZ2aEDT400bOkcmIwDSpFLUkhDe3UcObegpM2ZTpXW8a/xoQ0skEiTIYEe9/rWhsUcvk8nwWgSqDe1H8dll/GtD+9R6dru1uhAL0e76swzxvvjsLp3xcsiPnMjc9KEkMd4jd3aZzuuhvSk+u0yg2tCZG9+TF5/wtcaO91rn9dDM6NllAuvlcFd8dr31kRMZmz8CIJImjg6Ul8O5+Ox666KjiqKSgHs55EdO3P/kCy6/JBElimkP17LcvMP79qCJSKFUk1aw2mDbt3tLilTvrMsbOSGRXnye98qSkeMTFv7jwWbSdOXUUbp2gyo+3/PgPwHg9O4PtAZTj8H3lm5e4Fx8BoCKn3eW/7yjx+BRDiMHqeLzqIf/BQClu94f1T8cZw/StRv0TBjYS5IY7/zw2CZx3vN99qo1b85/iPqhorQb1Er0byjUhQ7aDbA/B4FT93l1rqxIpcS3IikUity8vO5fO2+JdDeg//oJ4vRgEVyDsZJ+EImz2dL2mzeHzefzBpksTSaLFqvQABAWOsRqszToz7afih3O58Ze1x3Xkpepg0LebcGccNJ0nTTdwCM8Tq9+woktptpKbQG1LCSob39hstZUfY1sf2WVz+kXJ0zh2xvQGAEn6nbBNK25EivPAk601lwt4EQPFszSmatxCCGVwYJZUbyxWnO11l6aRtZ8Xv+91lwFADG8cdHccRd0P2rN1UJO9NiIF7AlHcMbN5Q/BzvR0dxx+IGQHaM1V0dzx9nAFsaJcXeTNporfm1aS9XK/MsVsvCE/iuNsdC58uwyPTixo/mPkxYLKkE7szUA/G5QKJo/OWdQAK3y7C5YhS4nr+y9/nEn98Ugd8bWM3PZcJQgaXhoUn59PioyAhJ1Q766IX/1lRVYeZ4QPsmZPgPAhPBJY4STtldud6hhdjL59flY5LRXnicN7Ai4B4bEPR0zP5ob10VV6H1XC146sxIAtgxfOb1P8nQaTxzMj1sQ94zBSmRd2tlFVehvaxRPlGZZALB4SzHQoYKBO0a+ebq5YsXFT89qu6qFjbVfs5VltrIeipQ8FCkBgIciJdI7nv6kUpV2/tPfumxrAPi8Svl5lfKLaiUDfX4mNpESPc/rn7ijUg1A/BK/FACw9XxwwjIAmHokz2wlzFZCNvQpADijLbMAUK3nz6qUn1UpP6lU0VvPX9coXLaeAWB3nXzeqcxWK7Fl+MoLOo3DRXJoPTtf5sPXCg5fK9h3tcBghfTbMyQ9Jg3kOZaXMb/W56dfXNFigRYLxIdPYubC/XlxGoMmvz7fYAEvW89HmvKPNOVvLF9BWuCZyBX3emoxFzXlFzXlk2bwtfX8j35veqTPp/Xy03q50WK1WG3giT7/blB433q+RCovkUqTzWKyWe7lP8pAnwGg0VJ5xaimWs/Ml7mCPFLUtMlMmLtbz93BtFVopWkyL5q2EpFIJstNmTadqTSdlnrowD6lQs5cNPa+DY19KBYBfcMFzh1nenbvO/D9vgNqlbKPp5XL0qSNWr1XbWhsyKYtk8myvW9D4zUSuYfFvrahDxw8lCqVdrINjUV1j23oKbMfUqgLwd6GlogSs3NXUSeUiBP9a0OLxWKbDWQymVQqFUsk2IZ2d5W9bENn567ihfW0ESyDrrmT9Bn8akMHhD4DgCQxIf2Nxcb6GltwSNCAEZMfnS8v8twLztrwdtCAEQCEqeJ3v+kztBdFX83cst2nNnTmpg/v//uLftNnAJDEj//pmx3+taHlxSWTH3sWwGq+csKPAYP0NjRn0OjMje/5Woimis8/f73dV4nK8tdfNJWfwUL0fU+95F8vOHPzhwXFJ3yiz2AvRL/5ynNZ7+zsTBuaufjseusJo3/9dOuKV54lbFbO7eM7WYh2V3x2vXX8+OULXzJV/E4Vojvfxc7c9IE7+gwACpValpsHAEqVigBbeurSKTNmAYBEJFKoVGMmirZ9u/eddXnPPTIT6fOJYvVLT8w2W6zrP9k9cnwCAJw6ou595+iXvj1Jp8/lp0v+vrME6TMAXD13vPGPUnf0+cz7C4O57J6DRw2aNp9+HOnztPT3kT4DQO3vx+6dkLB90xrJ7X2c6fOJYjXSZwfps0Jd9MCcR2wsNtlwVSJq/01VXnJq8rOLIJhHp8+YB+Y84pI+K1Tqw3t/AAA6fZ49fSqH5VmE1Z3/wnQ3oP/KIQgilNumbDaZG0yWBmosoc5wMYQbazBWcIP64kBCDFLpnsL2F3sNxhpDazWOJUQpB58bi2MJKR802McS9hNOxLGEmCbyIjWW8FLDN4N7/A0AKrUFLGDHCafQL+rZhp0CTiQqoan8qdtPAGuwYNYl3R7KAe1SCX2i8T2wo2c84lB2xmqzkBONRelq8hhdCY3QGdfEcMehJJpSQjNMJvRDCU2vPPfgxPox1RANnpKwf/inhMaG3bBQSR/OQF/P8LtB0WQuHyNMjuLG+bE10CrPAOAR99Bz4MaOYBY8HjXf81L3oSrPAOBllbKS1Bxpyh/Mj+v8QML8+vwrBg3i5qSens+GVei7hHEBmUa472oBAGDrebqbEiuVgFehf9eV/a4tw9bzg05OYXq6qAqNtd+HIpMQOrsMVqG7QgaN3Nnll7ycMUi1nj+tVD0eLX4iRgwAX1Qpv6xWPhyZBAAXW66sGvp3dzMGz2rLUSxOv/HP68rO6TXf18rpPxIvn1354T0rwD5jkLn1fPhaAQAYrAAAEpquvcygUTXmP9e//V+rHzMAK0lNJanx3vUMAKQFAIDOnU/q5C4b0Hj+3pw48PRAhA3oGF6cT61nADBarABwJ09ygVQQBOEOQKNYyWSxAoA77kw1oLH1bLJZAICZOwOAhizUGIv6c8cDEB5tGwBAtZ7pX3JuQDO3nqlUavPHi+7qrqLciqE3oOnx2IZOSZl6eP+PbR1YAqRpqR4KufbucMrUqS53xKBpWiwWu2xDp6Sk/Lj/IAColcpVuTK1SumxDV2oUq7JzUH/hssGND3Yhj508KBDwRkb0HTntZcTF+3fK1MolfsOHBR50j27a0NTDWj6Yl/b0EAAg7bbZRva3mK2pS9dLElMmDL7IWlaGgDIcvPABvRisss2tEKlxtM6tKGnzJyDd7FSoczJkVHdQKWdp7szRLtsQweq9ewueF8rlKrlbyx0Vp1C4NCz69290EOjc0MSPy4pfnwAt/ayDe2l7tmnUG3opInjPE4p9Lv47C4UgPayEJ258T0g2L7W1V3GDz20H8Vn11vb9dBJ4+71qRDtU/HZ7e72QrQfleTMTR/Ij55c/vpL/v38U3pov7vY9z/5H/kR169YSMQisUikVKnEIpEsN496+0h66lJqNuzpqkbneYPzXlny9CtLAGDn5jU7Nq+JGT52bkabqqXq7LGSr9/tOWQ0hZ4xnz09jqH4fMeMZwfPeO7Ihpfjps3vMbjtbeio3aDQM2b7k2PmL3jj1BH1P19fOnpihwfbDzes/uCtVWPjRaEsy08/fEsdt0ucl6QvXQIAClWhLGPFz9vWZb2zM/OdnW8u+BdqN6hkbnw/c+P7OM+Wfpx6mlCo1Bl5a/HpHucNOrxLKSUlpVsAfaukG0D/lTNp0iS18lSQXZdhsZJGU3Uwp1dwUC+DsRKHE7aa6jlsAZ1BO4wlBACTRattuRgROgIA9MaKHvzh+IHZoustaH8a1pKXm8nLESGDUcSBocYS1hvOIokGgHryd6Opvk/ISGosoUZ7GAAIgH68UQJOFPXtOJYQAOjyDZxAOEQwi2LQJxrfGyKYdVG3h+7i0Jqrq8ljOG+wpOntsREvoJ3jTsFsAEB/9FD+HCEnBnUc48JfRFSNDBoAhOwYnaUaAsSgr5CFDZYKAiCCPcBj35k5fug4HAYM+r21fzoO+oBBn7gzPaU6+UldwRNR833VcVSQmnLDFUTPXnJnh3RSx+HOtuFN5Dfyq42aGX2T/Z5M6NK24U02aj4OImwPRyXd1Qk7M46zO6srGyoYyIye6cn9cyebsD0aJR7eOS3GWW3ZWV2ZR/RM5Zyu7LtaOYewPREjDoiRgwE9jxAOOKMtx4+ZZwwyoGfqFYInSrMAwJ1tYxg/bijtTtxdJweAs9qywfw4hx+Jl8+unN0vGQCMFgA3MwbBLnpG24bEaVIoHUD7gZ7RhoGTSBcMyGBefwRRclAcdETPmNpWzZkW+d/6taNw+vkjg+M8Xh582PEePZ/SyYeGiAHgTl7bHeEOQHuDnjEl+i96cQaA7+g5hjceAKrIEncAGtGzmTADgMvK88nGD+6NaPt7xkv0DAD15Nl6w5nuWeS3aHAIobvxgwwYGgG0fZkPGFqhVDEP0wP3GJoC0BifMPTcGdNEYvGyVClDGRkzc/pUFgCdLGfLZGCzOvNNLzG0fZIhWAFS06R+YGiXABrjJYbGm1QiFrm7j7zB0AAgTUuTiEUAgBpTZgwNlNCjI4a2Eaw0qRQ12Xil8GOJRKJQKBBDM6g56Bi6q+kzPXgT0TF0l6Jnetxh6M47NzyGGUNnbvrQxuEmxY+XBJR9YxRFR+VFR7PWb33ztf9I4sc6ezkCjp7p8cbLwTxs0P+t7Rg6ecIoZqpLFZ+Txo8K2O5eeznkJaey3t6RHD+mM+i5wwl9xNAoXA7Iz79/Xg53xmexWEy9nCZNXQYAaHxGCX566tIp02eLJeL0tNQQQRgA0OcNmi1WRM8AsHPzmuPFqjMlRZT02UG7gTm9+4Pfdr8fftvIEf9a73BJKn7eGcxlD57xHH564MXE+zcrwUm7Qc/2J8c4GJ8xH25YXXpE/dG3e597ZGbusteo+jNKnNOXLqGKzwigk8aNhGCeA3oGgPuf/DcQbBs7CGvObSehPVPgpyaC80aqlK7doKJQKFKmTs3Pz+8G0LdEugH0XzkZGRkrV64MYvegM2iTpYHDCsVPkUEbjJV0Bk22XjWarnLYwhBuVBBbiAdNFq3BWMPlROiNFX3D2h5NkEELebehElpLXraB1WhuDA3qQ2fQpLm+TlsMAD1DhtOt0DcMZ+OEKcigKS/HVcOp2wXTHBh0LVkq5EQPFsyiDurM1Rd1eyhPNMo6onhjLun2UDVnDEJnrbl6bMQLYO8+40xCekv6vP57rbl6KH8OAJzX/xDNHQf2yYSUEtrd7RzBiR3ETWDoMl8hCztTeXaXE/ovOQRLEvYP5mVU5Rm8k5B6zDVT2TmDIoggZvZ+xuNivyvPLlPbqinVyW8PjUt0Yl4ug+KOMoOmPy/OP/RMxY8qNOWuTeqZ7E3l2V3KDJodVdun9032tQpNoWefuDM9l/SajZqP6aDT+ziLnn1KJ6vQKHr+rbl8mCDOG/RMT0Cq0AzoGQAejxaf0Zaf0ZYBAKo25vVPPNlccW/YALCLngHAG/SMtzMAfDumnUQwiJ7P68puC40DV69G7L9WsP9qQUrvZPACPTtzZ3qy/1xxX69k/9Az9UCxvTaDAUBToudI9yiZDqCdz88cRM/DQiXnWhT/6Pcm82IKPVPcmYozgPYePQPAn6T6D6MqjhsPvqNnjEsA7RE9YxBA+4qew3l3hPMG33avoRtA34ohCEIiFntToRWLxXROTQfQ9mVeYegQQZhELAIgmDcFOzOlNMrgBKAxiKEBYElqWoLI7Qn7hgu+33dgTW4OQYBHDK1SKvNyZRSGdgegMYihxZIkdxZpBNCHDh3CD/zA0LkyGbMg2yOGzpblAEFIxGKZTAZg8w9DT5k5RyIWSVOXIYMGvzA0foyvLoAdPfuHoRUq1c1Bz/RQGBoA5OriJFF8V9NnKnQMrSgu6Wr0TI8zhu6K4rO7ZK3foigqcdBD47DBpIljuoI+U3GHofF4Uvz4wKLnDlsXleC97FIPHajis9vdPWHogBSfXW995ETG5o/kR04ws+BOFp/d7m4vRHvE0AzzBqlIxCKFUoXF5+zcVah+pl4zy87JPfCr4rkFS0dPTHQoPp86Wrhj85phYyY+/uKi9PkP3zHzuZjhY3HeoEPx+fTuDyrPlAyaNv/PvR/RAXTT5VNn3l+IxWc8cuNi6cV9H41+ddPl/dsMmtPTlr/vcGlLd71/ctd7oycmvvNVhyd3LD6/sHDZfxYtA4CRMRHG61Vg125QxWcqU2Y9qFCp3RWfly98SVFUIpVKqfoz9XYZ6siUmXMWpy5flStznjeI8xW6Sw+3ULoB9F85GRkZmRm5AMBmhQbRxgaSphqr1YBVaDyCYwn5vEH4aZP+DJ83SE9eEYYOoRg0ADS3XDRbtBSABgC9sUJvrKDGElY1/hwdMUlLXjGZtf2EE9t3dBpLCAAG87VKbQGOJdSb664ZTsUJp+BYQvpMQnAaS0jlkm4PNqMpAA12RwfWnDFYdqYEHQ6fXtD9KGTHAIDWUoUujjBONFo4AKDaWIJ2DgIIBgYNAKP4jznA5StkIQB4M2DQ7zDoOAJVeXYXZh1HjVFT3arpZOXZXbyZTOiHbcOb7KrbzmGBxyq0r7YNb7KzansQC7ypQvtk2/AmvlahKfTsB3d2iB9VaMq2AQC+omd6ZH/s9KMK7c2MwcejxV/aF9jps+sZgxR6/qJKCQAu0fOcfklz+iU9ezoTATTzjMHpfZMHh8Y5/wgher6vV/IVg2Zan+TbQx0XgNfoucygKSOvKG50Cj1jDtzYkRjhQtFOoWePlmcE0P15cf6hZ3zk3FWfzQCgGdAz5rq57CKpxFcKqRmD4DV6HsCdWG4sTg538S5velyiZ8w5/ffD+Q9Rn3qJnjEnGz8AAF/RMx7pBtC3aJIkYrFYLMvJ9YihEQdTdWlnAN22LHdVdu4qhqZtiCDMoG1sA5eeMDQ18BAxtEsAjfGIoR+cMe37fQcAQK1S+oqhAUAsFjGDTpcTF9uuhR1A0z/1CUOr7LcA82IGDI0AGi+bvZHtM4aeMnOOND1dJssBsPmNoQEgNU0qlohzndCzPxja/U9a1wVvHwCQJCYsX7pIktglv/O7i0Jd+MDshwEgKX7cz1/vuJlbI5tDJ/XNQc/00L0cXVd8dhkKQyPv7qLis9vdnbwcXVF8dr21HUMnjRu5/MX2mdVZb+8gOJyAo2fH3d0UonHc300o/suLSt5c8M+kCWMc6T9j8Tk1TapSKvBBT6lUoW1DIk7ED2wEKz0tlXo/0NYvfkT6fKxItf6T3Xge1G48/uKix19cBABzR0SPe/QF5+Jz3bnjv+3+IHTQPbdNf/bEpldjJv0j/La2lwpQuzHhtS09h7T/hFza91H9xVIAGHjPeOfic+mu9wVcdvlvJanpy+nmDQf6fKxItWOD7KcfvnXQblDJXrUmO2+NS/osP3py+cKXJPHjH/jbPApA0+1MVHgRvQHA+fk0WyYjLCaJKDFn7Ybu3zlvlXQD6L94CILgBsWYzNcdGDQqoQUh7T1lZNDcoL4cNr9JfyacPwIHFYYER4dw2/vIBmON2aJHC0fbN5qbG1vOhPFuE/JuQwANAMigw0MG05XQZQ37Qjh9+ndUN1RqC4RB0X14I8827Bze42kAQBgt5ETRGfSfuv0AIOT0d2DQlBK6hjxOVaTR0UFXQjtA5zY7B00JXU0ew1o0Ze04r/8eOiqhtebqcE7/JnOHcY70UDoOqvIMAF2Enqk0mCtO6L+kU+aAV57dBTdy0HGgbaPKqIkMjgs4eqZS26o5cGOHs44DK8+dsW14DMKv+f3nu2TQnbFteIz8Rr78RsFrg55xx6D9tm14DAJK5io02jYChZ6peF+F9kb07FPO6cpkf+z0sgr9eZXyjLbsN7tVw2UejxYDwJfVyseixQDwVbVyXn/R07GJOyvUdPR8urkcWT+Fnk1WFgDgjU/dzoie8czPns58NFrMjJ5d/khQ6Pn+XpMA4Jf6/CDCsf7sJXpWNOQDwJ96TTQ3rqS54PWBHuwZ4KmV7AygvUfPmJM6+Umdt+i5VCcHADp6xrgD0B7RMwYBdO+ggYiePXJnoKHnAbx4AFA1bWAA0AzoGUMBaJ/QM7aeAWBIj8eYVzqjZ0x544Hu3zBvxSRJxOgFbuOn7nUcGMTQhw4ekGXLXALotmXuxQgIoPFjXzF0okjsDkBjGDA0BaDbVvqMod3iWnpcYmicbejwh7RPGHrGtBQCAACYe9AYlxg6Zeo0B0+IHxiaF9Eb/d12N4s/GHrKzDkKlTo1TZomlSqVilsLQzv8M2m7HayWm4ahs1evzVq1bvmS1ySJ8VlrNhBWS8AboMzJWr81c8PW5YtezVq3CYe5dYV8w13sDNoGYPNS0BzAIIaWFx8DgJ+/8nnYYGd3t2No+RGfhw12duujpUiik8bdmzRuZBcVn93u3hFDB1C74U2y1m+VFx+lF6K9KT4DgEQsagOsuauoBjRVfManCaVCMXhMQmmx6u5xCXTthtFiRfSMmTsiut/QMZPT3qWfH7Ubg6bNv236swBAB9AO2g0qRza8fONSqbN2o/b346W73rtj1ITEJ19aNXP4kbJ66kv/eWz2+AQxomcMAuikxHh54ZHDe3Y7bJG9ao1CVUiYSfrIQfmR45kb35ckTKResgruP4xsvO6g3Wg/Sd5qhbrIpXYDF0+ZOScjK7vbv3GrpBtA/8UzadIkteoMi+CaLVobmHhB7SiZNNUQQAQH9cKxhABgsRoMxgo+b5DZogcAlHLoyStB7HCKQaMPOogdzufGBnPCqLPhWEIAsIFVyBsEAFryipbU0McSooiDABYlg8agEhoA6Fboa+SpFlMdNZawjizFD/TmOrqLA+y4GQBGR7S/7o2ODkoJjcQZaHMIwW7noCuhkVCjpmMof66DEhoAWIDFF2DA0ADQdZVnl6GU0NCVlWeXQR3HAN6gMcLkwNo2PMZBx6FuyK8gNdHcOAho5dllnHUcgbJteIy7yYSdt214DE4mDCJsywc7jrP4tkZxTqcZIogDv2wbHnNeV7a7Tu6uCu2r6NnXeKxCM9g26GVn/JhCz49GSwAghGV1njF4d9iAEcKB9BmDdPRstgEAUOj5hzo5/r+T6BlDB9A4Y9B79GwwAwCMD0sGgO+vfZzgqryMqSQ1FcYrHlvJpTo5j932z9k/9DwsRHLOoJgfuYJ5MaJno9UKrl60UzR/MrXnPPoRL9Ez5gKpOG9Q+oeeMe4AtEf0jDmn/z6MHQM+omdsPV9s+IoBQLtDz5huAH2LhgLQQHM0e8TQKVOnKZTKw/v2OIyDowfJo7MkgQ6gMdk5ebLcPC8r2Iki8dJUaSIjanSJoR0AdNtK7zB0Xo5sUpK4Dbn6jqFdAmiMlxh6xrSUAwcP0XGtrxjaGUDTL4CXGJoC0G3f6xeGzs5bve/QTzkyWW6O7BbC0AqlUqFUARASidhhi5uDoSn0nL7k9fatC4tvGoam0PPyxa/Ydz+StW4z2Gw3B0Nnrd+StX4r9o7baOzNxdD24vNLkvhxWRu2gg0YJkN2RbI2vG1jcRRFR8DcehPqz865/+lXgMUGm9X7GYmBSruXI37cTX7RBWheDnfDBgEgNU0KAPhKYU6OzGHeoEKlxken7JxcIFj4dBASGgoADvMGqeIzAJwpKfzy7XXXtK3O9FlHmhA9Y355RZyY9wt93qDDxbu076M/9m2b/7nj5UfthujJFxOffKn8t5ILP3yA/g2H4jOV5x6ZeaxI5a74jC80yrIzKQBNaTco+qwoOpq58X2cVUvXbmCmzJwDYBMnTXJ4EVcmk1FDC7sB9K2VbgD9F09GRkZW5noOWwgAyKCD2D3YLB7YS9AAEMKNpTPoVlO9xdrCDepLt0LTxxLe0B4Xhg7BsYR0Bo06DiEvTmhXeRjNjfW6UmosYRN5EYAFAI2GC/2FyQ4M+obhLOo4qIPIoHEsoc5cU0eW3i6Yjkpo+gRCcFJCUwdryOMUcT7W+O7oiH87SKLpSuhjje8CADJrakQh0JTQ1caSME7/Zjt6dteG7sGJRd2zb3dVJ3KZLGy0lNsAGs0VLnUcXZrfDYrrprJrprLI4LhpHTHNTQjqOMpJzcTw5BjuIHfAqyuCkwkHhcQhd4bA2TY8hppMeFGvgYDaNjwGqeXywU9jRZeybTiMueuKIE6lV6E7I3r2Ke6q0MyiZyqPR4ttAGe15cOFAyj0DAC/NZcFsWyrhz3ppegZoTMdPf9QJ8fC+yW95pHIJLwLcMagO/S8/1oBADijZwwCaIzBCuBqxiA9ioZ8xY2CcWHJYEfPGHcAuqgpHwA0LV69QwIBNAD4h56HhUgA4Lsb2QwAmhk9Y+gA2g/0PIibeMWoTglfyrzYJXrGOANoL9EzAFSRRyuNRyN5Y8BH9IxH3AFoZvQMAKT5xlXdke7fMG/F0AE0hjZYjwkHp6RMxQ/onNE5zmJoZwCNoTD0oYOOmLhtgSzHCgSqG6w28BVDuwTQbSs9YeiZ06f+dPAA0JGrLxgaP3VniAYvMHS4IFSrb8GP/cPQ0HGsossL4BFDAwAdQLd9r3sMjfJTCsRQr0nsP3iQGq7oH4bGiMRilSsSHXAxtDfvD+hSDJ29eq1cpU5KmEinz+1b2zF00sTxXVELxflsNhabQs8dd+9yDE1Hzx0vWEnWhrflxSVdreOg0DP95m2DkjcFQ+O0SYr+420uLzySNH7UzSHRmVu2ZW7Z9uZrLyx/7QV58bGst969yRgandfLFy8AAEVhMdis/y/df+Y1aWlSAFApFfgKWXrqUolIlJ27CucNOr8wuffnArp243ixKnv7LupsX7697su31wHA5NR3+w1rIx4OxWdMw6XSP/d+FH7bvbqy0xNe3+JwqRA9Rw4bAwAO3mfUbiQ+2fZTTQFopM8ffbt3bLyIvv6ddXnvrs9joM9YT17x0tNJE8ZAR+0GtfiBv82zsYMkokTn4nN23ur0pYsV6kJp+pv0IcCExUQtVqjU3f6NWyvdAPovnoKCgvvvmxrE6Y2fmi1ai7WZGxTNZvFwIGEQu4fRVE33QQOAwVhpsbaE80dQR5BB41jC5paLWIjWtlzkc2P53HbSigy6l2AUlxNBHbyuK8WxhAigI3hDSHN9rbaQPpMQ7Epoaixh2wnNdRrtIRxLeKpx28iIZ8GNEhp70C490QBwp2D2Bd2PUbwxAk40WjsQOgOt+6w1VwOA1lyNhJoaUeighO7PndBsqcLf3Rl60KP5j3c1g24wV2D3OY4bH8GJjeDEIpW4aQ1oVHAMDREDQC/OQLX202k957mbBhbwUO+XHylIPqXrQueGu2AlM4Ybdwc/7qahZyo7q7ZrDJrB/LjB/Libg56pUFXo33VlgbVteAxVhR4uHBAQ0bNPoarQAPBbcznzjEEAwO7zY9Hir6qVj0WLz2jLsb79dbUCe80AcKnlyunmcm/Q8xza7UyhZ+qu33+tIJjV9mzeaiXAzYxBACAtAADO6BnzS33+r/UFkp7J4DV6pnNnKkebC9gsoDugET2TZgDv3iFRqpPXtmpqWzVeoueTlEDDjp7bLmfzJ7NcjUulRM/gSVWEANo/9IxvhfmlaQ0DgGZAzxg6gPYdPY/SmWvvEMxkXuxuzGClNr+/sMOPgUf0jKnTHTGab3T/hnkrxhlAYzxiaFl2VnrqUnuz1QcMLcvJPbR/r7uViKFdkj4E0EgkEVb6hKEBwB2AblvpHkNTANp+dfzB0AwAuu207jE0HUBjfMXQ06ZOlYjFDAyaugAMtusQQRgAuLx3XGJosN+hdAzNC+spFosBINV+yT1iaLFYIpaI6RiasJeg8Z7qOgztpZqGSsAxtMvis+utC4sV6qKsNW8F1k7gXHx2s3tXYWh39LnDmg1vZ254O2ni2K4oRGdufA8IjiR+nEvceRMwNBafmeh/FxeiM7dsA07w8tdeoB9EDC0vPrbi1eeSxo/uUhKduflDa7Bg+eJXqSOKwiNZazfeNAzNQJ/FtKcApVKJYg2w2dJTlzrMG1QqVaiVwD6vWCy+7d6JT7+yhD5vkDrVl2+vs1htj7ywMOP5v0U/MA8BNDVvsMfgDvf1iU2vNlwqdVd81l0+Nerhf9ecOw4AlHyDXnymFn+R+kzK/fcdL1Y5aDcwzz0ykyAghGVzMG9MmfUgnSYjgAYAB+2G/ZbckrV+q2vthkp1+MfvAIDXM9LQ0gIdtRv0lario90A+hYK6//7AnSna5OcnGy1Gc0WLX7KYQuDOL2NpmqTuYHN4lmtBjaLxw2KNltbWk3tfp8Qbn8A0JNXqCO84L5sVoi25aLJog1iC81mXRBb2FM4xmhu1BsrqGUIo+t1pUZzI3Wwt2CUxWaq0xaH84Y0Gi4AAI/TK67HrBZTbT35e/umnD4AcNVQeo081X5CTr84YUotWVpHlgo4kTpzDQAIOFG3C6ZpzZU4exAj5EQJOFFacxUSZyqDBbMEnGi0bWjNNQCAGPqC7kckztG8sYin0dGBRo4Luh+FnOg7BbO1lqpmc/VQ/lytpUprqQKAZktlGDsG/6oO5/Sn/u+QE/ovL5OFXtxF/uQyWXiZLLxsVNvAmhy+KI6XEMGJBYA4XsK9/EdrWq/gBMIuyjVT2e8Gxa76bJvNNqeH9E6e5E6epDdnYKLwqZLmAuTCXZpSnXx7bYYNwAbwdL8VI/lJT/dboTFojjTdjOeeI035R5ryN5avsAK8HLvywb7P/KHX7KzafhO2xshv5Gf+sSIuJG5ezPwYbtwlveaSXnPTdt9/reBSi+aSXmOyEUMFccM8TUQMbIYKBg4VDDyrbRdu3DT6DADSO54224i085+lnf+MmT5/Wa1E2wbS50ejJTYghgsHfl2tsFiJz0ctx5W7auVWG/wwLu3usAFfVCnnlOSYrKwvRi2nhBtPlGaZbbDtnjfprednT2eabMSW4SvpiPmSXvN9rbzVSrRaiel9HIvP+68VvHx2JWkB0gL395rkkj7/Up8vvbjCaIGBIXGSHpMY6LOiIT/7zxUGM7zUf6VL+uyQoqb8DWUrSDOQZhglSPKm+Fyqkxut1h6cAd7Q55M6+Umd3GixGi3Wh3qmD/P08hs+gBit1od7pd8V4tXLdZ/UZRotVny4Y155gVT80CAzWq33hy/xKGL6k1QfalrVCmZR+Ovu6DPYn2I0ZGFB0zozWCaEv8xMn6vIo0eatpgJ08iIZ/vxRuHzprvUkidONn5gIoxDejzGPGmwnjx7seErs40cEDGNmT43kZeM5hsMC7rz3xyFUpWdk+t8XCIWHzqwX5q2TCaToXDD5bdLxImH9/+IbzGeMn22QqlmWrZsqUyWq1CqFEqVu8uTnrbs0P69SqUihC/IluW4WyYWS/YfPCRNl67Jk82ePlXt5uIBQKJY/OP+gyKxWK1Szp0xzd0yAEgUib/fd2DxsrTcHFlejoxhJda0pVKpLCcvZdp0dzeO/RqlSsQipVyekpKiUDD9tiaRSA4dOrRcKl2VI5sxLUWlZFqMt0CqVJojk02bmqL0tBgAlkml2TIZw8XACwAEK0QQ5u6nwtDSAgThfO+03ya5q1Kmz6Tu4vS0ZQZtow0IXlhPfK0CAA4cPJQmlebKZNOnpiiVijSpFPG6kB+qVCip65Ujk6VJ20YvTps6VSyWpEmleOHFEgkAJIrENhuolEqRWOxcXZfl5Lq7It4kOyc3Zdp0AMKg13lJn9tvh+XLs9a89cDshxVq//80yF69ltsrCqwW49Uyj/QZACQJE9OXvG68WmbjBAXF3jX50XnyoqN+7w4AWeu3BsXeZWOxW2suMdNnAJAkTPhp16fLF7+ateHtB/42T9G5re0XYEtw/2GEzWYqP8M87m/56y+ays8sf/2lzI3v3//Ev+TFbj0JPiVz43ucQaOB4Cxf6JZyJsWP//nrHcsXvpT11ttBA0ZkbXg7IFtjsja8HTRghDv6DNTNvnRR5ruf3v/0K/KjpQHcHQAyt2zjDBU502cASJo49ucvPzRpTtpYQRlbtt/31EvyIycCuzsAZG7+kD043oE+A17x7z5fvuT1rLfeCYq9K2u9h26y38F/Bc70WWwP4CtkYolEIjl08KBSoVAolYf3/6hQqWwEy6BrlohFIYIwIFgUfVYoFDp9CwCMnJC4c/OahU/NpdPnL99eN3dENNLn348V1eta+w0bU3fu+M85L+hI0+hXNznQ58v7t7mjz0c2vCzgBU1b/n7kXWNqfz8WZa9Rl+56/8bFE0/kfkynz5gP3lrlTJ/fWZc3MiZifILopY7Hs1et4fXo69BlVqjU8uLj9z/xb5f0Gf9tOo+3BZsV6bNCXYgv62bLZClTpx7e+4PDybPzVq9Y4UG1153/qnQ3oP/6ycjIWLlyJZsVhiIOALDajBaLls0KtdhIyshBmmo4rFCqB91qqm8113PYfBxLiAdxLCGehzJyOIwl1BsrWs3NJksT3cUB9rGEABARcidlhW4kLxpNN6ixhJXagt4hI+oNZwVBUXQXBwBotIf15tpI3iiHyYQEsCgl9InG9+6N+GcteUJvrkHKTK1ER4eQE00tdpBEg3dK6GpjyTD+g1XGowBEGDsGkTS4r0L34MSO5j/OfAf5lMtkIVaeASDOPd04qf86iGANC5EEVseBtg2bDXoHDXAHYi6QikZLxShBUsCr0LWtmprWMqw8j+S7YFKn9PJ6k2ZCuFvzbCeDlefx4cnQ0TYAAEebC442FcyLmR/wwYNUygwajeGK/EZBckfNtMag2VG1/SYoOFC+QZ9wiFXo4cKBN6EEfV5Xdk6v+b5WPqtv8qx+SRf1mj11chZheygyaVgXqz8w39Uqvqv18OKK84zBR6Mlf4uSfFOjwNbzw1GSXR09zs+eznw8Wny6uXyYII5hxiC4aj1j8H65v3cyl+W69ezOtkEFW8+JEcmoU199ZUX67a7nBzK3nunBBjQAeBQ90+MsxFBrP53qXuyDrWejxQoA7rgzvQFNtZ69gc74Mt65FkVPzoC+QQO9Qc/01jM9zg1oj61nen7Tf9NkrvSp9Ux/ojzVuO3eiH86rKwlTwCAy9YzPdiA9rL1DABN5KUm8g8BdwCfN6CuSdX9G+atGIIgPJpzXbahsQHdcZlXbegp02cDABDgUJV12tRxPiG9AU2PN21o7EEvSU2bO2PaG8vSlqR64IlrcnNW5+UsS01bliYFpwZ0x8vpuQ2dMm364X0/2mvgBHMNue20HdvQzg1oerxpQwv4bWfAxQSjkQPsHT2HEnHKtBnUYCj7Ap/b0ACgo+lEsNfssQ0tFktyZLKcHFlamhTb0Eql8o1laWpVG/1Xq5QBbEP7Wnx2mc60oZmdG17t3jk9dNb6rTYWOylhvCRhgu9bB6ANnbV+C2GzMXNnlwmUHhqLz752ybEqmzRxXOcL0QzFZ5cJeBvaZfHZXbrCy+FcfHaXrLWbstZuDLge2hvtBgZVS/iYibYih3mD6VIp9nnT0tpeVBPwQ+e9ssRh3uCXb687fbRwxYff4Ke/Hyt6d21e32FjnLUbmMv7twl4Qb/tfn/a2x1e/UXtBn3e4PYnx6AA+kDWv3DeoMOp1J9vJa+c/s+iZS61Gx/v2jsuQfTMwzNlqYslogSwazcoLzNGoVJPmTknKX78T9/soJ8Ex4dKRAmShAlZ67Yc3vsDHqe0G+lLF7cdWbXWxuECAF27QV8MAN2/bd5a6W5A/0+ExRJYbSTVg2YR3CBOb4u1xWo1WK0GPMgLirLZrAZjO0gN5vRiETw9eQVnEgIAh83n8wYBWKlTAUAIN4rD5jfoz7aam+3fGBYROoI0NWhpHWohb1AQR0ia60lze9U6gjeEG9SzUltgMF8DgJCgvi3ma/2Fkyxg0WgP069CnHBK35CRDk2u2wXT+Zx+l3R7dOZqABByonXmmkjeaD4n6qL9IEbAiR4imKU1V1OlaQEnenTEv6nhhACAFg5sRtNr0SjrKGl6O4wTHc0dd06/O4wdE8aObrZUCdkxzNMIG8wVJ/RfNpgrGNZ4E6w8/9K0hqo8M9BnALiX/yifFa1o/uSaqayTW2OoyvMQnjhR+BQDi7mTJ7mdKzpwY0dtqyYgW4O9EVmqk1OVZ5fLRvKThocmqRvzA16Fpleex7uib+PDkh/s+8zP1/PlNwLfwpbfyMf/CIAVd2Q46D7iQuJW3JHxu1azUfNxwLfGYH8WALB1S1HOwfy4BXHPtFqJ3D93ntcF5ifNObvr5Lvr5N/Vyi1W4v27V8zqlwQAQ/hxi26bd0foINkfO8912daY72oVT53MckmfkThTH39ZrbTZnRs2IFYO+QcA/O14NtV6frI0y2wDs63N47z68k4AMFlZywc//UiU5Nsaxbc1ClxAtZ6RO7tsPeP9YrRC7p0Zk3tNcijCU61n2ZAMBuEGtp7fGJSRyFh59rX1XG3UFDcWkGaYH7nCS+EGtpKNVqs3reSTOvnHtRnYenZwbjgEX4RzaD0zn/x3g+J3g8JksZos1pTwpT3ZA5jXd0XrGQCazJXlZJGqaUOTuXIY/0GfWs8MK2vJE7XkCRNh9Kb1DADet57LGw9YbK39wkV8nodbrDv/zUH6LMvJZWjyYhtaLBalTJ3msQ0tESdOmTGrjTK7SVsbOiePXpV1vmCH9u+Vpi5lrmADrQ09e8ZUd21otUqRIBIniMRXm3Q2gD7hgjW5buvVALAkNe1ak85qgwghP1BtaHsN/A1ZdravbWgxo+jD1zb0/oOHPLah06VSQ0sLQxvavsDnNjQACPihlFuDoQ2dK5OlSqXU9RJLxEiusQ2dIBKrVEoASBSJIXBt6Oyc3BBBmK/FZ5fxrw1NFZ9/2v2V3/QZACQJE3/a/VX60sWZG9/1qQ1NFZ+XL37FD/oMHdvQwf2HZa13lNJ6ugBtxWc/6DMAJMWP+/nr7Z1pQ9OLz75+7/KFL5kqfsdC9ORH58uLSnw9A3hRfHYZehuaM1TUmUI0Q/HZXbAQvfz1FwPShnZXfHaX5Ytfba39EwvRne/+g6fic2qaNDVNmpYmRenzoYMHAQBsVoOuGfDJ68A+pM9AsAwtLen4eDt16oGDB+lyITp9PlNSmD7/YYvVRtFnAPjm3fUAoCNN929WOtDny/u3/fKKWMAL6jd0dM+OnehL+z4S8ILmf36cos+1vx+PHDamdNf7258c40yfy38r+SL1mdpzxwGATp+PFamee2Qmi4CzNY3jEtqPK1SFU2Y9CECQjded6fPyhS850Oes9Vsm/22eRJSQvnhB1pqNFFZG7QZ5o5aizwCgUBfKOkqfqcUAcHjvD92zB2+5dAPov36SkpJstlYOu4cNrCbzdep4EKc3mxWGcwjtR3qwCK7BWGmxGoKDerWa64ODeoVwY/XkFbL1Kq5BBs1h8w3GdhaMDLqx5UyruZnPjdUbK4I5YT34w0lTw3Vd+1OdkDeol2BUo+FCI3mROujAoDG9eMN5Qb3PNuzUm+uog314I3Xm2lON2+gYuh9vFJ/TD3GzgBONX4rkjb5DMLOaPEZ3dAg40UJOtM5cTXd0DBbMstm7zwCAVmhk0G0KDnM1Mug7BbPP63+oNpaEcWKaLVUAEMaOrjQe6c+dYAMI5/R3KeIAO4P2W8dBcWcKPXv5jajjUDR/0hkdB4IYum2jN8dz2zSAOg66bWNKj3nu0DOVfsFxU3rM0xg0u+oC4MRwsG0wc7cYbtyDfZ8xWGBn1fYyg6bzu4PdtkEAEADzYuYzmKZRx/Hy2ZUB1HHsv1bggJ5dLpveJzmld/K3tXKcfRfA7K6TzzuVabESFiux6LZ5s5x61rP6JS2+bd63NQrZHzsDuzWGAT1j0PL8eLQYFc8UesYxg1/RhBtPdpRpIFCe2icZABA9P0Fj03T0bLIRHtGzw6XyiJ5/qc/3CT0bzOA9ej7aXLC1cmVPzkBvxgyC70IMCj2jbcOjcOOaqcw/9Hw7L/F2ntvOJsZL9IzzALxHz+VkUTlZpDGqzWAZF/6ikPZuHuf4h5578YZ7I9xoMV/tK5jQjZ7/12K3bXjA0OlpqQZdM2JoBjlGeupSsvmGRJxIVy642jTx8P4fJaLElOkzvcTQshwmZCwWS7T6FolEwoChMUtS03zF0CqlkuEqQxdj6CSJRKlUTveOLHcphhY7Nab9wNBicRtH9oihU6XSXJnMAUODvUBdqFImiMSLlqX5iqHd3UEBRM8ubgcvMLSvzg2vdvcFQ/vk3PBi6wk/7fq0teYSEOzg/sO88XJ479zwGP8wtLz4+P1P/AsIDkLkTuze7uXwCUPLi0omPzrfxuL4fRdQN7vfXg4sPps0J72nz1ToGJo9ON4/Eo3F59baP72kz1ToXo7OYGiG4rNSqVQqlbk5MgJAqVQQBEil0pSpU8FmlYhFKdOm45RUhVKF2g1q3qDNBjp9C/U+j5wc2Yhx8XTtRvr8R4aNiX/khYXUXt++u/73Y0Whg+5xWXxuuXJ6cuq79zzY4R1vNy6WonaDQs9Uas8dv3HxxNK9Zx3os/rzrV+kPnPXuAQAoJs33lmX99wjM8cniF5a3H6wpFClUKunzJrrcoTglJlzAMClduOn3V+kL15AP07XbrSfZNVaharQWbuBZ3bYsTu3SroVHP8TIQgiiNMPACxWPdhM1ExCADCaqlisEErEAQAWK2k0VYdwY1tN9cFBvdisEIvV0Gqq57AFvOC+uIZsvWo0XeWwhZSIAwBMFi2OJdQbK/qGtf0prjdWmCxaIW8QNZawujE/mBMRGtQvgtf+vdRYwhuGs0N6PIYHDearFdr8viEjKR2HRnuYH9TvquGUw1uMdeaaOrJUZ66N5I2J5LW/zecP3V4hJ4YaS0jxaJ25mu7owAGG1BxCISf6gu5Hys6BCg4KRhNADOM/eE6/GwBiuOOrjEfD2P3pYwnDOf1d1qJdvjXbXRBYo23De+jsMqjjkIT9w6fvog8Y9Gbolsv4reOgDxj0CJ1d5pRefkpX8HDf+f7pOBhsGx5TZdTsvvpxUkdRhq+R38h3tm14jMagkd/Iv0vY2bGEOK0O4/2p9l8ruNyiebBf0tBOOzF218kp24Y36/fUyfdcLZDe8XRAdBzf1SoAgFm4gX1nYJwxiMINukyD0mjM6JuM53nryseX9Bp3tg3oePvj/YLCDWfunHphxfS+yczCjV/q8wHAaAEAcMedv6zZ/nTMfEVDfplB0zcoDrz+J3C0uaCkueBuftI9/CQA+KVx5zT39gzwToixqz77mcg2s9tJXO8FdMacMyjOGRQ9OQP6Bcd5g56vm8rCWbEA4MCd/yTVHBZBfxi8bi6rN5e5E244B98H441wo5wsAgAzWAAghtf2Xt0qsoQFhHMD2qVwwzmnGrdF8sYAgIkwAoDHyjMKNyJCBofzhtRpi8N4d/A4PV2upAs3nL/aoP/NaGpk3qs7/4VxGEJoNw948BWkTJuuUKrok+Wcg8YJhcpx2ZTpsw/v/5G+Mjt3VXbuKmnqsvQ0x6lHHTadPhOAsNF0De6CGoelqWlvpLb5Olbnyqw2cDZvrMnNKVQpl6SmIb50lz7hAhwt5W4kIz0oXqCP8kMFh6uVXkk5FAqFTJYtTV0my82zAeHx6oMrKce0qSn7Dx5iWOytlMP9NEUvpRzZuasO2C8JZdWgzCrOUg7quqTi/EmFMjdHBgCLlqUBwLq8nMXL0hJE4rV5OQRAokhMl3Iw3EQO5pmAODc8hkHK4f2wQf93Z5RyeDlssBO7e/ByeDNs0L+glENeXPLma/9+c8G/3S3L3Phe5lvvBXaEI/gypRBHKQb2LvDJy5G5ZVvmlm1vvvaCH+jZZXz1cmRu/jBj00fLFy/wFT07B6cUyguP+OTlwDvL3QsGqWlSAEACkJMjk7Y9IskPHdjf9gCSukypUgGAWJJEoWeZrP0hDufBpqZJVUpFyrMLRoxLANq8Qfpe3767/reSwvPHi+/f3OFxrOFS6ZUD2/uPGEeh559zXoibOr/nkFHO2g1M7e/HS3e95067IeAFTX32VQDY8sqTqdLl2IB+Z13e8WLVS4uW0YvPJYWqZx6eieiZXnyGti5z4eH9P/LCerZWnsODlHaDjp65/QalL3vDQbvRdpJVaxWqQiAIStABlKPDPodwysw5GVnZ3SXoWyvdDej/iaxcudJi1QMAm8UHIshoqrLajPglNivMajUYTdUWK2k/wuMGRRuMFRZri8XSAgBsVkgIt7/ZoqP3oDlsPpsV0txy0WTXcQSxhcLQITh+kJpMyOfGBrGF9LGEwZwIIW+QxWas1ba/5k+NJaRf7BBO31jhJJ2phhpLyA/qBwBxwhStuaaObH/9VsCJul0wXcCJrCU7vKB9h2CmDWyXOuo4ED3THR1RvDFDBLOoOYRCTvTYiBcoOwcqOI41vgsAdwpmN5urzul3D+M/GMaOqTIejeGOb7ZUAoCQHQMA7ugzAFwxqk/ov2S4mzB+V57dxScdh8sBg35v7YeOo1QnP3BjB33AoH9bj+QnpfSY54eOw6Ntw2NiuHEvx670bzIhqjaw9exs2/AYnEzYYoaNmo/9q0JTlWcAcJ5lxxysQuf+uaMzVWiq9UzZNrxJoKrQ39Uq0PXMQJ/nRiaBXfTMPGOQ3nqmNBpbR6xE+rzvasFLZ1Ze0muW3j7P3YxB6vbHNrrRCi5bzz/X5/9cnw8AzK3nDyu3Gy1gtEBij0kMrWcAQNvGKEGyN/8EjjYXYOuZtNj+3vfNe+z/Zhn+1fskxACn1rPH9ecMiu9uZJusXgk08BHPZLHGBSe4bD334MReN5XjxxdIxQVS8btB7o1wo8FcgY/nDeaKu/l/86b1bAaLGSwxvHEUfXYZ71vP+ETpU+vZAsaBPWaE014hdo7H1rOeLGf49u7cQsGaMwAw+wrEYrFElKhQqjwOHjy8b49CqWZYBvbSNAG2EGFEdk4ew8U7dOhQulSaZ+/JuluG/dlClbJXGH91LpNAY0lq2pLUtDW5OXNnTGPmlVKpNE0qzZblMPtAwN54BSCo29B9v9uXNrRYdGj/3vTUpXmy7P+XNjTYPachoaHZMhe3qpdtaKVSSV2eNKnUYxuaui7YhhZLxFp9i1gsXpeXAwA1DTobwEMzp7lsQy91/9KCQqlKmTYjZdr0Lio+uwy9Dc3tFZW9ei10TfHZ9e5u2tCBLT67393tlMIAFp9dBtvQpvIzQLA5g0Y7F6Ip50Yni89udvc8pbDzxWd38X5KYWeKz+7ik5cjc/OHBcfO/Pzd552nz2BvQ/vk5chav3Xyo88w1NWx+AwABAGHDh6UyWRgsyJ9BpsN/UIKpYpOn7H4TGk3kD5Tr7fR5w3SN8p4/m8mq3XOP193njd4YtOrdPoMAHXnjyN9dtBuYEp3vX8g+1+15447azdWzRxO0WcA+KP0yNh40bEi1ciYCBYBKH2m1pcUqrauy0tf9oaD9Dk7bzUvojcQxOH9PyqUagr007UbDjejS+0Gr2ckAbYkUbzDyQGAbLxOdZ8VKnU3fb7l0t2A/p9IRkZGRkYOh90DP7XZWs2WhiBObxbBRZszixVsMl8PYvcI4vSgvsthLCEAtJrqrTaSzxsEAE36M+H8ETiWUBg6JMg+4RAAmlsuEsCixhICQKu5ubHlDI4lRDE0fmAya+kzCQGgkbzYamroL+wARyq1+QSw4oRTkERjIVqjPUwA3C6YTl/5p24/AHGHYCb9YC15opY8PkQwS8CJPtH43uiIf4N9CGEUbyzVj9aZq2vI41pz9diItida7D4jgEY9dDRvLLaktebqYfwHAeCcfnd/7ngAaLZUh7FjKo1HPN4do/mP4zuy6WkwVzSYKwJSeXaZRnPFSf3XDGVDbwYM+pfr5rILBmV/3iDm9+NjHXKkIDkyaGC/wA0w9HIyIXJqbD37AZ1dxqfJhFTlGQA6U53G+FGFpmYMdn6Y4UbNx2wCfKpCI7P2qfXsMn5Xob2ZMYjo+ftaOdiLzx5nDP5QJwcAeuv5kl5zUa/Zf7UgpXfylD7Jh68V8Ng2XMk8YxAAnFvPP9fn/3K9QNwjGQDKSM2U3pMGOf2wUTMGB4QMimX8V6BuyFc3FgDA3D7PxHCZVmKONhcAAGmxAcA9Tq8VfXY1c769vEzFpzGAALCrPhsAvGw9n8OxgQbFHVwRxZFvmMs1rYUu3wKC7/OgL3aZG+byK8bC3kEDwD4g0WPrGd/CcsNSFs7uH8ubcEa/awA33p2myWXrmR56A9rL1jO0o2dTveEM9b4id6G3nunHm8iLNpuNruBgbj1TadD/1mpu6v4N81aMQwOaCg4eVChVhw7sc+78ZufkElZL+rI3cCQ9AME8eJA+nzA7d5VDA9phmUKlctmGTpk+89ChtnkhOM1JLBYz14GxPIvviV7COHuwUKVEHYfLNnSfcEFLSwu1taytL+y5DZ0ty0FzCNl8g3klQxsaG9CH9u+lLVb52oZWKpX7Dx70crHLNnRKSkqa/aDM3zZ0tiyHwvcOIxN9akMDwNc/Hli7KmddXs6iZWmLl6bhxy7b0CKxWKVUMrzAIBGLvbk3Ax58MUOSOPGn3V/d5K2pNnTSxPGoe765u7e3oeVFRwmbTTJxXCdH9nkfhymFmRvfkx85kTRxfMDRs8s4TynsiuKzy+DNLi88gm1oqhAd8OKzy1Bt6OQJo9585Xn6lwJYfHYXLESDzequDc2g3YgXiQGAQwAAKJVK+rxBAMDic3raMmrIqqGlxaH4DAA5MpkNgPpUyA99/MVFp48W/u2FhXeNbe8rfPvu+m/eXT/3X6/N+efrP3yw4VRFE+XfwHmDDs4NAPjs6XEA4Fx8BoDSXe8LuOzEJ19aNXP40r1nqePqz7eqPn/75c2f3zGqTfL+R+mR4s/fHhsvend93ouLltG1GwCwdW3e2+vyAIBsvE4/3lZPtr/Jacr02W8u+KckfjxqN5YvWSBJmEi7C4qz1mwEFstZu5G9au1PP+6SJCY8MPvh9NSlyKCnzJzjIPpQqNQ5azfk5wd+/FJ3ujTdAPp/JQRBsFgCNouPn9psrRarnkXwWKxgi0UbxOlttRktFi2bFUpn0C3Gy2xWaAi3/c9mZNDcoL44mZAX3Nds0RtNV4PY4SHcKGrZDe3xIHa4A4PWGyt4QW0nF/IGAYDR3FivK40UJlAMupG82Gi4EMrp2ytkeAinL/Xt9eRZ0nS9T8hIjfbQ8B5P48Fr5KkWU10/3igBp23rOrK0liwFgDsEM6mDAKAz1/yh2xvFG+sg37ik2yPgRFMMGo8AwJ2Ctmk51eSxavLYnYLZyKDbkDR3XBgn+rz+h/7c8UJOTJXxaBg7RsiJOaffHcbpDwDN7kUcGPobty+ThY2WchtABLt/V6BnKo3mCo2xKCp4kAP6oWwbvTgDvVE8+xd3Oo7O2zY8hlnH0RnbhsdUGTVHmwru4McxMGX/bBveRH4jv8qomd4neTA/zt0ayuoQEPRM5ZJes1Hz8dzIpAc90WTKtgEAnUHPVC7qNXvq5CzCJr3jaW/WM6DnByOTdtu/NDcy6ftaOcWgXaJntG2AHT1f0JfdFhoHAFTlGQAu6DR3hMZNsd/Uh68VlJGa8zoNA3p25s5AQ89ie5f505rtDgCaQs/MfWewo+cxwuTRwuQT2gIW4eHfAmXbAFfoGUMH0LWtmprWMp/QMz4uAYBY+A8cJMgQRM8mqxWcBBouAbSX6BnzJ6n+w6gaxE0Er9GzBSwAEMtr+z2+gjwCAM4NaI/oGYMAGgB8Rc8A0Is3vFKb7/CaLj3u0DOGDqC9RM/YfbbYzIbW6u7fMG/FEAThEjFjEEMDAF1WADQA3bbMFwytUKkO79vjmVYTIE1dJhG3N7DoALrtYshkMpnMGww9ferURJF4SWpaAqNqwx2GpgPotgvpC4YO4QsAgNlY0nZaVxg6WyYDq8WZyHuPoSmSS3ghMAE3GJoOoDF+YOhsWY4NiDSplLpI/mHo6VOnJojEi5amJYjEzhgaB04WqpT/zRgaX5zAf0TZeau7VL7h+gKs2ZC15i1JwkQCbMsX+TlvsDN54OGn5IVHAODnr7bfNPpMRV5UMvmx+dDWj97hcX2gd2/zcgCAJDH+Jr8AkLV2s6LoCHo55EdLfRo22MnIi48pio9lvvVu0oTR6OXA4vPyxQtuwk+gSy+HO/QcT3sKIAAKVUqJWCyVSmUyGRqWsnNylUolvjSYMn2mWCyRSMQyWY5YIpHJZAfsL/jhY1pqx8e06VOn/u2Fhc7aDSw+46erXngsNPHJHoNHXd6/7cqB7Xc/+C9n+nx69wfXzh8f9fC/I+8aQz9euuv9k7veEz35YuKTL5X/VqL+fOsTuR/jl+jaDSpbXnkyghdEEPDxrr3QMVvX5p0oVi1YkvrE3Bl0AJ2dtxoIwsGvlTR+pKKoxLn4nL12Y9aatwDg8J7v6Pah7FVrCbClv9HWhub2iiIbrztoN9rPP3MOixPUDaBvuXQrOP6HYrMZUcQBAAQRzGH3sNpIq7UVdRwsghvE6W2xtpjM7WMJWawQG9gMxnaQGhzUK4jTU09eoU6FYwlNlib6WEI8frW5sNXc3PaN9rGEAKAlNXiQy4noJRh1w/A7NZYQxdBhIXdUaPMN5qvU2XAsoUZ7iM+JpA724Y0MDer3p+4AfSxhJG/U7YJpf+j21pLt7+sRcKLuEMzUmqu05motbfFgwSwAoDs6BJxorbn6WOO72HTG8YNo58CxhNG8sVpLlZATM5Q/p8lSqTVXDeM/2GypqjIeHcZ/EMAWxo7BU2HfLcJV6+2KUX2ZLKRsGwO58ffyH+1S+gwAEZzYe/mPGiwm1HH4N2DQ7zjrOOgDBjtj2/AYdzqOzts2PIZhMmEnbRveJKnnpISISRs1H9OdzlTotg2GGYP+ZTA/bkHcM2e1Zbl/unViONg2AkKfAWAIP27RbfPuCB301Mmsczom7QzzjMFhgjikz3Mjk+ZGJp3XlSGDtliJO/lxAPC349keZwzO6Js8o2/yvqsFb1352GIFixVeHPgM0ufD1woOXysw2cBic7z9mWcM/lyfn3phRasF0m7LENPI8kBe3OWWK/ixlzMGAUDdkL/6ygrSAv+MXjlamMywEuNg23BHnwGgX1AcAJTq5KU6+TFtgU9jANGJkRK+tCfHg0ADRc8mq9Vk9WpsIP3kHhfj2EATWHpwYm/jJTDTZ3xIt4DFApZY3gSKPrtMOVmkatrgpXBDa6mqNB71UrhRR5aaCJOJMN1M4QZGT5bryXKLzWyxmUO4URza+6K6c2slZdoMd7YNL+cTSkSJh/f+kL5sSXZuHrOUQyJOlIgSPS47vP/H9GVLZTl5DPMJwe58kEgk06dOzXElhcCIxRKxWIyqjQdnTCt0jyATROLd+w54I+XA8YBeSjkAgLxRC1YLs4oEOiflYFipVChFYsm+A4eWpUlzPAlMwGsph1QqRS7vvZRDqVSKJWKgqTYcJCFeSjnEYvGipWnrVuU8PGtaQqK4pkEHAFE9BABQ06BbtDQN7+V4kZiScqiUSgBglHIoU6ZO8+be7GSyZTkhfAFhNeNby9OXvUE2Xrexg7l9Bz7w4GOKwuIu3R0Astds4PYdCADGuis/7f4ifclrmeu2BEcNzlq7uau3xmSt3fzAw09JJo5vrbrw87efZL31jk+T+gISRXHJ8oUv/fzNDgCiMwPr/EtS/PikiePlxSU2FltRdERR6PkNtQHM8sWv/LTrU+AE3//0K5lbtkkmjr1pWydNHLv8tRdMmpPUoMKCY2d++u7zm/P6h7OXg6H4XKRS4n+o3ZBKpWKJJGXqVLFYJBGLQgRhYLMd2r83OycvRBghFkvwZTaFUukwb1CpVGjtFg48Mn3q1LvGOs4bfOze/nT6DADnjxdT9Nl53iAA/Jzzwm+733dJn29cPPFE7seo3VB/vpX6wEG7gfmj9MgfpUfGJ4gc6HNJoWp4VEQQm/j8+/0AQMkxKO2Gw0uqCpXKWfoMANlrN8oLi3/6/isAoOgzpd2g6LNCXSgRJWbnrVao1HTtBrWjQqVescLxrZbd+e9PdwP6fyUZGRmZGattYCIILtWDBgCLVW+16tisMOpvRbNFawMTLygKACgYbbI0hHBj2awQ+3cZDMYKRM/UqcjWqxarAccSIozmcAQ4lpDPbTdO6I0VemNFdEQHJnJdV0qNJazVFkaE3AkAjYYL/KAo+p/QzmMJAUBvrtNoD1G9sFON20ZGPItjCQWcGPpMQgCoJU/ozTXInangEEJ0dOCgQiEn6qJuDzWHELvPQk40foo+6KH8OUJOTBVZorNUD+M/WEUebbZU4VjCZnMVnpm5Bw0AyeGLGL7aRTmp/7rRXNGbMzDgtg2PuW4uU2s/jQyOq23VdF3l2V1Qx4E96MDaNjyGPpkwsLYNb7KjansQCxbEPYOfBtC24TG4V+rt8+g6Dl9nDPoXd1VojzMGH4xMstlVG1Tx+Zy2bAg/Dk9rBeAQtuWDn/Y4Y3Df1QK0bdzOj7s9NA4PHr5WcOh6wX29kgHgvl6TdlRtd7hrvG8906NsyA9iAQB403pWN+QDANV6pn/JXQPaYcagx/zcsDOKG4fOCm9az79ji9nSocVcov9ieEiSywY0ouc7uCJwaj075FDTqod7pfvReh7IjR/IiwcARdP6+8OXuFvssvVMD70BXU4WlRuLo7keoDOmiiypNpZE8kYBgHeu57bWM/1LDg3oevIsADC0njucVltMmuu9bz0DAPVeqOaWiyb7K9DduYWSJBEjXwanmrND6G1ohVJFb0DTg90liUjksg2dnbsKbDZ0d0yZOcfdMtqm7W1oWW6eQwO6fZlCIZPJFEolvWVGz/SpKd/tPQAAalrH2fs29Lq8nEOHXE/wAy/a0CF8AXmjFgAU6sLsVWsBWMzXuu209jY0AIhFicwTGhVKVcr0me6uPr77GydoAYBKqcjNkYnFEpeLHUK1oRVKpUMNnB4v29AAcMDJBOJHG1qpVCJ0LlQp163KAQDnNjT1pf+eNnS2LEepVEoS413+2wHqzQQ2y/Ilr9PfvR7Iy7BmAwBIEiY4nx9bissXvZqUML7rgGDW2s1Z6zYtX/jK8kUvUwcVRUez1m2WFx3tiiGEjhcAlRcLX1q+8OX23ddvBbDdHBFH27zHJa8hp0M1wU3uoWet3QwsVvqS19tkLBbz8tdeSLqJJDrrrXcz33p3+Ruvy9XFhM16cxrQHS7A2k1Zazc6H8fic3yiCABYBAEAa/NyAA34NisWn2U5uYf275WIRdk5eUCwED3jexqc5w3SH2bx4UulVNw371XKvIHajaXvfjV0TId/kgufnBtxx70utRund3/w2+73RU++WP5byfA5/6QDaEq7QR35IvWZxCdfqvjtaO2541OfXUBpNzAHt206uG0jAJytaaQfR+3GgjdSFyxJBYCNa3KFLAvOD6RrN6hk565SyOUutRtJiRPbftLWbkT/Bl270X6G1WuzVq1zLj5n561WqAsPHdgfIgjrJpm3Yrob0P9bYbPCwGY1WxpoR/gslsBmn0kIABy2kIAg0lRjsZIsVojFRgZxetjHEhrs3xUiCBlituipsYQAwAvu624sITWTEACQR1c35lNjCQGgt2AUNZaQF9SbNNfzOL0ihQl6Uw3+tYwJ4fTtFTLiquEUNZYQAPicfsN7PO1yLKHOXPWHrsNrd5G80VpztfNYwiGCWRd1e2rI41G8MTXkMQEneohgFjWHELvPAHBB16YpHMqfc17/QxVZEsMbJ2BHH2naIuTExHDHn9PvDmPH9OeOD+f0H8Cd2GSudOf9xBQ0rWs0VzAsCGA0ZKGGLCxoWhfO7j+S/zd83/fNzAVSUW8u680ZGMGOjQyOi/T0tvquSKVRU9xUUEFqsPV80/bFyYTyGwX0yvPNoc8AMC9mfgw37uWzK6nWc8Arz+4yvU/ygrhnvq2V5/65c3ed3L8Zg/7FuQr9Xa1C9sdOjzMGd9fKETojfZ7VN9liJYbw4/ZcLbAATOvbpjTxZsagxQrrhq2c0icZ6fPhawWLzq002SB7SMZ9vSbdZ6fMOGPQXesZZwy6bD1TUTbkl5GaX+sLPLae1Q356oZ80gLuWs9RwXHVRg39iMsZgww5rZd/djWzzqQxWq13hXh2bmDr2WSxmiyOLeae7AHXzY41dvqMQW9azwDgR+tZEr5wIOPYQLDPjPW19Twu/EWP9LmKLClpettKmLH1TH+Xj0PqyNJTjdu8aT3Xk2frybMWMHpsPTeRF5vIi2UN+zhsPjN9dmg9001c3blFIxaLva0525elTJshy8mlTwqiB+ucElHClBmz0Pvs+myiRK+W0drQCqXKXRUX+8iHDh5UKxVCfihDvTdRJP7e3nH2vg2tVCoZysge29ASUdvf2JLEhMM/fpe+dGF2bq73bWiFUqlUqRia4AAgEYsM2kaWzSK0F4cZgm1oG4A3i6k2NAB0vg0tEYunOdXV/WhDA8DDs6YVqpQJIvGuPQdctqEL1Ur8EkMb2t217oo2NPIpBvoM1JsJUlOz1m4KeBuaKj6nL17gkm6nL15grLsCLFbmui0PPPxUwGu5WWs3B0cNBputteoCnT4DgCR+/E/fftJadcFGsIMGjOiiQjTan20E0Vp5jqLPbbt/s2P5wpdtBATF3pW1fmvXFaId6DO0DYe8eT30tnuBxULlS9toymVLMjd/GBR3b9Zb73bp7gAgLz42+fHnbcEhxmsV6UsW/vT91+lvLMpctzk48vastZtuThncHX0Ge/F5/apcpM8EwJJlaQCA9Dll2nScN6hQqkKEEXT6DAQhFovdzRvMkcmE/FAASJNKlUolRZ9x3uD2kjIH+vzDBxsaLpW6o8/hIZyle8+iXoOiz6W73t/+5BgH+gwAqOAQ8ILo0mfMwW2bhMHsFR9+Q583CHbtxuVrzUifAeCIWon1ZCAIsvkGnT4rlGpeWE+FUp2UOJH+wJK9duMDDz6B9BkAFOoixM2o3TDW13hDn6fMnGNjsQ8d2K9QKrvHD96i6QbQ/ytZsWKF1dYCACxWCAEcs6XBZmvFL7FZfKvNaDRVWe0YmsMWsll8o6kaAKxWAwCwWTxuULTRdL3VVE+dM5jTy2i6qievUEeQQWtbLnI4AkNrNQAEsYVhTgwaAILY4fW6Ui3te4W8QUEcYa22kDS164QihQkWMFVq280J+Ne1BSwabYfaS5xwipWw/qnbH8kbRZHo2wXTBZzIP3R7Hf5678cbjbiZOoLEGecQUkcGC2bh7EE8gtMIjzW+K+REN5urh/LnaC1VyKCH8uec0++mdBwA0GSuLDcWI30O5/QP5/R36eIAgJP6rzVkocsvBSoasvCk/muUXSBVCefE3sN/1GA1q7WfdunWmAuk4oeGtr8uEoVPoY7jUMOOOruOo6tzSi/fWZcBAE/3W/F0vxUWW9v8tJuTo80FR5sLtlSsnBCePCE8ueBGgaajjqOrI7+RDwCDQuPOuXINd3UG8+MG8+PO6zTf18rPactuAnqmZ1a/pMW3zZP9sRNtGwxSDoo4Ux8gKAcARM9bR6wEbEDbwAbEtnveBACP6BlP7oCeqU1/rc+/pNcYrcCAnlstwIyelQ35pAX6BcUxF58p2wZpgdFOxWeX8Q89t1qts3qk3RniuSlGCTGc0bPLOKBnj+dHmgwAXYeeE8MXeETPTZbKcmOxf+iZYSWFnof0eIwBPYcE9aWj53DeEI/o2Ww1mq1Gn4Qbzug5qFvBcYvHewxt0DVLxKIpM+fghHqXQQytUKp4YT0Z+DIuA5uNeRmiWIlIlDJ1KgMDpTB0nifLhE8YeklqmkgsZpZRgC9SDl8xtEQkWr7kdZksh1lIAgDpactcYmiVUiF2KvOmpkmbdC3eY2gASJVKZZ2TcgCAA1Omb+E9hk4Uid9ITVu/KqfzGHrJsi6Xcjg4NzyuDziGpjs3HN4d75z0xQsoHhpADJ21drOisPjnbz9xQM8OWb7o5daqC8sXvxpwL0fWhrcnPzbfRhB09EyPJH788oUvt1aesxGQteHtgHs5stZvDYq9y8YJcnkvIIbGFwCCowZ3xQsAYC8+G6+WOQjHEUMbr5bZgnhBcfdOfvx5efGxgO8OAFlvvTv58eclEnH6knYBhSQx/qfvvzZeqwAWK3Pd5gceerLrMLSi8MgDDz3pjj7Hi8QLl6aiRB5nmQLAmrwcnEYQIggTi0Q4b1CpUh86eCBdmob/ulHcjwNv8R0nDtoNlVKx/+BB1N8jfUbtxpDRE+jaDcwPH2z4/v23nLUbdeeOf/b0uPAQDiLm8t9KIoe10+cbF08glaZ/i/rzrQBw17gEB+3GwW2bXhPdLgxmP/LCwt+PFY2LbwPQW9fm0bUbVIrVqikz5zhrN7JzV02ZMQsP0jvslHaD+kmTFxYDwJTZD9G1G22LV6+Vq4sAwFm7IZZI0tNSHe+n7txS6QbQ/0NJTk622UzgikEDAIfdw2S+TjFoVEIjg7ZYSQBgs3i8oCiztcWBQbMIngOD5vMGaVsu0rcOCx1itVka9G1dZj431mRpiggdQZoaHBg0nzeANNc3Gi5QByN4Q4KDelS6VkIf1pvrqIOohK6l9aABoB9vlAODjuSN0ZlrUAntwKApNQd1fLBgloATfUH3I10JjR8LOTFD+XMB4Lz+e2clNACM4D8MAOHs/uHs/gAQxnarhNYYi7qIQWPl2QYwkDtxIC/egaoM5MXz2dFq7afOHcOA5AKpoNAzaqYp40dvzsBE4VPHtQWn9G67qJ3PKb2cjp4p48eUHvOMFth99eOqjk3PgOdoc8Huqx8TAATAqwMyJoRPmhA+6eG+83+5no9QuKsjv5Gf8ccKFgEsAp7vP//5/vNJC2zUfHxJr7kJu4NdZ2wD2DR85Stxz1gA9tR14T3unD118rWXXQ+TeTCynagicaY+oNDzv37LoNDzS2dWWm1gtUFKn+TzOs0PdXKTjaDQ876rBb6i5/SLK1otAACTe01yRs9YeW61gLjHJHfoOedyG1BGiXmFXa/vEAfRMzN6juLGVRk1nUHPQ3g+oGcvW8z+oWekyT4t9hU9My+uII+omzbyOZFCTnTXoWeGlfXkWYPpqt5U4xN65vM623o2WbT4InR3bvXQa84MGBoAyIarCpWaF9GbAUMf3vvD4b0/KJQqZsyavuwNXMaMoRUqlUHXLBa3YWi3V0EiOXToULpUGkAMDQAoUKY8Esy7Bx5DJyb89OOuTmJol/EVQ+8/eKgzGBpvEGemTN/CSwyNFXUvMfS6VTmLlqY5Y2gAQBFHF2Fo/DHwHj3TEygMjcMG6ZVbr3an1XI7CUOp4vNP334iiR/v1e7x43/69pNAYeisDW9PfnS+c/HZXZYvfBkL0QHE0FnrtxYcOf7T7i+8eQHAWHelK14AoBef3e6+5HXj1TIsRAccQ2e99S5VfHaze3shuiswdNbaTZMfelLudNo27YZIXKRSsggiQSTGZ4dClZJF2N8qYbMZtI0SsShl+kwgWIcOHpCIxdmyHIVSefDgQalUio+HAn6oDaDjvMEUANh/8BDdL4TzBreXlDnQ5/PHi1e98BiPwx4xzvG309O7P/g59wXK7AwAFb8djbxrbO3vxw9k/UvAZVNjBqmoP99ad+7E1GcXONPng9s2rvjwG/RQnz1WND5BBE7aDSob1+SCqzm62bmrFEo1FqIVKhXWnxWFxQ88+AQA/LT7qw46DnVx9qq1SYnxDvT5gdkP24BIX7qY/rYq1G4YdM0UfZbl5HYLoG/RdDug/4eSkZGxcuVKDrsXfmqzmSzWZhZLwGbxcaIgiwiyWPUsgkefHWQyX2ezQoM4PWhHGqw2Ywi3v8VqaDXVh3D7t5rqW831fN4gDrvNLm226I2mq0HscPqfpgZjjdmi53NjgzlhV5sL+4YlAECD/iwvqIeQ5pI2mhvrdaURIXdG0P5UJs31tdrCWOGkEE5flHL04g2vJ8/WG87ECVP4nH7USlRC3y6YJuC0b01XQuNwQnRD/6HbSwDhrITWmaujeGMEnGj7t1c7KKEv6H6kJJ6o6XRWQmst1bHcCRXGIwAQzu6PhWgGJXQEJzaOGx/BiXW3wPsgztYYiyiHKUOazBVlxqLIoEEB9EFfIBXXTeW9gwYAAPNpL5CKRkvFlB7zArU15pRefkpXMFKQDADuTNN1rZpDDTu6yAR9tLngaFPBhPDk/txBMbw45wVHmvLrWjVJPSfFhbj4aucjv5FfcKPgvl7J9zvZhK8YNL/U5w8TxHVpFRp1xtP6Jk/ruMuBawWX9ZpZ/ZJQqdxFuajXXNCV7bla4G7BMEHcOZ0GAOZGJgHAeV3ZUMFAFG7ggj1XC6bbRwjuv1owtU9ySp9kADh0reDgtQKsdVOVZwCwWAEA6NwZAND1fF/Hu+DX+vxf6wtE9rbyFzXb/zNwPvVVZtEzRtmQr2woGOc0OXPP9Y8fj5pPP6JuyHcpenaXE9oCADiu9cH1fFov/00vvzNE7MCdL5JKFkE4+zd8dTE3Wiqum8u8Xw8AdH0zAJzWfz2B/3d36x0Wu8xp/ddj+E9cJguvGNUDuBM9cmcAqCCPlBuLqWeNC7of8QVLl6Fcz+6485+6/bcLpgNAHVlaS5b2ChnBzJ3B7nq2gJE03eAF9WRGzwBgthoBwJk7N+h/68G/Gz926Xp2GYOxxtBavXLlyu4/D265pEvT3NWL0HQpTUt1XpAybTqaHBWqwuxVawAgfdkb7qQcQJltgQAAiSjBgwAXCJeKZF5YT4OuucNlc28cbjuhQiGTyfAvH3RAuwu6obHv7PClQpVybV7OvgNtDujcHFlejkwqlUo9CZQpNzTYLHhzuV3J6IaeMn32Tz98Q1+ctWqdWCJhtkJjsnPyZLl5ALDvwEGR2MNvfXjVXIqk0QS9/+AhhyMAIJVKJRK3Z3ZwQ4eEhiJHpuIseqZvweCGXrIsjbqzUNhts5ugwckNTf8UACg39Nq8nASRGMFToUqJDDpQbmh0bji/qdyP+OeG9g89u9jdX0mxovBI1rrNkonjmVvPHk5SdDRr3Waw2Za//mJSvOdpCg5xNj77vPv6rQC25a+/lOQdPXe8AE7ODR92D5AemjI++757YPTQlPHZHXp2sbu6KGvNhgDqoRm0Gw5B58aavBxEz6tyc6Spy7D4LMvNk6alpUvTFEqlTJYjlkioJwJ8WZT+IJkjk+U6PaJOn5qiVCrn/us1d8Xnx19c9PiLi+aOiP77zvbXXVC74dBu/iL1mVaztfbccdGTL7rUbowYn3jpRHHKs6/SzRuo3aCPQHzs3v5naxq3rs0LYhMO6BkAnpw7nUUQ94kTHLQbWHzGgwqlOlsm+2n3F20e+SWvOfywZa/ZIC88+tOPuzocRO3G0sXpSxdnr1oLBAsfKrPzVttYbPovHviM340xb9F0N6D/h4J/B1rtHmeCCGKzwmw2I9JnACCIYA67h9VGmu0SZwAI4vQ2WRqoaYQAEMTpwSK4BmMlAFisLQAQHNQrhBurJ69QSmgOm89m8Q2t1TiNEBPCjeJx+zW2nGk1N/O5sSjl6MEfbrVZruvaa8tcToSQF9douNBItteoUQl9zXCaroTuxRseK5yk0R5yUEIDQC1Z6lIJXUueEHCiKAH0HYKZfE6UsxIaAOiODmclNAAAYTuv/x4AUMHhoIRutlTZAM7od2EDuslS6VEJ3WiuwPGA7hZ4E6ryTNk2PH4L6jhqTVcukEwz0L0MVXm+M0RMrzy7y508SQQ7dmddRkB0HHWtGofKM8Ocw37BcU/3W1Fu0Oy++nHnt8ZQtg2q8uySPgPAhPBJY4STdlRtD2wVWn4jn2o9y4ZkONNnABgUEtd1VWhKZ4yt52lOjHtan+QpfZK/r5N3URV6T50cW8/u6PODkUlzI5Mo+ozFZ5sNLFZiVt/ki3qNBcCh9bzhrpUpfZIPXSt4/feVFhusGppxSa9BNo2VZ4sVpvRJRvp8+FrB4WsFJhswtJ6XutI0exQ9A631/FJ/FxLzcloD2qH17PF2O6EtOKEtIC020mIDgM63nntxBlw3dXhrhUPr2eP5kQ5bwealQONPUm0Ci5dFZp9azwDga+vZTJjHRryA9JkhXraedeZan1rPdOEGL6inu5WBbT1jDMaaG9rjVpuJG9SH4UJ25782spzc7Jxcl19KT0tF4BsiCHO3RiJKOLxnd/rSJdl5q6fMnKNQua7xtnU5ly0BsClUao/LsnPzPJSm01IPHdinVMgZVA9Aa0Mrlcq5M6YxgEXsuxEAfcMFOHvQXbAybLFBaGioN21osUSiUCFfdr/S9zY0y2oKEUZk5+QxrAR7G1oiFs2YNjU35/+/De1sAvGjDQ0AS1PTWET7neWxDQ0A1KcObeiJiSL8YNeeAxNFYrVKmSgSd7IN7atzw2N8bUMrCotx2KA3zg3Pu/vVhs5au3nyw091kj5DJ9rQWRveDhowwvvis9vdO9GG9r747Hr3TvfQvSw+u989AHpoj8Vn17snxtP10J0pRGet3RQcebszfY4XidG5sXBp6uJlaYuXpQHA9/sOAACLgBtaPdhfjkL6DATLoNehdiNl6jSKPisUitDQUKVS6UCfoaOIAw8qlcql737lkj7zOOzvz1Q//uKiMyWF/Ya2uTVO7/6Art2gp/y3kjtGTXCp3fgi9ZkR4xNnPLfgUmkxRZ/p2g2HU6F2w7n4fFufMHzlUiJql0RT2g0KSStUqqTEic7aDQBQFBZz+w6UFxYniTr87o3aDfJGbfrSxQCgUBeiY5oX0duBPgOAslsAfSunG0D/z8VqMzozaACwWnV40JlBA4DVZiFN7SjZzqAr2KxQNHKwWSEh3FizRUcxaF5wXwCw2szNNB0HjiXUGcscxhIGsYUOYwnDeLdZbSYcS9h2QvtYQgCoN5zBgyGcvkN6PKYz1dAZdN+Qkfygfg5jCQHgdsF0AGsteZyuhI7kjeZzoi52ZNBaczWzElrIicb/Spre1pqrUMFBV0I3m6sAYDj/4UZLJQDEcid0qRKaGjBIcWdvkAo9lBLaPx2Hs22jN8fbGYN38iSd13GgbQPPQLdteMyUHvN6B8V1XseB6Jlu2/D4LTG8uFcHZPyh1+yo2t6ZrTHyG/k7qrajbcMdeqbn/l6TknpO2qj5eP+1gs7vDjTbhjv0TGUwP+7VuGfMAOsu77gYOAK+p07+r98y9lwtYCg+ezNjEFe6Q8+Te0+iFlC2DQo9o23DZAP6jMErBg0Deh7Ai+s8eqbHD/T8QfVKRM84M7BP0MC6VqbHgU4KNzyu91WgQaFnbx76fELPZWSRoml9o7lyBP/h/xf0DAD4ROYHeg6IcKPV3OQreg4LvaubPt+iycjISBCJ8xUqBttGG+pVKpnE0F5jaIko0XtazYyh0RaCGNqjnRkAUtOka/NymDH0ktS0a006BwytViqdu8MUhmbeGoN/YPN6RvqHoRUqF8KN9DcWG+trvMTQCqXKoNexwTZjWorKvZME06UYWqlUujynHxj6jVRpfbO+kxg6XiQuUqsAYGKiaO2qnHV5OYuWpXUGQyuUymxZTgDRMz1eYujsNRsemPsYAHQePXfY3WsYyjBs0P/dfcTQWRvelhcf+/mbHX6jZ8fd7RgapxR6/BbK+PzT7i+8L6273t1pSqH3rwG4ND77vrufeuist94NirvXFhziE3rusLtdD+23l8ObeYPFalWhSonzBufOmMYiQCSWzJ4+lQDYu/8gADjPG2xpaUH6LJPJpk6dKu1Imal5g/TtqEc253mD88cN5HHYj7+4CI+cKSnqO2wMAJze/UHTH6V07Qam/LeSVTOHD7h7nDOVVn++NSwkeGvhlRnPLbh0ogN9Lj99lNJuUPn23fUA4FK7sXF17nd7DyxellaoUlJvzaFrN6jFCqU6a81b4KTdwMei5UteAwD6yEHUbtDfGKRQFSpUaoW68NCBfQ7d5xBBmA2IbgB966YbQP9vJTk5mSC4NjBbrM3UQTYrDGxW+jIOu4cNrCbz9fYFAAQEkaYa9EEDQBCnBzcoGhvQ9mUhIdz+dAYN9rGEN7THTXaijWMJOWyhA4OOCB1BjSUU8gY1k5eFvNuCOeG12kLS3G6dxrGEDterv3ASw1hCOm5GJTQAODDoOwQz6ZVn7DgPFszSmasv6fZQKyklNABozdWohMbuMyqhtZYqSgndbK5sMlcO5z/UaKmsMB5xqYR2GY2x6KT+a3dfdVzse+XZXQby4mO4431l0PQBg4ie/dgaldBGi+Vwg2tdL0OoyjMATOkxz3v0TGUkP2lEaFJRY4F/kwmpyjMBgJZnn779oX7z+wXH7aja7vdkQqryPLn3pPt7TfKInqkMComTDck4p9Ns1Hzs39YYh8ozA3qmB6vQay/v6HwVmkLPzl+iiz68nzGI6BkAnNHzz9fzl55fAQAvDnzGneiZQs+/1uf/Wp//07V8l+hZ3ZCvbshXNRZc0muYZwx6g56PNhfEcOP8Q89/67Uc0TPz+tN6eZei5xvmcp/oMLWYGT2Hs2Md1nuPnk1gHhf+YjR3HL6m6C4e0bOW9gKnH65nsA/gdZeuQM/Yeuawhd3o+X8q8SLxrj0HxiVKUqbNcFtz9nI+oRcYWqFSU8umzJwTKAwtTVsmk2Uzs2CRWLx3/0HE0MwdZwpDexRDp6ZJUQztEUOnL11M3qiFTmBo16f1BUOnS9OWS9NW5cj8wNBKhQsKT4WOoRla4WKxWCwWE4QLyozxEkPn5MgSRW0Xho6h8f7yCUMXqZTYf0QM/e2e/TabzW8MTRmfA46e6WHA0D4NG/Rzd08YGocNLl/4SqDQc4fdaRg6aMCIrA1vO6+his8/fbPDS+W0D7t/swOnFAbF3sVQiM5av9XdsEH/d6dNKfT2NQC/is/u4qse2r/is7vQC9FeYmh3xWcqVPGZ0u8UqZVYfJ41fapIJF6WJs3L+T/2/jyqjfve/8efI42QQBKLd4Md42xNmjR7vIBGxre1wVviOG3za2+39PZ+e5c2SeOFRbiJCxJgsFMn6XI/t23a3tz2pm1Wb2C3BWsk8JKtadIkzmK84N1mkQQSGs38/nhJwzCSRgKD2yS8Tk8PGd7SjIQkzGOe83g67RwX3zdI90Afd/39/fThhuF9g/KOZCTN2bl4+vz+awdqn/qDTJ8BvHmoHcAfXf+Wk8l+qe6XV3xmmHmGAs4rv/WQ6uF4f/OjhpU3ZGdmrPgX9avuye9+2Zqhf+Rnv6f+Q3n+8NOtv//p1t++sFNFn7+8erlBx5zu8ZO/iOLPbt5ryp4EYM+ul5SLa+sa3B5PEu3Gfjr/4fbuJwBdu7nJOHmm3VZE52WVI+n0Lbt3KQVHta46N++hk5eLFl2+QvuJGduZANCfrCkpKQEEhjECTETso05CADpdpo7JUtYS6nVmMAZlLSGrt+p15lD4pMyg9TqT0ZA/KFxQ1hJmGmdJUoRqCY2GacHBs3ItoVLHkZ11LQC5lhBABpudqJbwSoupUMWgc03X5mZ+6nD3M8lqCbPYGYHwGcRqCT/w71Yx6BmmW9/37yAZNI2FnXlL7r/KtYQWNt8nnEKMOCsdHeSG9gknY1WE+Z+y3EXZZwDXmVdb9QWk5rCy+X2RE28FnrvBvMaqLzgeOjDbOL83cqI3ckJWQiNJLWE6Oo5LjDwnnBx29s3mL7w10JZSx3FeOJqsYHDUMyIdx4hsGylnekah3EyY5k2oqE1p2xgpepaHdByjaCZU2Tbmjkon/a1Z9882FX7nrUdHoePQtm2knGvMhY/f8Ojbgc5RR6E10DPZnOluSdb8jv9omh2DAFrOtUUkyOj5w/5OQs9hEZuu2VQyqeSDQCc0OwZ/fuIpahH80sz7E6LnkIiQiDuzS+Yk8rQQeqaOwZTo+WBfWzAidYU6V07+xijQs+q70wyFZ8Kdyi2EngdFMU30fDjIXxCOnQsfTRM9U4r5vRAfT4cvCscSrlei5PFIPRN6TtkcmH7quSt4aJxqBscJPVPqGZq65wn0/HGddeVVp7r9rW6Plm1DgaHdvMftSXzxFvFlu60oFV8uCnafpWUaNYbE2uy2oqUrViFWYZf82NLF0DoGU1OpNtZXVlE/YWO91jIbZ5f7CdPH0EvvWuP2al39psTQALQXp4+hiaSMAkOn1HcghqHFVHISSkNfCobmOG5zvfOu5WXe2OuBMHR5pUPuk0wHQ1MCemtD3daGOsLQWxrqOrye0WHosXVupJx4DF3b+Ng+7/5R2x5Gtve4TC6Glw2OB30e2vvCeXv/8D+DXe9KjN5wxY3KQHTNYz++ROdGOrPx4e/QLuK9HHLwefx+CtXrHkx5DuDSg8/JRunlSIahLz34nHTvwzF0TdPjyVamY3zWMQwABnhh5+7GepeOwUu7mhtcTgbo8QVsnH3l8rL6Ohdp35V9gwCcTmdWVhYAx1DfIJ+wb5CQNLk4eDcvA2i5b7D2qWdvvLNIeWBvHur46/P/75rb5icMOOdmZfx0/5HDr+5Xfpf6Bh968rdK+rzz59sAPGS76tb5xfHB5/tumWUxsgDmFw99uMnaDRKSyBOv3ZC319Y12IsXxGs3AOx9/hn6T5k+7/N27Nn+nJI+1zY0mSbNsHM2lXaj1lUHRtfS0oIJBcdHfCZKCD9Z09bWtnjx53S6LACSFJKkQb0um2EMAERxQJT6AbD6PIbJoPWSNChEuknTYWCnABClUFg4b9DnybWE/aEPdbpMVpeVYZgs72gwfEGUggD0OjO5OOJrCamkyKDPoVpC+bZUSwiAgc5quhJASOj2BT/MNEyTawl7goeD4fNB4YKqi2lAOHvc11poLe30tdyQ9zXaSLWEyn4nf8zOQbWEyqfodPDVgHBqpun2U8FX5HLCU8FXTgVfvtayKlktIQCKRVPNlE/oeifwIoBZxnkAToQO3mC+F8BbgWevMC4AIDPolD+yW8xfVNUSjqhgcNRzNNgRiJwstn4l/lvEpqljcAx7C+U5Lxx9d4AvMM1NBpTJs3FmsHN6RuGlQOdkd/4Xf9s9075RYCxMtoaC0ieDnQWmwlFD54STZjMhcepkHYOjmxE1E5K1I2HH4OjmvUDnE52/XDWtZNX0tH6gFJrWUG2smlZC310xrUQCiK2/F+hMs2NwyZQSAHLkmW5bmFm4OPZst15oPR7s/KC/U6NjcHbm3CviyDJFnu/MLgFATLkr1Pmqv+0rivJAuWNQXpNsDva1Hepr+4x5EYCbzIveCOzL0DHaAPpVX9srvrYbshZp5J3/NuDWMVENtNwxCCCdyPPhIA9gUBQBHAl5S3PKtddTbWAYEQAJP9DcvVuVd5JmbSDN0WAHgKOhjlx21k3mL6az/mioQy6YlacreIiFXqXgUNUMaszJ4Msngy/PMN0KQJs7I0nN4OHuZ67Nu0+1Uq4ZBKDBnYPChTO+/bmZ1ySrGVROfM1gX/9hOmGsGvoNbjRMTcadQ+FzlY7/nCgh/GjNpk2bfMHBdeVDf2dSVxvLSI6qSo2mtdJlyyFJAKrL19ttRcmW1TY01tY3KkvYlq68e8/251MuSzim3CkAEpYiKsfN805XHcAoy/Eys7J6fAHVynqXs77O9cLO3cnYIk1jnavdywOorHJo9/h5eHedy8kM7+VzOp2MEFKlvWKtg6guX6e8MDnhmCbNsBcvAHQby9emXFy7uWlf+wFHZYWdG1J2ZlpzBwJ+1Uoq0RLTeFyIAWgv764c3geYbKh9S1XV6IyVFiq3OJ2JGwjl+4mvKFxWVrp9V7OH5+vrnJKE8kpHseK16uX5hjongPWVQ4WECSsK26Px56oOL7+1oQ7Aw+WVAOjrteWV7R5+a0Pd2ooqAFvqXcrXSUKRi91WrN3GOU4jn+m59L7B0Q01jy1aOG/j2u+Obeg4nZFbCvftPzTqssFL2nuspdDdcWhc0XOCvQ9vKaxpeqJmy+PxWdTx3PtjTERYtOCOjQ/9G22s+eFP2w79ZeP679mLx+uP1ujevR3u9o6azY8tKpqvLCp0tx+oadq2L0lEeqGNA6CLvYXj+wYrKqso+Fxf56qorPJ4+EUcx/O8sm8w/qOstLSU53lV3yA1tdo4u7xxeVlp0T9/57rbFyj7BlVH+H8/3tLOu79U90vVdu9vfuT5zY9Xfuuhld96EMDW//jS7V/4NwpHk3YjPvj8w//8kkHPPPKz36u2/+GnW9977cD9D64H8NsfNf3mhV20fVtj3aF2z7qK6OckzZqVy1hIiAs+R3sIKzYAYCKD8ktuqPtUsQU6PQAJjOpXYW1DE/0qbNm9U/4nh1wyLCu26+vrW1vHskJpYi7nTCSgP1lTUlICRCQpAoBhjAyTFRH7SAmt02UC0OuyhUi3qpYwIvbJOWgdYzQaCiJiv1xLaNDn6RmTJIlUS0iTYZisY0wEnWkLqzebTXPDkd5htYQZ+azeTLWE8kaqJfQp2rSMbN4Uy+0D4bNyLaGJnQyAlNDKWsJMdtps6+KzA68BCAhnaKOZnV5oLVUqoS3sTL9wmmoJ3/fvUD5FshLaN7yW8FrLqlPBV5RKaCubL9cSAviU5S4rm/9O4AVZCW1l8/siXQWmedeb73kr8GyvcCJeCS3/Lx0l9BjaNlLOHNNCsz7/xW6nUsehtG0UW78yHvQZmjqOS7dtpJybzYtK876eTMehtG2smX7/2NJnKJoJk+k45MhzmqLn9CfNZsJd59q2df4yHdHziCb9KDR1DGqInq81F66I0efl00p2nm0DIAFXmwsBpNkx+Lkpiz83ZbEceQ6LuH/W/USfWy+0tl5o/bC/U0SKjkEVffZ2tzYceSQkRuPMCcmyyrahnXr+0YlHgxHpn6d9/ybzonQ6A7VTz/Gjsm2kk3o+HOQpJX2lqehKUwos8kHQeyjw2/FzNx8NdkQQiSAyyzhPtnBorB+P1DOhZwECgOmKk6AJRyP1nMVOU/7niFLPIeFCBpsz6ppBVSEE0k49h8LnNB7sxHxUhlKiD25wbHLWa9g2AOzZ8aLdVrx01erahsZka6rL1+/Z/oLb4zXlTtGIOSuXJUtMA7BztpSliBhJGrqiytHjC6QUQ3s9/Eu7mssrHXWpUsMJ09Butzue0ccCzutqG5q009Bub7u9eMHe55/ZuP7BmobG2s1a+g4A1RvWbVz/PafTVbp8pZuPyqMTnksYURraw7vJN+JyOpcP7wNMOFUOhy/QP65paNmpokpDF3Mc/bxSp6Erqjq8ni/ctRzA71/a9XB5ZTpp6OheEmWi3R6vdvB/zIc6u+zFC4MXTwcvnpZ0rHH63NpUwc8xPoambcSb7LaiH2z90ZLPf9U9wqa+MRl78cJFRfPdHYcu897JywEwn/viN37w2I9kDHqZ9j7ciLJv/8FxCj4n3/sz1RXrZT00BZ/3vvC78abPAOzFC6vXP6zSQ9c0Pf65NV+Op88LirkFxRzRZ5uNK7JxVDyL4X2DO3Y1E30G0OMLVFQ5PDzvdLlUfYOIO5HG83x83+DysjIlfQbA8zzRZ7lvUHmQbx5qX31j/juvJMireX/zo7PvvPrT/UeIPh9+dX8wHLniM3cm02689+r+ZPR507e+YDGyj//mhVvnD50qO+DlSbvx3I7dSvrcVO8iAXS8doPoc3XFBrfHK/+4ldoNefG+9v01DVsS0mcwumDPeSh+SZF2Q06aYyL+/NGfiQT0J24YhgH0FIIGIEkRSQrpGKNOlxkR+3RMJgBRGmAYo15nlm8lRLp1jInVW+UtYeG8XpdlYPOIRNMXohTKMEzW6zJpTUQcGAgdNxqmUQiaJjh4NiIOUKLqou+VSdbbwxGfr/+w2TjbbBxiBIHQ8UDo+BTL7cZY1BqAL/jhoNA7w1oEoLN7e2HeKgCnfe1mw0zVn+snfK0Ww8ypppuVGzt9e5hoFSE+8O+abrrVws48E3zNL5yeYbrdwg5dZewXTr3v3zHTdMdM0+3Ke3jPv93C5tPGU8FXGDoq4WS+6Q7SRlNLoRygO9T742y24HrzPX1CV1foYLZ+1mzT/LcCzzHAbOP846EDShdHr3ACmjOukeeE0yscPxrqYKGfYrjinQH+ukxunKBzwnk36H5ngC/N+zqA0+Gjf/G33WwpGQ/onHD+Eth3Ptw5L6eEotAH+9oO9rbNzykZc+gcP13BzgO9rVebCxdNGtrXvoutYxt5TjbJotC7zrVR5PnqrMJrFGLlsZ3d59p2n21bd+XXr43bBXFn7ZuvmFbyXqDzcKBz+bQSxDLa0Xs+23aNuXBFzMuRMPUsFwz+8Xzr3vNtJZNKFiue7dYLrW0X22y5JQCK8xb/7sxT/zIrGluWU8/FiTzOcuo5GVD+0YlHubwSSj1rR56hSD3HQ+eECehXfW0AUqaeldPW9+tz4aOfykwNnWkOB/l3B/i5xmIASu78auD/rjbaJrFq6CmnmHPZWTlsCjT8RuB3U/SFI009RxABUGCaB6BP6DoVOpQsAZ0s9awcOQE9otQzgBh6vuVDf/PVluXJFidMPSvnhK91lnUx0k49A+gNHgYgiGEAg5HuPPNnkq2MTz0rh35N09cpU8/yhMLnQuFzJSUlExGVj9Zs2rRpzx//9Oz23Qm/q5GGLl22fM/2F+jr2vrNtfWbqyvWV5evT7Yjt6dd5tTxCej4ZQljpEtXrW7ZvQuxjLOb9ygzUwmHglR2jhNjXVIJR87Srq+siqeKq1cs2747els5XZt+GhrAxg3f00gua6eh3d722vrNdCEz5HBZ+drqDWqBZvwNaxq2QKdzVFY46xpamhP/lKOLU6WhVywr3bm7RfXQRpqGdrvdymy4atJPQ7tcTlWefXRp6C0Nrt+/tKvDy2+JxZ8XFnNppqHp/unVkiwNTYHolM/PqCf61itflzBUeBnS0DJ6Vu4omsmVxMuThq7Z8mTN1ic2rn1g47rvgtKvW56AJG18+D8vWxa7ZuuT0LEb1z1A2VsJzMb1D15i8eCIJvqDWPcggJqmbfbiBRvXf+9yHgBiH00EIi9D/Dl+3N6OJatTX/omv2eLbZzXw5dXVtk4e0OdUzY+18dC0ADqXU6vhycLBGKfUc3NzcoLXOhTy+Vy+gJDRVl0tiz+o4xM0MmCz//34y3bfvPCU9sar1/9r7L3+dhfD3l/86Ob5hcTeqY5/Or+P/xk6xWfufPM268+9KPfqu5q58+37fr5D2+8c6EoQQmgyfh8/4Mb7n8g+sv6gS+vLq+s2t/u2ba5jnTYyvtpqnc11bvsNlsC6TPv2bPjRfpPU+6U0Nmj7vb91DcYb4Kuafzhnu3PKX+70WeUzK9rGxrplztpN5Rw3+12l5WVtba2TjDoj+5MJKA/cfPoo48CESmWaGYYvU6XJUohURxgYJAkgWEM5NyQc9AAGCYjIvYpk1AGdoooRYLhUwY2LxyJMmgdYxwIHY+IA7RGr8vMYCeHwmfjawn7+g8rawknWW8PCT2qWkIA5/2vhGJRawDKWsLczE9RIJpqCU/4hv2VO8u6+OzAX+JrCbMM06mW0MLODAinEaslfN+/Q+mJtrAzZ5huPxV8WY4805CUQ6mEJvT8rv+lhEpoK5svQXo78DyA6833AFK8EhpAjn5Wr3BCQwlN25N9a/ymRzgBQID4zgA/6oLBUc+nTPYp7JyW7l+1dP8KMdHzZds7NRM+f/aXKtHzZdh1galwzfT7ByL4VddT+y62qkTP4733+Ci0SvQ8fvQZwLKpJd8t/MYLZ/Zt+XAo/55Ox+CKmE/janPh8mklu8620QED2H22TRSx5fpHiU3vONtGqeerzIXJOgZJ9KwUbjzy3iOCGI02y5SZOgaVqWfV4alSzwkfMmXtU4qeEZd6jl8w3VB4MtQp/+ervrZXfW3BiJR+6vlvA+7fX6jJ0c+ezF6RpnBje7drUBQ/m7M+zdSzMsWckj4fDXb0CCdGkXouMM0j+pxseoXj6aees9n8Y6H9I009CxCmm26ZbrpFY/F4up7Dghi2mOZYTHOSrUyWeo6f9F3PofC5vv6/iaKQZbxSY9nE/MNOu4dP1rMnp6FLl63QSENXV2zYs+NFt6fdlDdNWwxdXb7e7fEuXXVPymUaNYaIZZxbdu/ULkUEUF1VOeDv4zibh+frk1uMlf2E2mloOV2bfhqa5/nahiaNjHP6aWjEesAgRoyTZ2qnoe3FRXtfepbS0G6e13iWMMI0tPzQRpqG5nmeT34Y6aehAah+mqNLQ7d7+A4vv7CY+8NLu9aWV25tqEs/Df3s9t1FNs7r4ZMZot0eL8WTNbL/ox66Z0hi8OLp+C4vUo1TGnrJPV9SthSO5TE0bdvn3R+PuaOZ3A3fG+80dM2WJzMKPgWGGTz1HtFnAPai+XuffXrjugdqHvvxki98fbzT0DVbn8yYdT3R5+jen/vN99c9UNv4w8sWRa9t2ub2dvzxud9sXPfAxnUPDJ7+4PtrH6jdvFVVUDl+427fv+Se+8AwoXPH977wu43rv1fT+NiS1V90ezsuw95pahu3JqTPFHymd/H6iqr1FVVeD2/juGIbZ+O4+L5Bj4en4HO9y5lrNXsUvwvkvkElfXa73bubmzl7tIEQir7BePpMH2uqvkGa//vxlkyD3v3BOWUqGbG+QRV9BrDjZ9uO/fVQdmZGQvpszdA/99eTAL6g8D6TdsP9wTmZPtOQduO5Hbvj6TPLqE/cRnsIJUmmz26P1168oLbxsYT0eck99+1rP2C3FSWjz3QPHMe5eT7Tkh1Pn+lpn6DPH+mZSEB/4qatrW3x4s8COkCSc9AAJCkESAD0uqiOWRQHJAisPg+AJA1GxADDZEAKkwyaRoj4ImIfAPlPzYgYDIVPZrCTSQlN/YQRcYDVW1Q56FD4LKu3GvRWpRVaiATyzNE/wgOh46TmyDRMJhk0TUjoPu9/xcRONhmmKK3QPQPvzrYuzoxdqny4+5lJmTdcHHir0FpqZqfLNz8X/MvZgb9Y2BkWdqbKCq1UQlNFoV84yYCRZdA0shL6sH/7Hbn/Bjn4HKeEtuoLAGSz+e8EXpxlnFdgmtcVPKhSQssMmqLQ2jnoyxaCplRgoXFhLjs7l53dGWz3R05+KpObwiZlGWM7FH++LjP6+7sncnxp3tcvz65pSAZ9i6Xk9GDnnMwxdj2nMwd6W7uCnQwDVodvxZK2l3N+duKpI/2dAMZK9DyioSi0rHKOH+W3CD0rU8/LppbQPZROKVk6tWTPubaW820AKPXccq4NwOFA51VZhWmmnuNbBD09Q2lo1bF5u1sBaKeeu0KdXaHOQ31tN1tKzgx2Lohl7ROORupZOWcGj77Vv2/llG/IomcAaaae/zbgfqt/39Um29UmG4BD/t8UJVLAyyOnnjWg84fBdj0YaiAckbsZsY+gWcb5fZGuucYUqDq2eB5iqWflqBLQFJG+GDlq1RektG3QqcSToUN0clF7sSr1rPxWfAI6ZepZngvBtwbCZzMMORhJ6lnJnS8GXlcloLVTz8q56HsFQPqpZ2VFxLyFV0wkoD9as2nTptvnLWioc4rSkB434TQ1uLbUu2T/cqYlmy6bVQ4RN2iKoZeuuqe6fG1tQxPAaPuj49PQcgJ62LKo8Rna0uqly1YA4HlejrYlm/g0tDIBrZw009ArlpV+f8Pa2oZGQEppfI5PQ6sS0MpJMw0djUID0OmpTUtjMZKkoZUJaOWMKA29vKzUbrc7nWo3dPxopKF53u1yOm2cvc7lTPjTTD8Nfc+KZWQYW1teubCYAzCiNHSRjVto4zpip3DoidU4TzMmaWi3x+v2eCGJ8dw58Xp6RYniGGZyEwafE+993NLQquBzkr2PYxra3XFwX8dBGT0nPsimx2uattmLFoxTIFoOPic8hmgcm2HGNQ0d/RTa8D1V36Db21HT+BiARcULxryKMO4YttZsfkx7DbmedQwANNS5AFz0BahvkDwbK5eXKYPPHg9fXuloqHNWOxw8z6s+tQiMcjG9hsvplIAqh4P6BhN+GC4vK+V5vvapP6j6Bin4rEwl26+aWr7jLcT6BlXoGcCOn23b8bMfLv+XhxJoN77zpfv+fe19/7EWwPe/ee+9337403csBLDpW1+YX8yp0DPtK1nwmZ6NlcvLvl+xwc4VI9Y3qPooI+8QeaKUdyK/MABIjF7+vCLthvIelq68GwxD2g3l9TH0W+CmeUWTsjIm/m35kZ4JAP1JHIZhGCZTksKAxDBGhtHTdqolZPVDXYLEoPU6M8NkhIUzBnZ6RAxACuv1Vh1jjK6JqyWMiMFwpFuuJfQPHLZkXku1hGbTXPnOhUggEDySmZGv/OuXGDTVElIg2myc3R14K55B+4IfMtCRjoMmKFw47WuX/54/4WudlPlpACd8bdMyb1bqOKiWEMDNud9UPjMf+HcpGfTrPf99S+6/yrWEcgMhYiWEAAhA07zrf8nK5ssMmnJwdGW3T+jqCh3K0c8qMM3rE7reDjw/yzg/h511PHSgTzhB3JlgdI5+Vm/kBBNLH8fPeHcPAiD0XDicK/UIx18P/G68LRzUcEjo+ToFOHtnIKrjmJ5ROH57p5HR8y2WKOx73b/vfLhzfs7igrhOufGYA72tB3rbFuaWACjKWdze23p6sPOzkxfP1WwmHMP504XWIwOdtLsjA516Bg8UfuPy7Jpm97k2ALvT6Bi81lx4tbnwvUDnNeZClXBDiZ5Jr/Ffx5661lz4fn/0oSk7BkeKnufllBzsbSufu0l1YISeQyKQvD+QIs/Hg0Mtmnu6f5UQQNPKdNCzPP979gcA0rdtIA490zT31K/Kq0q4Ph30TEMAGsDo0DOV/h0PHtBDl+y2MnrWzjsf6H3SnvMwfb6FIQBIEz2LjAhghum2D/w7NQC0BnqmUQLoEaHnCwNv5piu7g2+P926gMoPEk4y9Exzunff9JzoDzd99EzCDQDZWZ/WPs549EwzAaA/crNp06YH1q5HjM2lxNDkz3VUVTpddfEAmkYbQy9ddc+el57FEGlNjaGXrlpNKgP5Kt0Ey1Jh6KXLVuxqbqFKKJ7nd+xqtmlyWCWGbqxzJQTQNPTU2Th7ZRKuvWJZ6R/pIUeRurTnpec0do3hGNrtaWdEQUPqSn/n733p2WRom4LS1RvWxaQco8HQOZasXn9/ssVpYujlZaV7WloA1Dqdo8bQBKB3NbcgJvcYNYZevWLZ6R5/u4dvqndJwMJi29ryKqSNoQFsaahjgIU2TpZyjCuGTubcSDljiKEp1TsiucfYYuh00PPwvR+o2fLEvvYDY9hPWLP1yZqtP0pGfhMcwDh4OSj4rCzf09r7+GDoJffct6h4oQZflnsC7cULx8PLoY2e6Q17wOspsnFyzSBdskAMWtk3SL8U6HOj2MaVVzkA3LW8jAHsivpBJPpcWlZWauPsHt6tMj7T0MdUVZWD592l33xQCaD/78db3nll/+O/eUHe8toB75Y6Z/GX//O3ld+Q+waVs+Nn23JN7NNPNv2o/YhyO2k3an7xhxti97/mM/nPvH4iXrtB89TjjU9t21xk457bMczOpKTPAGQArdJu0BB9TqbdIBX4ktVfrK5Yby8ucnvbl65aE/8ZaMqdEv+7wOl0bt/b+pXvrHvjYPvVUywTBdcf6ZlQcHwS59FHH5WkMMMYAEaS+qmTEADDGAG9ELkgSWHaotNlMmCFSLckDep0logY0OvMOl1WWDivrCU0sFPCkW65llCvM5kMMwWxn+LPel1WRBygWsLewJtCJGr2YPXmHPONA4Mnh9USGmfKtYRm42xi0HnmGyJS+Lx/yIZBtYRB4YJcSwjAxE5W1hJmGqb1C+cy2amzrCW+8Mlzwb/IK83s9BvyvgZAriWkucqyHBCT1RL6FbWEFjb/ttxvW9l8uYQQAOEJyj4DoED0ydChWC3h6t7IibcDz0et0JETvcKJG8xrstlZAG4030v0mW4rJXdxHA11vBH4XcJvXcrQ1ehUr1eSs7YwDi3lsrNLctaeDncSIx7zeTfo9vqepq9XT3JcNxyfXZdpt1m/8oqv7S+BfeOxdxB3Duz79ZlNDPCNGY/I9BnALZZFN5oXPXv2qQO94wtTDvS2Pn7sER2DtXM2FeUsLspZDKAoZ/GMjMKfHX/qSJJmwjGcP11odRx+BMBnJy+m/31r1v1XmAofeOtRjWbCMZzd59oouZyMPqs6BukMKkWWlk0reS/QKYog4QaAtW8/KiKq1/jj+dYP+zsPBzo/O3mx3DH4X8eeoo5BWbhBHYNK4Ya8a/JpDEr4zuxH52WrebFs2wiJSNYfeLCv7YVzvxwUMSgOa9GcnlHYpVBn0MqDfVF7RjLhhmqoMxBA+rYNEm6ExEhZboWSPicblXAj5fqeyLH3Q540BRqyEyMCcWHOA0SfNSa2ODI/5zva9FleH4YQhlBg0tI9A+gKHuoKHhIZUWTEGabb6JSkspZWOSeDL7/c89OUwg0zOwMjFG4c7n5GkIJX5C7LMV2TY7o6JFxIuHK8hRsaB4nhwg0VfZ6Yj/SQqaCyyvHY5mhLW8Jlz27f/ez23a1uD4Ckfgxb8Z4dLxIv1rJtFBfteek5e/FC7RpDu60o2H3WbitauvJujeOPFQ9Waks5OM6+q7llV3NzQ51z5fIyT3IdhFLK4fXw3uQr6amTJCnHklWXyPIh7yUmGNlgmjSD+HLSh6OQcmivREzKUdPQuOSue7X1HTEpx0POmprSsmUjknJoH0OaUg7Zv1HtcAz09wNjUFHoC/QzDJNrNY9CygGApBzP7di9vqJKxzAFk6xbGlxpSjm2NNStLa98uLyS3i9VVQ66kJyeWDvHxVP+UUs5tJ0bKSf6iqrcULPliVFLOWqbthmnz8UI6TPGVMpRs+VJ9/6Df3z26TTpM2JSjsFT74HRZ8y6/hK9HO6Og0u+8HXo2MHTH6RDnzHcyzEmRpToD0KS9j73m5Sdh9G9r32gdvNW47Q5tY0pksLpHkPjY8Zpc7TpMxQ9gePh5dCmzwtt3NaGOj3DFNk4HYOXdjbTR/FLu5rJwkGqjZXLywD0+AI2jqt3OVcuL5Pps5fnPTwfT58lCf7hfYMA6lzOZPSZQXQ9z/MyfX7zUHv1/fdmGvRK+gzg9QPtAH5b+Y2Hf/xbFX0+/Or+f1swN9fE3jSv6Jpbh51LkLUbMn1+61D7p+9Y+IefbrUY2XjtxlOPN5pY3Z0LbQm1G/TMAPDwvE6SAKi0G9Hnv34z/V6O126Qj4XON7i9HfbiotqGpnj6TM3DHMep6HNpaenR3tDmXz9307yiNw62L1p0+YScEzMeMwGgP9HDMAaGMUpSv1IJDbARsU/JoPW6bGLQsTUZrD4vLJyXldCUho6I/WGFr9lkmClJ4kDohF6XGYn0A8gwTM40zg4Ej8gMmiYc6e3rH+LImcaZ1qxre/rfVCmhWb1FpYQ2snkD4bOnfUP/vJYZtFIJLTNolRJ6WubNp4OvfeAfFp8hJfTrPf/tF07NMN1OIo4Zptuutqw8GaeEtrD5J4Mvy8QZMSX0yz0/JVpBaeiu0CEK011nXm3R58croXuFE6SEBhANQQsniKwlxNA9wgl379Ze4Xj8t0Y6MvSRuXM8elbOLeYvBkXB63v6vHD00vdO827Q/WK3EwClnq9Lws6mGObYsr8SikT2dP8q4YJRj8yd49GzPDMyCr8x45GjA53PnXlqbPeOaOR5GHpWLSjKWfzF6fe3nGv904XxIuAyeibTtDJt/dnJi781+/4dZ9somDxOs/tc2wNvPaqBngFQhSDZNkj0fLW5UAKuMReS6HnplJKlU0sQh57L33lEELF4UslVWYVXZhXKoudFkxYvnrxYiZ4FESnRs+qoVKLnZOj5RyceHRRxY9aim82LNGzmsug5GJFuSi/4TOg5LIp352llx+Qh9BwSI+OHnj8Mtv+pt9GqL0gn+Ezu5iOhjvFAz13Bg13BgwBGjZ6TjYyeP5P7jZSu54BwenToWWNl+ugZwLi6nhOi54gY1Lj5xPxjTltbm/I/ic1xHHfvqmVNDa6ENyExNICahiYtTbOteM+OF+224qWrVi9ddU+yAyBZLSTJlDdNA0NXl6/fs/0FN+/JtGTXuuqSLSMMzXGctrSaMHSVw5EmhgZQ73I2JFdIAyivclz0BTQw9NBB2oqC3WfBMOljaLe3I6XOde/zz2xc/+D4YWgAY+6G/rtj6GIbt6XetWZl1A29rqLqdI9/dBia4zh6vIShOY6TADfPjwmGrq3f7PZ49mx/bhToWTmjxtAyeg6dOTLqYsNLxNCy8Xnvs0+npK4JZ+O67w6eeu9S9NA1W5/83Be+bi9emCZ6Vs5YYWil8Xmkex88/QEkyThtziXqoWsbHyPCmL5bw168cAz10NQ3qE2fOzx8sY1rrHeRduOuFWV01cskq9nD8zt2NZPlmezPAOpdTgm46AsQfW5wOVctL1OyUafTmZWVJUlquTN9KPnikDTPu63mLCYmg+Z59413Rv95/H8/3lJ9/+fvLErgxHhtv/em+cU/3X/k2tuGIeYdP9u29T++tPnXz1Eo+JrYd3f+fNt/Fs21ZujvG+6VfvNQx99e7rAYWdUuXjvgfeDLq02s7j/WVii3N9W7ZuRaWAaqq0ncHs/SFaviY8u19ZvdHu+eHS/ai4eOM/60hNvbYbcV1TY0ub0dwZ7zyjshfm232VTajaysrDk3z//Kd6KfdW8cbJ8QQH/UZwJAfxLnkUceAYQYYtYxjFGShBiDZgEwjDki9ouxLkGqJQQkUfTHtmQY2OmiFFQyaFafI0EMhofizFRLOKjIbel1mZnG2cHBM3ItodEwTa8zx9cSWrOuDQk9AGQMbTbOzswoUDJoI5tnZPPkWkJ5LzOsRRmGvIHw2YsDb8kbZ1lLjIbJnb49AeGMvHFq5k2Zhml/6fmFsoFwuunWqyzL3vfvOK3AzRZ25tWWlT6hS8mgrexMK5tvURBnAPmmOz5luetd/0sUjray+QXGO32RrncCLwAoMN2Zb7zj7cDzXcGDBaZ52fr8jt7HAcwyzn8z8CxiMugrjAuoljCZiAPAXwK/pyvKRzcEfY6G9ieLPCebQlPRLOP8S2fQ7wbdMnqmyPMUQ2rB9HWZ9lz97F+f2XRmsPNS9k6jijwnRM/KKZv09SmGwufOPNUVHIO9QxF5Toae5ZltKvzi9PsHIvjZibGMQv/pQqsKPSdcRs2EoQgejzUTjuHI6FljTTodgwA+CHQmRM8/iAWcP+jvVHYMFmYWQtExKIhQdgxCEz0XmArT7Bgk9EwtmhoOGVXH4EjRM7lxprBzzoWTvjH/NuBu6/s1oWeVc0M1k9grABwO8qNDzxFEinMenG2a3xvROk8Wqw0UIxBvMK8Zc/R8oPdJgYkITASpnBuXgp61D+NM8PW/9vxSRCSlc2M80LM/eNQfPApg1OhZrzOrVqaZeg6FT6po5sR8RIdYKstgZp4lGYYG0NLSUlW9URtDV1dsCPact9uKZb6ccGV1+bo9259ze7waNYYA7JytZdcOnuczLdlpFA9ypctWyLQ63tGcPoYG8NKuZgCTrOY0MXRKVltdvj5NDA1ADjBqYyN70YKEGHqfpyPezjEiDA2A47gqh6P+0ioKE3o/Roqhl5WVJTRujwJDA3hpV3NFpUPG0ABGh6F5nq90OCodDnq85CFJB0NrvH2gCD7veek5bXt4+jNSDJ2+8TmtvSswdEbBp2q2PJnOrWq2PKkqG7yEAxhNS+Eogs9J9z5aDD2i4HOyucSWQiKMYJjRaZ3HBENT32DC21Lf4EIbZ7Nx1Df40s6oPYn6BhvqXDt3R88pAlD2DUpAeYy90ud8eWVVfN+gkjK7nE6LOcud6PPQ5XQuLytTajp4dzT+LPcNxqeS7VdNff2AN5l2o/md0zfNKwLwxsH2a2+dD2Dnz7cde+NAzS/+oKLPz/x4yzM/2ZJQu/Hgl1cvtHFEnw91eMi4pdJuyFNf57TbilXgmGLLANSB6EQ2cHd7h9vTDkYXn552e9qDfRcByP2N5DYhyE5bJujzx2MmHNCf0GEYhtCzvEWSQgzDMoxRFH06XQ4AUQzomAydLlNeI0Qu6HQW5Z+jQqRbx5hYvVWI+BiGYfXZQqRPlAZNhqG/cqmWMNM4W6+4q4HQCaolJBJNX4TCZ61Z1xr0VnlZX/9hI5trNg7VTw0KfYHQcVJCkwl6iuV2qiWcYS1SKjKplnCWtSSTHfpb+kLwb8pawre6f/3pvK/0C2c6fXtnmG6VOwkRqyUEmKstK5VPnUoJ/WrPf92W+21SQitLCH3CyZPBl62kjZaYAtOdXcFDvkhXgfFOK1ugoYTO1c/KZgvejPUTkhJao5lwFEpouWAQQPrcWTU9wvHOUMcMQ+EolNDvBt3nw8emGK4AkCzvrD3nw0ffGeALTHM1kqQaQx4Pleg5/Tk92Pm6f98lNhPKomcN6Jxwjgc7O3pbrzEXJoPFaY5S9Jz+XR0Z6PzThdbrLIVjUktIto2E37raXPh+jHSn0zH4fn/nlVmFAIg7A9h7vm2xQuvceqG19WJbYWbh/YpGRw3RMwByPSdLNB/sbSswFq6e+o1kj46aA2+2lKR8lZJ2PH3R85nBo2fCnX8N7It3snt9T9+YtWhq3LkcWfQ8ib2C4LL2HPT/ZqphzqAoAkiTOwM4EvJeYVyg5MhvBZ6V2/+UQyfPIhABaHPnPqGrK3QgRz87HdczDXW9zjDdLnPk9/07ZhnnWdmCRIsP+SJdZnYmAA3u/HrPf9+R+29k9p+WKu9Mcyb4+tng65Myb5hs+vSF4N8YMMkAtOx6Tsade4PvMQyTY7pW2/WsnBh3HgQwMHhykvX2ZCvJ9ZysZjAQPGqO7SiZ61k1YaE7HOnW67IjYt/EPzI/WrN48eK2tjb6yzx+NMTQM/Ms/f1RI7Db7S4rKyNNM7UFxg+JoQm0BS+eTnY8GmLo2oZGidFXV1UAcPMeZ109UhUPAihdttzNexxVlSJ08RdHy0NuaAmoqHTEu6FzreYLfdGnaHOds6HOVV5ZVa7ZZKjsJ1yxrCzYfVZjcW1Do9vjTdZPuPSuNX/8w//Q16RztRcv1FBCx1bur2l8DNBtLF9b07BlY/laDXyZ0g3t5vlap4u0y/JzpV29SKNyQ68oK21pSdBkKE86bmiC1E6nszJRRSFNmm7ohjonnVpA7EcmAesqhl7txGUeLq/UdkMD0DMAQI8UQJ3TCYDj7DJ/53leQw8d//ah94u9eOElpp61R9sNPbboOeFEd/HwdxcVzUuohx6p8XlEk2ZL4YiMzyPbe9O2fe0HNq5/yF40X1vQnKbxeRQHkL4emoLPY9UoSC2Fbm/HiPTQ6fQNUnksfZLLH9d3LS8jU3+dy1mv+HCgvkH5c6DBFf2E31DpuGt52cZqBwBl36A8LqfTzbsrqxw8z8sxZ/lbqi0AlpWVdgeFNw91xHNhAE893vjXg+13LrT9qa3t4R//Vt5OfYNf+c46mckCKLtuxo/aj5B2Q4WeATzz4y3mDP0vtm12f3BOtQtl8PlQu+dnP2x4bsdu0m6oPiqplRGAquwhqqGPBaKXrrx747oH7EULEr426IeVsLSwurK8urIcgCl7Ev1bwul0Hu0NKR8mPdLW1tYJBv1Rn4kE9Cd0Hn30UUCUzRsAGMYoSaIo9jNMhiQFAeh0ZlEalHPQAHRMlij6hciQBIPV50kQw8J5xZZsHZPRH/pQvvxWrzPpdJkDoeOkhKbJNM6SpEggeMSUMS0UjjJos2mur/+wUgmdnXVtIHS8OzAUZM5gs/PMNwyEL/iCHxrZPEpDkxK6e+BtpRI613RtbuanTvjaLgT/Jm+cbPr0LGtJp69FqYTOYqcXWpf4hJNKJbSFnXmVZblfOKWthLay+X7hpIXNv9ayiqAzLbOy+aSE9gknfZEuAAWmO636gncCL8YroWcZ550IHSAldE/kxPHQAZUSOieJDxoxJXQ6Og4KG6Zv29CeXHa2rONI/1Zp2jZSzqh1HH8J7NvT/Stt20bKmZFRWDbp66PTcXQFO7VtGymHotDvBTp/dmKUMpB40XP6t6Uo9Dv+zkuJQpPoWSP1XKag29eYCw8HOuXUM9UMPvDWoyrRM2mdAfzxfFSjQalnEmt8/71HBAlVVw51BmqInr3drYMSEqaeSc385PFHByO4xVKSH1cbKC9Tpp41ngrK4A9GxOmGwjQjz28E9r3ub1OmnpUzxXDFueGXJqhEzynp8/tBz/tBjwjpbLjzSlNROk2DHwbbI4jIqWfld+Ov4ZBFzxGIs03zU6aee4UTPcKJkaaeb8n9V+0UM4Cu4KFDvT8WGXG66baUqWcLO3OkqWeBCV+T94XJJi2Ncvqp52D44ohSzxFpMCINUuqZVZzWVc4YCjdowkJ3f+hDUYoYDQXJdjox/+Bj4zhVJlSeNMXQdru9v7+fW1SydOXdyawCZOSgDNTSu9Ykc0TEpBNraxs2a/mjOVvLrh2Oygpt4zOAlt27Wnbv5Hnew7s1jBCUhuY4+8rlZdpp6A2VDoLRyZ40Glk0TDoOjVg3gOry9dXlG2obtmg8MzQUn6SL6LVdrso0tNvbPoZSDjk5Poo0tMZKmnTS0G63m9LQOgbWS5NyAFBJOUaXhu7w8AAqqxz0SOuczpGmoQnKyGloojzjTZ+hmYamssG9z/92/OgzgOp1D4bOHIFeH+/lcHccXPL5r45V8DnhpExD12x9MmPW9ZcefE6695gWQyMQPSbBZ40DSCcNfYnB58R7L16494Xfpa+Hrm3capw6O54+L7RxC23c2ooqAOsrqij4TPTZ6+G3xy5eUdJnG8dVVDmIsUqxC1wQCz5f6AtsqBzSbpSVlanoM8+7l5WVisDO3S3UPcjZo+9ol9Op1G4oh+d5Vqfb9psXEjsx9Lpf/GHHHUXDrlPc8bNtx944qEwEy5NQu/HWofY1n8k3Z+hvXVB8y/yhs1kJtRuHOjwAEmo3yIUdX6tLZ8WUgWi3x+v2diR8bdQ2bt3n3Q8gXrsh02c37+U4jrQbKvr8xsH2DV9bA2CCPn8MZiIB/QmdTZs2PfpoDQBAYhiDfCpCksKAwDBGhjHFtgQBUa/LBiDDaAkCqx/6EzQiBiCFRSlkyohGlUUxNCicNRry9ToTAHJDR6Qgq8vKMAyFlAfDF0QpKEQCOeYbaYsQCYTCZw36HPlK4Yu+VzIz8gcGT+Zm3ZjBZsu3DYSOCxE/AKvpSmPs7+Hz/lcyDdNyTdfSf/YEDwfD5wFkGWYoKcCAcO7CwFtWQz4ACdJU0020/ahvLwPmKstyeWXMEM3MMN1uYYdi3QSmZ8byzjNN0XDZe/7tiLUR0lBi7jrz3RS+o+yzVV9A14N3BQ/5Iyez9QV9ka5sfUFf5OQN5jXHgwd8ka7Zxvl9Qhdh6GOh/TnsLJJyJEtD32z+Qg47O+G3jgY7eiPHc/WzcQmR52TTGWz3R05+KpObwiYFItRb+M4AT9x5DPf+zoC7J3Jc22xAQyHTWywlMzLmzEi1OM153b/vdX/bvdPuLzClvkMqMDwZ6pxlKhwFd46f9t7Wjp62b82+X+lr1p4/XWj984W2f5pcconpaQBHBjp/dvwpCiOnf6vd59reC3S+r0muy6aWNJ9rA1A6peT9/k4dA7I803dFEQAo9dxyvm3JlBKZO1PkGYDsdAYgSADAxRCz68NHSiaVJEs9U+QZQHzq+WBfG4DBCADcalkE4PRg5xuBfcoENK0ZUer5+kz79Zl2AM9drP3nad/XWP9GYB+AsCgC0Ljs4N2gW8/oqIRQTj2nY3lGDD3TtREAGOi06TOlniOIIHmK2du7zZ4T/TcoXXsxy5gaOtMcDx44ETow03THqeDL83NSVNXHp56Vo0pAdwUPnQwdSrZYNaeDr5KO6UpLGXUJaowy9azcPiCcuzjwt1nWoZdcytSzPL3B9wAMCOcz9Lnpp56Vto2+/sPZWdcOOx7N1LNyAsGjETGQTuo5IgUZGJTcORTumvhH5kdrFi9e/OKOXfQ3uXaqV5WGViaglVNaWsrzfLwvUh5T7pQ921+obWgEpGSZXxpVGlqZgB62LI00dK2rzs176GuK4ibbKRKFZ5UJaHnoCWEYlFc6ipOnsL0831hXCwCSFB/rVj8WT3v8M6NMQCunpunxmqZtG9c/lDINveSe+wBQGjqlxiFhGlqZgFbOiNLQ9DKzc5zD4VBKP5NNsjR0aemwGDVdtb2ruTnZjzVZGrre5fR6eACipP4hjjQNvbWhzlHlqI9l3unBjjoNDeqrfOm5lE/R2I6chl5UvGC8g8+JD6B9f03jNkYSN6797r72g+MXfE6yd3UaepyCz1oH0LRNAqNMo49H8Flj7xTHVn2k1DY+tq/9wN4Xfje+B+DtqGl8DEDCNHSawWfqGyy22RvqnDaOK69yNLicDMNUVjnoagw7Z+d5d3mlw8O76xXXsiiDz/IdTs42V8VdZuFyOl0uZ0WVQ+azOZYsX6CfvuXh3VWJfsUsKyv1DYqqvkEATz3e+NS2zf/+cMW/r60A8M3Pr7R/9T/J/rz1P740r8gWj56ffrLp9QPeH/ziWdV20m488dsXb51f/NoB789/uJl2F93F2gqV9Pmb96481OFJ9sG4q7mF5931tTV02jgaW477zU4uDrV2w9uxZPUXN2542F5cVNP4mCzfIO3Gnl1DTVq1dQ37PO08z6si3k8/2fT0k03VFRtq6zdP/KvyYzATAPqTOwzDMDACooQwwxjjGLSZYdjYliAg6phMhjEIkQusfrIoDohSP6vPY5iM2JpBIdLN6nNYfZQRi2JIiPTqdVkGNo8ANH0hSqFM41CedzB8YVC4YDRMM2VMkzcGgkdkBk2BaJa1+PoPm42zlTqOQOh4IHQ823Sl1XSlvNEX/HBQ6J1hjf6TurN7+5y8FWd8+xnoZllLlM8A6TimZt4kA2gA54JvDITPTjfdSrhZzkSfDr52tWWlikGfDr7iF07NNN0hA2gAp4Kv+IWT1EZIW971v+QTTuYbh/qvyAd9nXk1AJ/Q9U7gRQDzc75DDOUG870A3go8e4VxAQBSQh8L7QegAaCRSMch2zZy2dm5SfD0pY+GjuPSbRspR1vHcWaw83T46KhtGyknHR2HbNsAMCboWZ40dRxUXThW6Fke0nHoGTxQ+I2UizVsG/JQ8Ln5XFvplBIALefblk4p+XCgkzoGaaMGelbZNri8EijQM9/dCoDv1kLPGraNWywliKFneZ46vek/Zz0KGU+LAJAy8gxAiZ5pNAD0G4F9ZNuAJnqmIQANYHToWT5B1Rls1wDQHwbbybaBVAINAtCjRs/00fpqz39pAGht9ExzOviqTtKRCmmk6HlK5o1TTJ855vvTDNNtGgA6GXqmUQLokaJnAsqDkb5J5puTrUyGnmmUADp99EzCDQDyueSEQ7/fRSmi02XoFF4vTADoj+AQgKav08TQq5aXFdm4dg+fEEADcLvdTqeTkcSERg5T7hTyUSSErQnuzdu+dNUauh+O4+IBdHSZJoauddVJ0FU5HDzvpsDsiDD0imVlckRONSkxNAHolt273DzvdNWNAkMnA9A0hKH3vvCMxhX0xmlzQmePKqUcI8XQtU6XCCaZ7yJNDF3ncuoZUN6NAdLH0BR5lherALS8EZo/1ngMvXJ5mcPhIC7scjovBUN3ePgdu5ptHEd+D4wEQ2swaO23xnhMbUNTNCyfRMpxGUYOAv9xtGWDlzKEofe1HwBw2dCz+gCatklgoqcBLvsx0EeKvXjBxvXfc3s74q2+4zrxGFobPdMbkwHoZFJ5ZRVi2g36gkgx/XYjmrysrFQCim2c0vjcUOd6aWez/PYn1RLHcbuHn3VzOZ1i7N1N4+Hd9S5npcNRl0jTgRiw5jguHkA/9XijSa/7dwUXJgB9+NUD8doNAG8cbH/6yaY3DrbX/OIPN9w57JOBtBvffDBKh7/75bu/8cD6W+cXq7Qb8vx4S/1PttT3DLdvUSRcVhstLyvdWL7ObitWaTfkqa3f7OZ51ZkJ+nlt3PBw9Ya19NPcs+NFcnDZORsFn+VZuvyunkFx86+HnWx7+smmY6930L5cTY+1trZiYj7iMwGgP7mzePHifW1eQEcMGmAZxkDfkqQBAMMZtCBJAVI6svrJACQpHBH7lAw6IgZE0a9k0AAGw2eJQfeHPswyXgkgnkFHxIGB0HEVgw4Ono2IA9lZ1xKAzjTODEd8A6FTKiU0MegpltuNinAWMejczE+Z2MkEoAH0Bg+Hwj2TM29IpIReksVOlzeeC75xbuCNqyzLLOxMMkGTi+MD/+54bEGE4rbcbys3qpTQJ4MvU0WhHHxGTDwqK6HfCbxIelMNJXS0nDByQiMKTQya/KqEnsc88pxsXg/8Tsmg3w26KfI8hZ2TTrvgJY6n72lWxyzN+7q8hUjfmcHOGRmF44GelfO6f9/5cOf8nMWqKPSoRc8jmvbe1tODnZ+dvDg+Ck3omWYM0bNqF3++0Pbdwm/IIWXVaKBnOeycED0Ta95zfkj0TN9KBz1zCsTMd7ceDXYWGAsBnAh22vIWXxH7MaWJnm9N8vp56vSmO7NLKPKM9NDzYEQEcH3cyZiEAFpGz+mb1ul9dynomaZHOH401HGb+f+nWi+j5zRRsrd3G4BRo2eaZAA6HfRMQ+5+n3ByFOiZtpwP/lUnsQnlG9romYYAdKZh2ijQs9l0BYDuwJsJAbQ2eqYhAD1S9Mzqcw1sTih8xqCflBBAy+gZQELhxgSA/siNEkAjZuwFUqR66c91bVFvMgwtA+joMk/70lWrU7K22oam2oYmR2VFMgAdXeaqd9bV2zlby+5dw7dHATT9Z5oYmrgqz/PFNi4ZgKbRwNAygI4+3pFjaLenffD0BxorASxZ82UNkSsB6OjdjgpDcxynAaBpUmJoAtD0mom+PNLD0LRYii3OyspKePKDliFtDC0DaPn4R42hCyZZ6ZJ/coiPCEMD4JM7Ty4nhqZ3WXX5uurydZSGdnvaL3MOWrZO24vm1zRuYyBtXPvdy4yha5qe2NdxkPjvoqL5lyF9HD9L1nx5X/uBv9feAbjbD3xuzZcRF269THtX6KETejkW2rgOD0/vRzI+N9a7XtrZ7PW4AVDw2evh6bOozuXUxZwYhIOV51nvWl5WbOOUwefNdU6yMC2yDwHl+OAzjYd3r1hWBiA+K0234nl3S0tLaWnp5/997a0xLcZrB7wPfnm1HHyW56aC3JXfeoi0G6q7olDwv6+teLndc9e/PiQDaAo+f/PBDTJ9BmC7csq237zw4JdXxwefCT3PK7Jl6Jkdit9r9S5nfZ1LKdYnAO32eN0eb3yFIOm29r7wO2VcnbQbGzespY1L7v58dWUF0WdZu0Hj5r1LV6wC0PzOsE6IDV9bc9c/2WTB9Kaa2gkFx8dgJhzQn9wpKSmRIAIAdAwMgChJ4dg3WUAvSQGSQQNgGJZhzBGxDzERB8MY9LpsIdIdEYdOl+l0log4IET65C0ZhmkSxGD4lE6XSVZoA5unY4z+gcORmNCDygmFiJ8KCWlMGdP0usy+/sMAwhEfAIPemp11bUjoCYSGfMcEo8/7X/EFP5Q3Wk1XWkyFp33tQeFCbuanqLUpx3St0ZB7wtc2IAw5+IkXdPr29gtn5I1TTTcVWpd84N99JviahZ3pF04DsLAzb879pl/oOh18Vfk0zjDdZmFnvhdTQtMkU0L7Il2UfUacEjrfeOeJ0EFSQl9vvqcvciJeCQ1AzkEn+7EeDXW4e7f2Rk7IoudkK8d8ZCW0LHpePclxXab9MtBnALbsr+TqZ+/p/tWZwU7y6pLouWzS18ebPgO4xbLoRvOiZ88+1RXsRJQ7X5LoeURTlLP4Tuvinx1/SombZdEzYq7ncdr7Zycv/tbs+3ecbdt9rk25/b1Ap4bo+WpzIQCZPjefa5MklE4paTnfJgFN1z8KYN3bj8rs6sdHfykCItBw3SYAfzzfWv7OI7LoGYBS9KxMPbs+fESQsCB7cVHO4qKcxbNMhccHjgDwdrc2HHkkoegZgCx6vn/GI8no82v+fQBk0bMGfZZFz4MRURV8lmcKO+fM4JC7+Y3Avv89+4Nkouf4eTfopvddSBQnsVekQ5/fD3qae+oFKZLmB8WHwfY/9TYmFD0nnOPBA0SfbzDfm3L98eCB48EDHb2PR5jIbbnfVtLnhDMi1zPRZAlSmotf7/lvgQldl/clmT4nm/Rdz/3CuX7hbDqu597ge73B98jgbDZdQfQ54cS7njXutq//cPqu54gYzjTOMbA5AHSMSVkFQRMWusNCtyhFRCnC6q0J6bMQ8WnsaGI+EkPG3soqR0OdU8NxTH+6u91uDVGv3W5vaWmpqt5Y09Akm20TLLMVBbvP2m3FS1etqW1oSnZgBMUYSJnW3FpXfdJlVRUDvh7OZsu0ZNe66uTtPM/Ljk4AHGff3dxS5XDUOZ3Ly0qTuaFJdlxZ5fB6+HSMzxsqHPUurecNgJ3jWnbvcjiqajc3aUiuQRKG7c9Xl28AsGTNl93tB5KtBJCmyBXD3dBL7ro3XTe0y6WxjEblho5f4OHdXAzsRl8eDket01laWup2a4mkaXG1w+FyOinprLHMofljVbqhVaZvelVUVzsa64f9ENNxQwOgN059nZOau3bsaq6odNS5nHUup9INbePsKjc0AIfDwSU53+P2tC9dtSalHPwSp7ahyTRpBoDgxdNknSY3dPDiaUnHGqfPJR/0uE7UdAyEzhypXvegvWjB3ud/W73+oR9seXLJvV/Rfv2P1dQ0PZEx8xrodGS+Dp05Ur3+oR80PZ7yDTimx/B4xoyr7AvnD556b+Pa79Y0bcuYcVVN0+OXZ+/yMXxuzZc3rn3gj88+7fa0p7Qzj/nItYTJ9kvW9XYPzwByOcFdK8oA2Dj7XcvLGIbZubuF5/kcS5aKPpOaA0CDyznJalbR57uWl0kSXti5G4DS7Ozm3Tt3N8drketczqoqhz/Qr6LP5IlmGMRfrvHU440Pfnn1z/+wQ0WfScqca2IT0merkf3ryZ7/WFtxqMOjpM+HX9v/xG9fVNJnmge/vPoXf9gRT59f6fD8+rmd84psNkWxMGk3fMMfBc/zS1feDSAhfa6uLLfbhv70IO0GwOx98Q8yknZ7O9wer9vTvmfndiV9rq1rWLpilZ2z3TRv6I+Rp59sKrtuhkyfJ+bjNBMA+pM7ixYtAiKx/4pn0DqGMUuSoGLQACvfA8MYWP1kSQoRg9brzKLoZ/V5KgZNtYSiOCD/EWtg84yG/IHQ8Yjiz9pM46x4Bm00TBkYPKn8OzY761pRiihrCQ36nNysG6mWUN44VEs48K68Mcd07XTrAlUtYSY7dVLm9Z2+veeCb8gblbWEFnaGX4j2Il5lWQ6IqlpCC5svQTrs334q+Ipy4zWWVT7h5Lv+l/JNdxCJ/pTlLiub/07gBZ8QrSW8znz3O4EXu4KHAOQb77To898OPA/gevM9gPRW4LkbzGus+oLjoQOzjfOvMC7IYWfl6Ieyz8lIdI9wfPyEG8mmM9jeGeqw6gvGw/WczlyXaRdEqaX7V2cGO6lg8DKgZ3momfDZs089d+YpHYPLg57lmW0qXDtnEzUTyujZee2mcUXP8lAzYSgCaiakjsEnOn+ZsmPwanNh6ZSS9wKdMnpeOqUEMfRMrBmARsfgkYFObfRMP4XZimT6sWDnpaPnp05vCovSVMOcGZrnV2T0vGZSdTL0TDPVMOdMuBOjRc8hUQyJ4mdz1l9pKrooHNO+STroOZed3R2rNh0dehYhzs/5TnZMu6yx+HjwQISJaKBnWWeEkaPn13v+O8KEP533FYviTjQWjzl6vhD823vdvxekIIDLj56pZlCI+DLYySNFzwknHfRMo2w5npiP0NS51AQ5HQzNcVxLS0tzc7Pb7dYAiMQEqZ9QA0NXl68Pdp91eztMk2ZoYejK8j07t/O8p3T5StnpnGBZVUXLrh08z6swdNxDsO9ubuE4+/KyMo1+PM7OUWPV5voUcDkhhlZSV3lUGDrZHQKglHQ6FEyjT8xerI5FjxRD24uL9GI4WeOfcmQMnWPJin9pqe955Bia4tIpX3LpYGgAy8rKVI9odBgaQJ3LKb9xNDC0BCwvK1NhaHosMoZWYh2accXQpN3Ys/25hIWH1eXrLgOGrm3ats+7P77w8HJiaAo+q45h6AAuC4auaXrc3b7/j88+TeZr6kgcPPUeJCljxlWXh4NH5fJrH9i47rt0AN9/+D9rN2+5nBi6tnFrwt0ttHEPl1eurahaW1El9w1SDtrGcRd9AQCrlpfJfYNe3r27uZnkSxZzFsOguTlp3+DmOufkbHOxjVtfWQXA6+HpFJGyb1B5MHUuZ44ly8PzCYPPy8rK7Ha7Y+iyG57iz6TdeKOr586Fw97mP9lS/y+fX3nTvKJ47caGr62xGllCyYfaPTfeGcW7pN144jcv3qroGwTwi22b71xo++vJnjuHVxr+eEu9ngHR54PtHno4Hp7PtZoZhtkVJxsBkFC7AYYJ9l2022yQIrImZcnqLy4qXli9YVgpIgAwzJ5dL9m5oSOsrWtwe7x0qlgG0JTv3rPjxWH1hh7vRPz54zETAPqTO/QelhBGNAcNBgZAkqQQwxiAMACGMakYtE5nFqV+ZR5Kr8uWGTTDZEjSIKvPE6XIYHgIJbP6bFafE450UwgagF5nMhryQ+Hzg+ELADLYyYPhC5nGWZIUCQSPKG5oNpvmsnoziThoMo0zWb25O/DWoNAHIIPNDkd688w3RKTwef8QAiYGbWTzegbekzea2MnTrQv6w6dlBp1pmAbgqrw1/vBJFYOeY10SYSJ+4XRAGLoeZLrpVgs74/We/5apNAALm3+1ZaVP6FIyaADXWFZZ2Px3/UN+ffJyyNDZyhbcmfMfvkgX/a/AFGXQfUJXgWletj7/rcBzOeysWcb5bwaeBdArnCARBzRz0ABeD/yuMziO+QjldAbb23q3MGD+KWfdXFPRreb7Toc73xnQ+sthbOedAfc7A+4XLjqnGuasmVQtiFLzxV9dtr3TvO7f13zxV7dYSqYYCk8EO2cb517mA2jvbZ1lKjzS3/nnC23fmn3/ZeDOqvns5MURCcSdNXTPlHd+P9BZOqVEvjpfRs8SIKPn8nceiUiYm1X4uSmLP+w/QpFnQcTiyYsXT17ceqG19ULrny60aqNneb/tva3tva1hEZFE6PlgX9uI0PMXJm/8dKZ9mqHwdPhowpUq9JzOE3h28Oio0fOVpiLtwkCay5N6JvRcYJoHIFtfkExbr0TPM023j3nqWUbPZPlXXqSScPH4oedZuUuzTVdprEwHPQ8KPRg5ehalMDk3lNcqqWbM0bMQ8YXCXWDYZAsm5h922traPEnyv0TTbJx91fKyu5aXJVwjwz6nJkB0OBz9/f2EoTUOZs/25/dsf8Ht7UgI2miLnSves+ul6opyp6teA0PbOVvLrh2EoUuXLU+4hqbK4fAH+jnOrk1Xo/xxhBi6QZPAyhjalDettqFRa2XaFEwDQye52yEMrbESQHXFhmDP+fQxtC/QzwBjj6E5zs5x1Y4ql+bidDA0gIGAn4FkiXtEI8XQ5N+gB6uNoTmO6/X3a2DoZFFojAOGloPPe156TtvyocTQsqN5bI4hFnze+/xvkymnxxtDK4PPCY/hMmBoCj5DkvYmMl9vXPddORA9fhja3X5gyZovQ5IGT72n7H5UYmjj1Nm1jVvHY+/yaEifOzz81oa6LfUumWetr6hqrHfRO5H6Bnv9/RzHrVhWqgPoFCPh4ObmZvpVBWCS1QxApd2QJJzr9SvoM+dyOi3mrGLOnjD47OHdOxKpmVxOJ8Ogv79fps9ut/uW+cVPPd5ov2qqSvpM85Mt9UaWWVCsrhx8+smmDV9bU8zZ5SDzT7bU3/fva5/58ZY1n8lXSp9pfrFts+3KKb/Ytvnf44LPn8nP1TP4zrpK2nKw3WPjuHqXUyl9Vj6EOpdTRZ/dHq8pdwoYRuVxJu3G3hf/oKTPtZu3GKcU2G02tXZj+V0SmJZdOwDwHg8B6KefbCq06II955W2Lu1/LUzMR2smAPQnekpKSgBpOINmAUYZXGIYkySJ4rC/XVlRGiQdB41elw1JFCLdDJMhSmEAep0ZjGEwfFYUo3dFYuhQ+CRZIwHodSaTYaYg9hODpskwTNYxpkDwiBAJxG5o1uvMA4MnVQzaZJze0/8mMWgas3E2q7ec978Siu0CwBTL7QDO+Ib+bUQMWsTgCV8bgCx26kD4HIB8qz2C8FHfXuVTNNV009TMm/zCKSVunm669SrLsvf9O0jHMcN02+ngKxZ2JjHo9/zblfcw03Q7Je98Mfwh6ziIQQO4zrzaqi/wCSd9QhfFok+EDnQFDxaY5hUY73wr8GyvcOIG8709kRMAbjTfeyy0P0cfpc+EoRPC6M5Qx+uBcSwp7gy2q9Azbc9jZ99mvi8kRjx9T59PgufGaog7M2AYMDLps2d/NU9/xS9Pbzo92Dmue6d53b/vl6c3AVFweatl0Y1Zi3535qn23svUk0BolZQj6wo33Tfj/pZzrUodx2UYil0f6e/UWFM2tYToc+mUEoo8X5VVKAFXZRXuOd9G6JlizoSea6/d9E+To/8pR54JPf/ixFOCBEHCV2beT+iZ727VQM9bjj4SFhEWccfwJlLE0PNgBBro+TX/PhV61niYI0XPbw+46X8RSUofPZNtI030fFE4NlL0TKevLgU9ay9+K/Bc+ugZwKWg55SL00TPAeH03wU9yzM69KwRfE4TPUek4IjQs4QIy07V6bLkYomJ+ahMSUmJDsixZCXD0JVVjl5/v42zT7Kak+HU9DE0pc80eKvsnaht2KIB2kaEoR2VFW7eQy7OhMsAVDkcu5ubPbx7bDE0gIa6FPIKO8cN+PskHZvsaZGJmJKCaV+Sr8LQKQ4ghqGNk2fWbk4aP6cZEYaO+i7GB0O3NO++RAxNZZXVjqoxwdD0TkEiDJ1rNROrIgy9YlmpBoYmH7Tq8nbljAmGdnvbl961BgrnRjpDGLq6ckPNlifGBENTpJqcGykXKzF0xsxrapqeuMS909Q0PSE7N9I9gLHG0Krgc/IDmL/32afHCUOTdsO+cH6yYxiKY0cixqmzxyMQXdu41Th1dkL6vNDGKYPPjfXRz9XGehfpMjw8zzAMBZ9XLCuzx/oAZRwsu+Y9PP/SzmZV8FmSQOhZHp7nRaDX3x9Pn1csK4UkEX1WnjEiYM3ETPfKuwLw14PtCbUbNxXkGlnmwQ2V+70elZJC1m4ob/LMTxJrN36xbfMbB9t//ocddyxUB59JuxFPnxNpN9xWcxY9LiUOrq3fvHTl3UqPc21dw8b134vXbgCo3bylZvNWAPHaDY6zyUUO9Iu77LoZhRZdAtINTNQPfmxmAkB/oqekpATQAWw8gwYgSYPRLUwGwIhiQJIEAAyjZxg9oIuIfbKyQ6fLZMCKol++c73OrNNlDQpDDFrHGFl9TkTsDysAsckwU5LEiDgwKEQxdIZhsoGdpGLQrN4sSgIpoWkMeqs161p/6CgA2QqdkEFnm64MChfO+PYHhSHSLSuhAQwI52ljnul6o2HS0TgltF84/YF/9/DI88yrLMvildBXW1aa45TQM023zzTd8a7/pRRKaDZfVkJfZ17dGzkRr4TOZmfJSugc/SzC0BpR6B7h+OuB3/XELqUfq5G5swo9K2euqciqL/D4xotBy+g5odzg+kw7Z/1q88Vfve7fNx57B/C6f58KPcvfmpFRuGzS14/0d/7uzFPjtHcaQquEnotyFxflLgYw21R434z7gxH87MRTRwY6x/UAEEPPf77QFv8tWbUho+d40TOhZ9m2oUTPf77QWn34EUmCXDMo2zaK8xZzeYuV6Jl4dDL0/G8Fj95hLVHRZznyPBgBnTmIfwiEnsOilBI9y/LxkaLnsCiGRbE0pzzleijQM9k2EqLnPIV+hzoGDwf5EaHntt4tAsRsdlaaAo0RoWcSPc8w3ZoOej4VfOXVnv8SIabZNDge6Pl88K/ng389P/CmiMjfBT0HgscCwWMALj96BiBKQUjiSNGzxh1OzD/4tLS0tDQ3N7icK5aVamDonbubtVXIsiGhrKwsmajXbrcTFHZ7OzQMyGOOoe2crcrhcDmdyzSNz7ubWwhDK2El7+aLbcNCqelj6A2VjvLKKjA6bRkIgOqqShlDa4ihEaNgYJiUZljC0IsWznd796eThg6dPQoxkhBDq34Eo8PQHp7XaNuLHsZlx9DRR3RpGBoAvXdUGBrAzt0tvf5+RK3TaWFoO1fs5r0YNwxd29C0dNUae3FR+uhZOaSHvkQMLQefR9pwSK//0Jkj0OkuEUPLwWdSTo/oAMYKQ2sHn5McwNhj6Jqmx+ODz8mG4thj7uXQCD4D6PDwyuDz2V4/nfg52+v38rzXwxMppr5BMjLH4+DS0lKe5y/0BeSWUeobfGHnbiV99nr41SuWxfcNIqbdsNm4iioHooal6D/+6Rwn5axVt3K73QuLuV/8YUdC7cZvX9z54IbK/V5e6aMou26GrN1QzqEOz7wiLqF2I0OvI/r8codHlm8otRvK9cTr47Uby8uigWie52UAXVu/2e1pD/ZdVGWfE2o3ltz9eTBM6MIpALJ5g7QbLbt2qOjzhq+tUeWsiXRXVEYvK5mYj8dMAOhP9CxatAgQYwxakCDQdgYsA7JwRCXRxKAlKcqgATCMKZ5B63XZouhXkmtWnzconCUltE5nApBhmKZi0FRLCEBZS5hpnB0cPENKaFZvFiIBuZYwHFNCy7WEygdlNs7Ozboxrpaw0Gy6IhmDzmSnys2EeabrczKvVdUSAii0LjkdfPVM8DV5i4WdeZVluV/oet+/Y4bpdplEzzDdZmZnHh7OoK3sTCubr6wlRJwS2qovIAZNyejrzKuVSui+yIm3As/R9eykhAZAGLpXOCEHouOHGPRY6ThUkeeE6Fke0nG8ObBvDHUcsm1DGXlOOKTjOBE8MuY6Dpk7Iw49y0MMejJbuOXoI8eDnWN7AFCg53WFm2T0rJyi3MXzstXNhGM4f7rQqoGeAVxtLkynY1AuFYxIIPQMgNBzRML3r940J7MQcR2Dc0yFUNg2BAnUMSjvXYWelQfWFepU2TaSoWeKPIdF6dOZ9oToeSo7h7jzXwL7XvG1jQg9P3exltDzVabiq0zFKW+iQs8p1xN6FqSIIEVuMX8xJXqWL2gQIC7MeSDN2kAR4kjRM4metY3MfuEkoecIhM/kfsPMztC+83TQs3wGcaToWUBYQLgwb5X2MaREz0Z2En0xUvQckYSIJAC4zOg5LPQOhI4yMDCMcQI9f6KGCN1Gh0MDQ6vE0Mnuimwbdrtdq5+QgslVldpFfCoMnfTgueI9u16y24pLl6/UwNBy8WA6GDplPyGGY+jNdUkhrIfn6TkBoytdttytSWAJQ6fsJwRADWnpYGgAG9c/tHH992oaH0uJoavXf08DQ6sXxzC09hNFI4fsNF4Y8mhgaDfPqyQVf3cMbeM4BqhXvHdkDF0X2xjdkgaGtnM2UqWPB4aOLxsc9YwaQ7vb9y+550tIO/icbKJvAZ0uY+Y1o/ByUPB51MegxNCjLglU2pZHfgBjg6FlAj7SYxhDPbRG8BlAkY0jy3OxjZODz9NyLEU2rpjjpuVYaAuhYWXfoNKD4XQ6s7Ky6E7ke5b7BpUbG+tcq1csA5CQPkOSenyBiti3PJ5ova3cNyjnrGlovzzPJ9NuHDnft6B42Aca2ZAT9gd+Jj/31gXFCbUbGTGzx8sdHsLc8doNmieb6r62ZkVC7YaHd1MgmufdRJ9l7caeXS8pF9fWNbg9noTajUW2ouoN69zedvlTS9Zu2LmhzzFnXb3dVhzsOa+iz23eDnqGPTw/IYD+2MwEgP5EDyk4AAA6UAlhjEHTa0OSgkqazDAmSQogVi7EMCaGMSsZNMMYGMYgRLpl3SQxaFUtYYZhmgQxGB4KFBvYPIM+T1lLqNdlKmsJlQzap2DQALKzrs3MyFfWEmaw2cpawgw2LyT0GNncyZZbuwfe6Q0OxaiplnBAOBeMhaABZLJT863cmYHXZCX01MybAsKZObFaQuVzeJVluYWdcXq4+nmG6barLSuVtYQWNt8nnLzGskoC3vW/JOs48k13yMHnbDYfACmhiUErldDXm+/J1uf3RbqyFUroHP0sUkL3Rk7ksLM0otCdoY5LYdDJbBsph3Qcp8Odnr6nR713moS2jZQztjqOeNuG9vpbLYuWTfr6GOo4yLahRM8aiykKTc2EYxiFJvT85wttydAzgLKpJe8HOgGk7BikyHNEAtk2/nwhSqK/f/WmRZOij671Ypu26FlGz8eDnRroGcDLvjZAy7aBONGzRur5nHD09GDnYEQcjIj27K+OCD2X5pSr0PN5IfG1AiNFzwDItiFIkUJTUZroWYCoQs/Z+oI+oStm6YyjAAEAAElEQVR+vRI9F5jmaaNnK1twIjQMPWsfzKngK6eCr3QFDxF6nm66RXv9uKaeCT3nmq7NNV2rsXj8Us+Eni9/6pnQsyRFMgwz9XpLsmUT6PnjPSPC0DzPp7RtpOgnHAmGttuK3Z722rqGZAdfXVke7LtIGLrWVa/6rkyl5eLBZWVlaWJobXeErNqYnG3WwNAAHA5HlaO61lWfEkMr+wnTxNApCVTMszEuGHpj+br62hptDM3zbjvHVTscA/39uGQMnWDxyDE0gIQ/iJFiaGoh293c4nA4VBia3iwjwtBu3sPZbI6qijHH0Nplg6ObkWLo2qZtS+750qLiBZeCnpVDb4ER6aGVwedL3PtQHJthRlQSKGPfNEPHyQ9gCEOPgoOPKPiscQCXgqGTBZ8X2jgAMnqmvkGybQA42+sHsHrFsvUVVVFrc6xvMD747HQ6JSkai6Ytqr5BeRrrXCJwuseP4ePh3TmWLEhSxXAq7eF53s1bzFnKvkF5aL+7m5vviAs+y9oNeeO2zXVf+c46WbsR3x/46n7PA+sr44PPbww3e/xkS/2/r62I127QPNlUxzCYV2RTaTeohlcORPNu3m4rjtdu0Cxdfpfb47UXL4zXbux96dnqDUMfL7V1DabsSUrtBgA378m05rp5z54dLw6725V3CwxLYpMJ+vwxmwkA/UmfRx99VJZvxDNoBgYgIjNoQE+1hABiOg6WYcwRcaiWkIGBYQxyLSEUDBqAEOmljaw+W8dkBMOn5FpCADpd5kDouFIJLdcS6nVmMnKYMqaZTXN9/YeVSmgA4UivXEsIIIPNzjPfMBC+cN7/ipHNo/omI5s7xXJrf/ickkGb2Mlz8lZcHHi7O/j20H7ZqflWu6qWEADVEn7g36XcON106wzTraeDr6gcHbfk/quyltDK5vuFkxT9UzHoT1nu6god6hNO0sbrzKsBUDI6XgndJ5y4nErodGwbKec2831WfcELF52j03Fo2zZSzqXrODRsGylnRkbh/TMeuXQdh0r0rI2e5SEGPTOj8GfHx4BBy5FnDfT8T5NLAMiiZ9qo0TEoi54p8hyRsGjS4kWTFu+72LrvYusP3n9EEAEgzY5BT0+rBnr+adejYVGanlE4M2NOwoNPX/T8twH37y/UDIoRAGm+JlXoOeV6jBw9U2egCKnQuHCk6Hm2aX46qec3A8+miZ4BdAUPvh143srmp4+eIxAiEK60lCnRs4WdEV8hOCL0TJ/kl4ie5Qtl5EkfPfcFPwBwKeg5PoOcPnoWIv2h8LlRo2dlLUTsDlOjZ1Hsl09OT8xHd4jQLbLbVywrS8ZebZyd4zht6XOaYmjC0BzHLV21eumqe5IdVXX5egpkmbInaWPoPTu387wn05obj6HlkYsHl5WVaRgkohi6yqHtHgFQXuW46AsA0F4WI6qpMbTcT1i7ucndvj8FL173YJpCgNFh6CV33auUgSa4W1vxnh0vpoOho/ccw9ApsTLiMDTvdtvtSS/NTh9D2+12QHI6naVlyy4RQ6u2qzC0fM4mTQxt52xgmNLlK8cQQ6dfNji6SQdDy86NSww+Jz6AtFsKLzH4nGyGOHgab8NLCT4nnCE7sySlycFHHXzWOABlS2E6JNrt7Viy+osafYMA2j08A5BtY31FFWWT11dWNda5AJzt9Rdz3D0rlnEcJ/cNulxO2YNBAWRJGopFl1c6VH2DNI11rqk5FhFYV1HV7uGV/geSSldUVlXEZaIBqPoGow/N7VbuVzk/2VL/2gEPaTdU39rwtTXx2o1D7Z5v3rvSoGP+9/ldB9r5WxcMfRQrtRvKm3zz8yvjtRsH2z1fW7OCYTCviDPqGXk7aTdsMWU2jYd3uz3eeO2GDJQBbByefSbthvzxUtOwhdYrtRsAal31pctXPlw+7LHX1m825U4p4hbJz3B9nfORRx7BxHxcZgJATwwAYTiDhgT6o5GRICZk0IAesq+DYXU6sygNEoNmGBaAXpetZNAAWH2eKEWUeyUGHQqfJAZtYPNEccBoyE9YSxgRA/K9sXqz2TQ3HOmVGTT9ic7qzapawjzzDaSENrJ5vuAR2jjFcmtECitrCWkiUvikb9i/TeVaQjM7vT8cNXJMNd2UaZj2l55fqGoJAci1hPJcbVkpQaJaQgub7xNOAZhpuv1ay6qESmj5hgWmO636goRK6Gy2QFZC90ROJFRC9wonkGhGpIQekW0j5ZCOw+N7On0dR/q2jZQzah0HoWf6eqToWTmXouNIKHoe0RTlLr7EZkJt2wbNP00u+afJJbRGjjyn7BhU2jaU6FkQIYjYMHdTcRro+XdnnqKOwbumfEOFnl/2tcno+avTv3+TedGMjDmnBtUnQkaBnpfnVl5jSktJNlL0/G7QPTr0HEHElvM9DSGPPLJtI330TKLnfOOdaaLnA71PRhjxttxv++LYsWqU6Hm66ZaxTT2fC77xt+6nIwgD+LuknvuCH/QFP4hIgyHhooHN+buknhnGoNOZLmfqWRT7h3cXT8xHZmoTEVhChO28W6OfUCl9TmrbSA9DV1dVDPh6OI7T6CdEjC+7ee/S5XcRj0uwR654z66XCENrGDkQKx7keXc8YVQOz7tf2tVcXuloqHMmq2GkKa9ypCOGHhGG5jjOXrywpulx7XiphpfW3b5fmVPDcAxd25hUukpTvf57G9c/6PZ4l668m2Bo0mMYOYaudji0SfHQnccwtJvnnU6XdoQ8HQztdrsdlRUtu3Y4KssvEUN7Pbyy4vISMTS9Ygf8fYShAXCXIOVwe9trG5owFs6NlKOBoWubtu3z7t+4/qExR8/DDkATQ49h8Dn1ASTB0GMVfE42ZGdO6eW49OBzwlG2FKYMRNc2bk24YKGNW2jjvldeuaCYo75Br4enHHR7LAFN2g3C0KtXLPN6eIKn5MGQ+wadTqfbHY1Fy/d/14qy+L7BxjqXx8Of7vGvqxi2HYm0GzQens+1mulErOomTqezrKysKua4cDmdcjz5m59faWSZ3764S6Xd2La5LiIioXbjm59fudDGPbC+EsABr4cS0Crthjw/2VL/cofnO+sqEmo35hfbVNtJu7Fr+FPE826e5+2cLV67kQAob95inFIAhlEGnwG4ve0cZxvw9Si1G7Wu+j/z3t9v37XQxikF07X1m3fsah4Sm6SqCpiYj9wwkiT9vY9hYv7OwzB04otVnJCIxNQcDAMWAMWiGcYk30qSAgxjHL4lCIh6XbYQucDqJwMQxQEJAqvPk9dExACkMKvP0emMtEUUQ4PCWYM+z8Dm9Yc+zDJeCSAYPsXqsjIMk+UbDoYvDAoXzKa5rN4sbwwEjxj0OfRXel//YfrC13/YbJxtNg7VcAVCxwOh41ZTodU0V97oCx4JC76czGtM7GQAZ3z7s01Xh4QLg0JPXub1mezQ3/PdwbcvDrwN4NN5X5E39gtnOn17Z5huJfQM4AP/rummW88EX7OwBaqyrNPBV08HX7Gy+RY2X44BkuTUyubnm+6QV54MvuwTThYY77SyBQB8Qtc7gRfzjXcWmO4E0BU85I+cBF0aH+kCmBvMa44HD/giXbON8/uErt7ICQC9wokrjAuOhbSSLBSQTPgtMnV0hjrmGi8VOsdPt3D8SKidhc6W/RWNZe8MuM+Hj001zAFwKdw5fqj2rWzS12dkFGqvfN2/73V/2y2WEgCj5s6qOT3Y+Zp/39ysQiU/1Zj23taOnrai3JJRQOeE88zpp1gdPjt58dzMwjRvQraNhN+ScfPcrMK5mYV/vtBG8ec/X2hbOqVk6dSSPefa9pxvWzKl5HNTFv/xfCuAvefb/mlyiWzb+POFtkWTSmTVxr6LrfsuthXnlgCQubO3u/V4sPNYsHNhbonqeaPn547skvyMwnyj+hGRbSMsSgBuMg/9BN8I7GPA0M/09GDnqcGjr/vbbshapM2dAfxtwP1W/75rTDYld97v/98bMhfRazV+6PV2tdGWDnc+FPjtNMMcACFRBJCmbePDYPuRkPcK44IrTFGm0CucOB7af4v5iwnXdwbbO0Mds4xpQWcdGADHQvtnGVNDZ5qu4METoYMzTXfIn3Wv9vzXbbnfTriYLhCJQACgwZ0Dwumzwb9cbVlJn6VTM29KyZ0BnAu+cW7gjUmZ1+eZrgdw0ueemnlzFjstfuX54F8BCAgD0ODOnd3br8n7woXg3y4OvJVtukqbO0ORegZgNs4OhI4zYBIC6FjHoJboua//cHbWtQOhUwODJ4k4a3BnAKHwuVD4HKvPJe4cCp8xGqYnXBkWeoVIj15nTcadBeGigZ0iRHwRsU+nM2vbNgg9M0ymTmcSRZ8oToSgP0pD/yBsaW5WmSvlcbvdTqdTBCqrHDZuaM3KZaUtLUP9RVTu5HA44v8aV90Vz/MqF+SwNbzHWVfv5j17tr9gtw37SDTlTQv2XYwt81IOurqyXK45SnRv3tq6BjBw8x5/oD/ZMp53E1uscjg4Tv08LCsrfXFXM33d4HI21LnKK6vKE0Xh5PHyfEOdU5JA2HrvnpZkK+k5YSA5qirtiTqXal11OiFUvWGt29tRs3kLJGnj+hSFae72/TWN2xhIG9c9aC+av2TNl6s3PJzsJrWNj9U0/nDj+oeq139P6w6btlWXr6ttaAKY6ooN2oFoAG6Pt7Z+s8ToKmNPKc+7651O5WtG9SRIgMPhSPY6lKe0tLS6qsLpqgMYh6Mq4ZM27M553ul0xd95aWlpdWW5/DqkF572fdY6XU6XqyrOnWoxZ7Xs3ul01UlgVC8hemlJw98+Ht5N1xbIG+tcznqXs6KyyuPhN0Yhu9NRVVldVenmeaerDgBns/EeD6QhDB09ck/SUyx2W5Hb015dvm680XP8RMG3KC4qXhB9gY0nek5wAPK7YO137UXzKfh8OY9B9TbEOASfUx3AgZotTwCQD+AyHwMdgMToNq7/nuocmHbfoDzrK6oAFHNcY52ryMbJwWfCx411LgZYX1m1esUyHQPVL6DS0lJueKqXwtEq4zP1Da6rqFKi5zUrlzkcDp7n6V0ZH3yudznr61wAmuN+dZJ2Q7nfZWWl33iw/OV2z0+21j+0oTI++Pylu5frGWYwIv3i2R3K7T/eUm/QMYSeARxo55vqXU/85kVZu6G6n59sqf/p1vp5RbZfP7dTuZ20GzJ6/uo9Kx79fjWAOqdTFXymZ6nO5bTbEtBnCYyMnjOtuaHzXaTd2Fi+dph2Y3NTTcMWurZJeQ+ly1feUcQ9XF4FYGuDK4uJVFdsqK3fLDCs6hleubzMw/MTxPLjNBMJ6ImhoURzRPGfDCAOlRAShpaCijWQJFEZcZJrCRnGQBfe6nSZDFgh0q0IUEOUQoPCWVGMXtKr0xkz2GgtoUGfR+WEJsNMSRIHQkMx3gzDZL0uKxA8QkpoGrNprigJff2HARj0VkHwG/TWSdbbQ0JPIDQU8qVaQl+wUw5BA7Ca5iprCU2GSSHhQo7pmgw296SPV15qnWe6Pt/KIXYRN00WO71wuBLaws4MCKevsiwHxPf9wz5kSQntE06eUjQQWth8WQmtXOwTTlLwGYCVLbjOfLdKCU1WVlJCvxV4Lme4EproM5HoXHZWbhIrdEIl9JjYNrSHlNBWfYGn7+mEOg458kxag7Glz0hPxzFS0XP6Q82EpOPQiEKPSPQ8opF1HCmj0Ck7BudmFdK3CDojxqNFCSWTSpC8Y3Bu1lxV6hmAbNugyDPRZ2936/+dekqQcCzY+cXp92t0DKrosxx5DovSTeZFSvosz2v+fa/5973saxuP1DNx5xGlnj8IegGcCXeGRPFKU9FIU88yfdaYEXUM0hwL7U+zYxDDU8/pCDeoYzCd1LNfOO0XTqWZej4XfENOPV+Vt4boc7IZUeoZwEhTzxFpUHVCVDXpp54BDIRODQq9l9/1LEqhNFPPgnBOkkS9Po86hyfmozgtu3c6nbXaJg1tMTSAlpaW1NLnmCUzoaY5uoazteza0bJrRwoxNFe8Z9dL1ZXltXUNKdPQ1RXlANIxPmv3E0Kh2phkNWukoZX9hF4PrxHvHUEaunjh3hf/sLF83UjT0MmW0UQ9G4Bx2hztNHQ031q+tra+YRRpaN7Nc0ngMj0JaaaheZ6P+kmqKii5rP0A05VykJF8VGloO2ejQ6quqqhz1ipfQiNNQ3t43s3zUUUJo8u0ZLt5T8vuXY6qSt7jwfA0tJ0rdns8dptNIw0NwO1tT7OicAyHXi3Q6fa1H7QXLZAB6OU7gNi74HP3fiVj5jX7Og5eZgKuehuOa/A5yQGoWwprmh53t+//47NPX55jSKiH1u4bXFAczT4rA8KrVyyjBLQy+Dwtx8LESLTXw9vtdlXfoIo+07uy2MbF9w2q6DNNncsZvS4hEX0Gw/T6+23Dz1SpdB/y8Dz/cruH+gZV9Hnb5rq5U7LtnB2AMsssazdk+izPd798N2k3VNv/5fMrGeDfH65IqN1QBZ/rEmk3oAhEKzeSdkNJn928x168sHbzln3e/aELp+Lp86I7hl19WOuqz7TmyvQZQIfXQ/WGKvpc73LmWs0RCRMC6I/ZTCSgJwabNm169NEfADogAugAfew7IiAAeqLPiOagI6TgkKQgwxgkKQJIDGMk8waivYUhHZOl02VG70UcEKV+Vp/HMBkAwsIZVp8nRLpZfQ6rz5YPYzB8VpRCFIWmLWGhW5RCGYbJel0mgMHwBRJJs3qLKWMoxRYcPBsKn2X1VoPeKv/13td/mIEuz3yDvOxsX7tBn20yTFLmoENCjy94JMswFYAkSTmmawAEhYtn/Qfk3BwN5aDjk3dHfXsZMFdZlhOJpkD0meBrp4OvXW1ZaWGHaIJfOPW+f4cyGEhzKviKXzhJbYQ+4eTJ4Mv5pjve9b8kB58BdAUP+SJd5IamWDQFEvuErrcDz88yzs9hZx0PHcjVz8pmC94MPEsJaKLPPcKJXHZWTyIpRy47m2KSFIocj8hzsjkSbD8Sar8uk7su0w6AvBzvDPDjAZ0Tjrvvf1gdUzbp6/IWQtKUeh5D6JxwXvPve93fljDSC4AuSRhD7qya48HO9p5WVodvzbo//rt/utB6ZKDzSH9nspvLMWf6+shAJ8WfiTsDaLvYdmVW4bevuP+P51sp8gyAbBsAPuzvnJNZGJ96liPPALzdrd6etvk5JbOMcwtMhQd6W3UM6LmSU8/xlmeQcKOv7WZLYuhM80Zg31/8+27IWgQgJXcGEJ96Vs57QZ5ldPKL9u0BN4CwKAJIU/T8QdD7fsgzx7iwN3I8Tz8nTfSsSj2rxtP7WEnOkI4t/dQzzfHggROhA/nGO/2Rk9ebk2pY5YlPPSvnPf/2ayyr5P88FXzlVPDlaWmoNgCcCb4OIMIIFwbeVF6DknDoHCHZNuK5syoBnWbqmaYneLhn4F0AUy13GmO/oRKOKvWs/JYqAZ1O6pmGZFODQi8Asylx1p5GTj0DUKFnVQI6ZeqZJhLxR0Qfwxj0+lyNZaLYD0CSRBV3FsUgfWtiPirDMMyAvw+Am+dLl62wc1zCjCqNMg1d79JKsyJJmtXtdruczpbm3RQmdVRWKC/mVS+mUKokVZevt9uKlAno4ctSp6FN2ZOam5udyWPO8sSnoZUJaOU0uJxeD19e6SjWDOFOspo5jkMa8V45Dd2ye6h3pHTZ8o3rHlLlB+U09N7nf6txhwDc7fuX3PMle/GCjeu/p52bRvI0dG3jY5KOVaZoY2KHEaSh3R6vw+GoTh6Qjy5OlYbOysqiV2x0Pc+XLlvhqKqqdqgRUoI7V6Shy8rKBnw9SZaNLA29vGyp8kdGmeXRpaFXLCtdZLc7nU75uap1OjXS0NWV5W6Pp7augRi0RhoawOWMQtc2NNU2NFE00u1tr2nYAklMGd4f26EM8iJbkb24KM2rB8Zjapu21TT+0F68gJGicezLfAAAltz7lX3tBwD88dmn/y4HIKehNaQcBJ0XFNsA/HBzXbGNI+5MxLmx3vXCzt1FNk4OPgNorHNtrndxil9b8QFkCj5XVjkARERJlm9Q32A8em738GtWLtMIPldUOejecixZ/f398n7dbnf8Lxeedy8rK0sYfN62ue5Qu4ekIqtXLPuXh8qpePDHW+p/sqX+gfWVKvr8z/csP+D1/NvDFfHajZ9urf/3hyv+fW3FNz+/8oH1lcSgn2yqe7Kp/rvr1TqOT03P4TiuMu7TaXlZWWX0A610Y8UG+mVK2g3Vb2pyW6mCzwBqNze5/7Rn7/9rWPL/lVf9oI6uL6l11Tvr6n+/fddCxUmFWZOsAFRPMj29D5dXdng9rpofTDDoj9NMJKAnRjl6Zeo5BqMjci0hA5aBIZaD1klShGEyGIaVpAB1EgJgGBPDmEVpqH1Ip8vU67KFSDdJnAlDUy2hEBn6V2OGYRqrzwlHuuUtBjZPxxgHQseJO+v1WQAyjbOEiF+Zg6ZaQiHiGxgcMo1mZ13L6s3KWkKDPsdsnBUMXzzvf01eJtcSAugNvh+9Q3bSFbnLAuEzylpCEzslk53iD5886turfMrmWJdkGqZ94N9lZmecjqWhp5tuvcqyTKWEtrAzZ5huPxV8mZTQ8sw03T7TdDspoYlBW9n8O3L/TQ4+I6aEPtT7Y1JCA+iNnOgKHsxmC6433yMroUVIx0MHinMepAQ0QedkIWgAPcLxtt4tStFzspVjPqSEPh3u9PQ9/c6Am2LXlyh6HtHYs7+ap7/il6c3nR7slCPPuDTRc/pzq2URRaGJOGMsRM/pj9xM6Dj8iLKZUI48a9NnKiEk4zMASYKceqahr1Udgz8/8RSFoL9WcL+qY1ApevZ2t24+8ogg4YErNs3PWVxgKqTtJ4KdqtSz6sBUoueEB/9GYN//nPnBYEQC8OlMuwZ9/tuA+28D7kExMtLUc1gUw6J4lak4zdRzS29DGBF7zsNzTAtz9ElzsvKMd+r5ePBAR+/jIsQ7c/6jwHQnXW+hMaNLPX8m9xsp6fOZ4Otngq9HGCHCCJNNN2gvptRzBOEIwnmm6xOmnjMNU/uFMxhh6rkneLize3tECuXnLs5gczVWjkfqeSB0aiB0SpTCohRm9VmsPmn6WE49k3NDI/icZuo5EvEPhk9JEFlWS/Qhiv2i2C9JYjx9npiP9Ng5bsDfx3G2zKyshFZoDO8nTHo/mtJnnueJxlY7qlqad/Mer4amORpKraqkNHTyIy/es+slO1e8dMWqpcvvSriG4zjZWL2srGxZWWmyextRGpoMG9rGZwC7mlsqU1mwoUhDZ1qya111Gncop6GN0+fWNm3TWlm0wF60YOOGdTWNP0y3dRBIuXIUaWi7rZjf15Yy4JwyDa2St9DrFpAyzZZap0vjnjE8DQ0gxQsv7TR0gr2MPg3NOxwOolr0TtROQ9fWN7h5756d25Vp6GSZaKoiJCX0uE5tQxMDSY5G2ouL9r707MaK9TVNT6R8xY7ZMTRtW3LPlxbZiqo3rFVePXDZDgCx0z8AQmeP7n3+meoND/9g65MZM6+paXri8hwADe3uj88+/cdnn67Z8sTlPwAA+9oP7ms/oE2f93t5APu9HgAPbaj0UvFgZdU9K5YBONvrB6AMPjfWubwefn2MICcMINMpH1+gv8rh8PDuIo7D8L5B1WE01bvWrFxm47iE9Nnj4Xfubib67OHdXOzsVGlpqSSBWhCVN3E5nQnp834v/6W7l2foGKLPALweXqbPBh3z/tk+FX1+vLHugNfzl66ehNLnN2LbX+7wyPSZYfDumV4Vff7qPSs4jts1/FCph7AyJhfieV6mzxKYAV+PqkUwnj67ve3GyTPRc3rv/2sAsO/lv8r0eUBkTlz0Kenz1gaXjeNUWu16l3Mfz5+46JNT0hPzcZoJAD0xeOSRRxQlhHpAAmRpIwExUWbQgI6BQZIGATF2Kz3DmCQpIEnB6G0YFkBE7KNaQgAMY5BrCRkmQ5TCDJMRz6ApEB0Mn6JaQgAGNs9oyB8IHR8MX9DrMiNiP4BM4yxJigQUPg2qJUQsKUaTaZyprCXMYLPDkb5c86cNest5/2shoUdeSbWEqqdlumW+spYwk506IJzPt9qNhklHfXsJZNBQLeEH/t3Km1vYmVdZlvmFLlUt4QzT7WZ25nv+7X5FMZeFzb/Wsoriz8SgAXzKchcY6Z3AC7SmwHTndea73wm82BU8ZGXzC4x3ipDeDjwPgBj0W4HnZpvmW/UF3t5ts43zrzAuyGFnSTEM/Q84PcLxHuG4APGdAX4KO+eyoWd5rs+0T2HnNF/81enBzjG3baQc0nEMCPjdmaeUto1xRc/KUTYTatg25mYV0hdyx6D8hShBlFCYWdh2MXpDyjW3XWyToO4YtOct1u4YVKFn+QAO9LYCiEgYE/Sc8iTH3wbcbX2/JvR8jYlLBz2fCx8l28ao0TNtzGVn9USOJVz/YbD9MqNn7cVdwYPpo2cLm38p6JnocxY7TfmpK0866Fme/vDZd7p/Owr0rLxuJn7SR8+Dkd5RoOc0hRva6FkUgyNFz7LuWYr7/Yg49JyEPk8IoD/aU11V2bJ7J+/ep1UY6HCQHzMrK0vDtpG6n5DjWpp3OxwOZ11DSgxNf+on48sAqivLg30X7VyxKXsSBaITDtE9u92uXTxIrJDj7MvKyvjkcJlUG+lgaI6zyxg62RNCQ9eSE3BMiaFD57vA6LSZGpUQ7n3xD+ljaOonlFfua9+v8nHHDmAEGBrAnu3PV29Y66ytuXQMrT7mqsoRYWiHo8puszld9anPf6TC0I6qKjfvif9hjQ5DA6DHq8TQpaWldo7TxtC1dQ10BYAcgk7m5RhXDE13zkBSRSMRw9ChC6eg048rBY5iX0YXOt9VvWHoyjB6F6TzlhmTiRLw4gXy9QRU/hk6exQ6XcbMa+JrEsd83O0Hltz7FQB7n33aXjR/qCQQuDwHQFPT9ETNlsfjtz9cXkl9g98rr1xQbHtoQ+V+Ly8noGXiLNufV69Y9sLO3esrq0jcLAHP79zd7uHpfKeqb9DldFrMWRLUQgyNvsGmeheAdRVVNtuwPwQ8PL9yeRkYZufuFttwxJxQ9yEfAMOA47j5xcPeids2133p7hV2zi5nsb0e/s6FtkPtns/k5ybUbvzzPcsTPrGk3fhFTMdxqMMzr8h2sN1z3YyceO3Gk011n5qec7DdU5lEuxGjz267zRav3aCpddXTx45Ku7Hkrns3fvufN377nwG4X3nDztlIuzEgMkqg3OHlZ02yHmz3KJ9henoHRen3L+2iNUZWPxF//pjNBICeGHlkBq0DmNjfjTpAAgzxDBqQlM5ohjFJkiAzaIBlGLMoDcYzaFH0y7tk9XmiFBkMn1VsyRHFgVD4pMyg9TpTlvFKQewfDF/Q67IoDZ1hmKxjTIHgESESiN3QbDRMGxg8qWLQ1qxre/rfDISOG/Q5RKKzjLMMesuF4QzaapprNRWe8R8ICkNXdMaU0G5SQmeyUwaEc3mm642GSZ1xDLrQugSArIRGlEEv9wtdshLaws70CydnmG4zszMPxzHoayyrfMJJ+h9tJC8HBZ+hUEL7hJN9wklSQr8deL5P6FIqoW8w30tK6F7hBCmhpZgPOlka+kio/UicEnqcpls4fiTY/ufeJgD/lLPuNvN9c41FvO9/ziVSQo/TnAsfJUXvVMOcNZOqBVHaffFXl23vNFRI+Lq/TRBTLx6/mW0qpERz/Lco4Hykv3NuVqHcNyij503XbAJA6PmRq6P58U3vPxKRUHXlpiP9nSrR85zMQjnyLIhQip410PPjxx4ZFDEoAoAKPb/saxtz9Eyi5yuNtjTR83tB/r2gR4REoudRo2eNIfQcQSR99Hws2AFgXNFzhBHTTz2fCr7cJ5wYNXpONiNCz+RQEhEpzFs1tuj5RM+etFLPoeMAREm8/OgZQFjoBTBS9JxM95weegYA+dKoifnojkKwm1QMDcBRVdXSvFubD8oQLSsr6xIxNP0ZzHE2bb5cXVm+Z+d2N+81ZU9KJoamA2tubuZ5t8WcpZFxrnI4qLowHeNz+hhalLSeEPkICUO7eY+2wLd6w9o0mZoKQ2utLFqw9/lnZAytsRIjTkMX/YNgaADkBx8DDF1ZHuy7yEjipWNojuOqFGF5ehlUORy1Tqc2hm7ZtUMCkwhDFyd0pIw5hnZ725fetUYZfE421RvWKTG09umQkY4y+Jz8AIbeMto69dGNMvicsNuTLjWgQPT4UeCapic+d+9X7AvnxxufN6777uCp9zau/W7NlifGFUMTAU9InwFsbajr8PCPNdTJdtjfvrjzh5vrREmaX2SjvsGzvX4KQTPAuV5/sY0jEk1Umm5VVlamCiCTdmOXgkcD4HmetBvP7RgWIAPQVO+akWsBsK6iqt3DKylzvcu5cnmZjbNXDs9EkzlHkuAP9MeblC3mLIYBnalV+qy3ba7L0DHnev3ywQNo53kA3/z8yv99YWd88Pnqadnzi7j5xbY7Fg6B7J9sqb+5IPfOhTZVIJqkz/HajSeb6g56Pe+d6Z2vMETzvHt5WSkAVSCarD4q7Yab95QuXwmGcVRV2ouHzkeSdmPw1V1En+XFzrr6h8srlfR5a4PrC6uWV1RWAZCfYXp65xXZJoLPH++ZcEBPDBDVQD8K6BTnJERAIgUHoI8ZoiUGBvlWEsKAnpQa0S1SkGFYhjERiWYYkygGdEyG7INGTAltYIdklBExACnM6nN0OiMFonWMcVA4q/RBAwiGT4niQAY7OcMwOXbDgYHQcbNpLqs3A5C9HBFxIDtriC+EI76B0CkjmxsIHZ+aHbV9hYW+nv6/WU2FMl/wBY+EhJ5BoWeaZb6JnTS0X+HiWf+BfCsXFM4jphYdEM6d9PEqJfS54BvnBt6YYbqVTNDynAm+5hdOzzDdbmFnvt7z37fk/isAv3DqdPAVK1sQr4Q+FXz5U5a7rGx+9MCEk/FK6JOhQ3fm/Ac0ldB9wonPmL/w18DvqZaQAXL0s4+GOjSU0HONRXlsag/A6IYYd3fkeJ5+tkr30S0cfy3wzGUQQJOi91z46FTDsMz12wPu7sixWy2LZmQUjusBAHjNvw/AmcHOGcbC2yyLAJwa7HzNt4/V4b4ZCaTM4zHtPa0A2nvaki1QEmeyPAMg0fPiyYtbL7S2XWwrmVRCiWYAEQkAuLzFAPjuVr67bdGkkpSiZwCCBADzh7uwD/S2Huhtu9Vaclssk/7zU5v+reBR+vplXxuAsCgBSOl6Tviicvf9z41Zi6Yaojrdvw24tUXP8UPombTpf+5tKs0pT3kT2fWswZ3dvVs/m7Oevv4w2N4TOWbVFwBInzsfC+2fZZzXF+mabVyQzRZo30R2PSfjzu8EXvi0eQ193RU8CCDCiABScmfIrufMmwFAYrTp85ng62eDr0/OvBFAQu58wtc6LfPmLHY6UrmeVUPoOdt0VbbpKn/oaEr03DPwrvL3gnJ8wSMM9FQ/SKlnbehME0PPYQDhSED5u0k1dPaUVsZz51D4nLxdw/WsGtn1HBF9GYak1JtczzqdGUA8dxaEc7KIg9AzAG3hhigGJWkA0D/66MZHHnlEY+XE/EMNwzB2zqY02Con5pxlVELeWqcTkkTWXaVXN5njWBZDA7BzXDJdL3l1CfnFfzfTmjvg66G/bN28h7QDyR6XSgy9ZMXd2sZqDTG0xZx10RdI0/js5fmGOicAeeXdy8t2NSfYtcvprHM5HQ6HQ1OLXFpaykgiJHHjhrUqE3T81G7ess/TrhLdGqfPDZ1Xu5Xc3o4ld38+XvccP+72/UtW32e3FVWXr1Nyh8SLk7uhl668e8/254ct9rTXNjSC0aW0Y0PhhlY5spNNravO6apL5oZ287yz1rln10ux//TW1jWAgaOyQqX4GH6rBG7o0rJl1TFfKmRlalVldZU6xpiOG7re5dzd3AKFi1x+cmKK8OiWhG5oR2UFHWR1ZTkdjPKnkOzcwKW7oZXG55HdcHPTPk/HmOihSbW8ccPDGug5fmSd+ljpoaOHkcY7K3oA7ftrGh8bWz00CZcToudkiwGMuZ86WfB5oW3I9UxQ6oeb6x7aUElfPP38zoPt/OON9esrqmT784aKKlm7IcUUHPSfjfVRFbt8/8vKShPW69W5nAn7BpvqXe0efl1FFSmnZ+RaenzRrBv1DVbG6ThI3W5PEnx2uZzNzc12u93tdj9aU/vbF3chqt1YIT8Q5axesez2hbb44PPjjXUAaPvjjXWDEYlwM2k3fhHXQ/jNz69caLOp0DOAr96zYkGx7bvrKgFcMz3HF+iXn5DK4U8dgOVlpXZbcXzw2VlXT582pcuWb1z/PXtxEbndF904V4meASz5/8oHTbkUZ5Zna4PrYLunotJh47hcq5meYdJuPFxeKQs6Orz8F1Ytb21tnUhAf8xmIgE9MfIwgDQ8B61DNPVMZyn0ACMhrFjDAGFF6hkMY5IkURQDACtJEQA6nVlCJCIOeTZ0ukyGMQiRbkkapC16nRmMYVA4K4ohVp8tRHp1OmMGOy0i9oeFISW0yTDToM8bFC7IW/S6zEzj7EDwCKFnU8a0UPisKWOaXpfZ1384HPHRMoPemp11rTLvDMDAZudmfToYvuiLqTwy2DwAk8w39wTf7Q2+N7RfdtI0y/wLA29dHBhSQmeyU6/KW+MPnyQUQmNmp5vZGSIjfuAf9jk73XSrhZ3xvn+HXzhlYWf6hVMALOzMqy0rfULXqeArysVEdt71vyTnoK1s/qcsd6mU0ABkJfSdOf+RUAmdzc46Fuqw5XyvN3IiRz8rWz+rN3Kc6HPCKHSPcPy1wDPdwvH4b13iyJFnALeZ74uXTeexs/8pZ92p8BF33/+M+d5pKPJMX9uzv6qCktdn2q8xcrsv/oro8DjNa/59T53exDBgGCyf/HWZrs7MKFw++etTDIXPnH7qeLBz/A4AQHtPa1PnI+09bcnos2zYwPCOQVn0/Mh7jyCWeqbIc0QaQs+uDx+JSJhtitYMaoueBQnzcxYnTD3/y8xHboszosiR57Ao3WRO3DT4RmBfytTzVMOcc8JRKFLPaYqeAbwX5Hf11AmSmKY2/aJwbBSpZ7JtzDIuuMK0MCV9PhbsOBbsECGKEOfnfKfANC9bX9Cb3L1zPHhg1KlnctZrr48KN5jwDXlfm2q6WXvxmeDrf+35ZYQRrs27TyP1nGmYFhDOjDT1/EH3c4I0OCt3KVHjYPh8ssWjSD1Pyy7Sps+B0PFA6DhlmU0ZM00Zlzv1PArhRrLUMwBR7BeEcylTz6IYjES6gYhOZ2UYfbJlE/MPO27eU7os8RW+lN/kOFtpWVlSMbTCq5sspiqLoQHwPJ8wRoqYV5fj7JnW3FpXfdyObIglUlt27aitb1i6/K5kMWcSQ1dXltfWNWiIO+QDGyvjszINrRGaBlDlcPgC/aIE7Wwvz/N7tj9fXVFe0/jYkrs/ryFRBVC9YS2JbpW5zoTYekjfMW1ObeNjGvdpL1pgL15QXb6utqFp6V1rtOPYGmnoePo5ijS03W6nl2uyl5A82mlot5tXnr2Ivlr+AdLQAGi77CKX09AxRbhWGtpZV897PENp6PJ19uKFbo+X/qedhk75w004snMjZfA54VRvWCfroS8ljDw6+gyFTl31rhnFpAw+Jz6AogWyHnpMwsgaweckBzB/77NPj3kaOhl9BtDh4VXB5yPn+/Z7eVGS3jvTS/S5OKbdoOAzfT01x6Kiz14PTxcN0BaKHiekzzzvTkif16xcBuC5HbuJPrd7eBvHAfDwfK7VnJA+17mcK5aVeXg+mXaDLE/K7aTdIH+Icjs9KK+HV9HnA+08aTfk7Qfa+TuLbC93eFTaDZpDHZ6bCnJf7vAk1G7I9PlAu4dkVirtBg3Pu63mLJ7nE2o3WnbvVJ5UI+2Gij67X3kj47bl+17+q4o+f+Gu5Rk6ZseuZhvHefjoMyxrN5T0eWtDHYAJ+vzxmwkAPTFAVAMtxYQbSr6sH75lGINmYonpWC0hEO0YZCQpBLm6kDEBuojYJ3skySKtYtCsPm9QOCsroXU6Y4ZBzaApED0QOhGJmT30ukxL5rXxtYR6XaZPwaABZGddm5mR3xP4m+LesnPNQwzayOYOCj0ZbO4k880DwnkVg55umW9kJykZNIB8qz2CsFxLmMVODwinp5puzjJM/8C/i0AzjVxL6BdOKbdfbVkpQVIpoa1s/kzTHSeDL58MvixvUSmhrWx+vvFOUkIDuM68Ol4JTRDK0/vYFcaFAHojJ7L1UfqsIYZ+LfDMGOo4lLaNuaYibWB3m/k+q77A3TfGOg4ZPROOTBaynmqYw1m/eiJ4ZDx0HDJ6Jq4aj1YB3GZZ9BnzomdOP0Xx5DEfGT1rrEmnY1CJnquu3CSjZyLRZLKebSpMp2MwffQ8M6NQadvQQM+DESkd4cbZcOd4o+cPgt4Pgt73Qnz66BmAUvSck7xBlEaJngtM8wpM87TXE3qm9emgZwAker4U9JzFzggIp+MXq9Cz9j0PhM+eGxg9etaY9NFzSOgh1/PfBT0DCIXP/V3QMwBCz3p9Xtro2ahxbxPzjzxR5pvcOBxleZKo1U/IcS3Nu+0cpyV9ttvtdnuVw1HrdCXjd1D0E2Zac1P1E1akg6HtXDHP8xqIM00Mnb5qg1YCmGQ1J1tDU+VwpNVPSKw2DQw9IqA25CLQxNBu7/4YWb5UDJ30oaWHoQFUV5ZXV5Q7nXWXjqHVRzIqDJ3sIEeBoSkWrXwRjghDO111jqpKGUPbORsFk6vL1+3Z/pzdVqSNod2e9qWr1owIQ9c2NLk97aMIPqtG2VI4Ugpc27TNOH1uvPF5hAdwqRg63vg8sgMYIwxN7YKDp95Lkz4rDmAYhr6UlsKapicyZl6TjD4vKObk//1wc/StMXdK9rwi27wi7iv3rJCA/3l+p9fDx/cNygC3sc41LcciDW8RVPYNKjdazVkEuouGm51Ju1Fk4+KpNHkh5L5B5ZB5Y+fuZm74pTBK7Ya80el0PrihUtZuFA8/gMY6V7uXr6isUkmiH2+s++fVK+YXcUoqfcDrOdTu+ZfPr4zXbvxkS/2/fH7lvz1cMa9o2P3I2o3vxqj0wXYeQELtBvUQchynvARE1m607N4lX/NBVij3n/b88b/rlfS55r/+93P/WrGgmFuoeJhbG1yzJlkXKUodSTeUazWrtBsk6IiI0gR9/ljOBICemOiUlJQoGLQsd5YZ9JDuGWBjDFoHiAxYJGLQUPgf4xm0jsnS67KVDFquJQQgY+gMwzQJYjA8RGx1ukwdYxwIHZcZNBS1hEbDNDkNbTbN9fUfViqhAYQjfef69oeFoUR2rvnToiSc978GIIPNHRR6AEwy3xyRhDP+Yb/yp1vmA5BrCWlICS3XEprZ6QHhzFTTzVMyb/7Av1ulhL4595sWdobqmY9XQlvYfADXxGoJ5ZVKJTRdmE9KaGLQ8UroE6EDVxgX3Gi+96+B3wPI0c86Ftp/eZTQR4LtKvSc5g3nmopmGxfwvv8hV8alzNsDbhV6TnmTqYY59uyv5umv2H3xV6cHOy/xABATPSvRs/Z6ikIf6e985vRTl753eTTQ82xTIX2RfsegEj3LkeeIBGpQbO9pbe9pbe9pO9LfmWbHoDZ6ftW/7+enNkUk3GxJzJ2hED0PRiRtkQu9Kt4ecEckKU30/F6Q10bPuezsi8Kw8kBCz2FEwojcZP5iOuj5aLDD3bsVwGfMX0hTuPHXwO9Hh54LTEmdG/J0BQ8d6v2xBGmm6Y7xTj1rL74QfOtw9zMZhpxJmdf/vdCzL3jkZE+rQW9J6dzQRs+C4pwogPRTz4SedTrTWKFn2bmRTuoZwAR6/kRNlPlqZkuV/YR80n7CqoGAn3e7taTPdntLSwtnt5eWLUvG7whntzTvTqefMDWGttk4jqNGxHQw9LKysjHB0OVVju27mnmet2qappX9hOOBod3ejpS5acLQKfsJR42ha+s3a6zEcAyd7CQHAN7ttttsQ6R4tBia5/lkHX0jxdBunq+ta0j42hsphuZ5d5XDQcR5FBja4ah2uuplDO3mPXZb8Z7tL4Bhlq5aYy8uUmHo6or18SQ6TQwtB5/3vvTsJdLnoedk5Bi6tmnbvvYDowg+JzmA0WDo0QWfEx/AJWBowr4ARoqehx9AFENjtC2FyYLPxVHtRlS+saDYBki/fXEnAAo+A/jKPSvmFdu+s67yica6YhsX3zdIBJlg9HM7dq+rqGqqd9GbJWHfIAWfiSN7eF4JoKlvML6KkLaDYXr9/aq+wTqXM8eSBaCyysHzvIre8ry7v78/3qf0pbtXZOiYeO1GY51Lx2DHrmbVXki78f7ZvngjBwO80dUTT58l4C9dPXcOp89fvWcFAzz9/E7lxgNeD8/zCRPiHt7tC/Qr+wlrXfWly1dyHBdvE0LP6b3/r8F++5CStOa//nfvm8eOnvd9b8PQ4q0Nrq0NdTt2NVcoOL7Hw3t4/vfbd6no89aGul8/tzPeHzIxH4+ZANATE50YgEbsVaFk0CSAlrfoAFaCIEEA9BIEBiwDgyQFlTQZMEhSQMmgGcYcEftEcUCnyxSlfqoljIj+iBiQb8Xq85RSaQCsPlvHZATDp6iWUM+YABgN+aHw+cHwkI6DaglDw/oMzWbT3HCkV2bQ1Ptkzbymp/9vSgZNtYQne1oBDAq9tNFimmPQZ8fVEl49IJyXawlplLWEWYbp/cJpAGZ2eqG11CecUjJoAFdZlp8OviLXEtLMMN12tWXlYf92lY7jGssqabiOI990x6csd70TePFk6BCitYSrfZEuSkYXmO68znz324Hnu4IHC0zzrjffcyy0v0/outF8b2/kBIDPmL9wLLQ/Rz+LftI5+tkAEmLoI6H2V0el41DaNkaEnuXJY2ffar7vVPjIqBn02wNuWeWRJnpWzpjoOF7z73vNv+91/7400bM8so6jqfORS9RxEAtOhp4X5pYAOB7sJAY9oo5BJXqmyDOh52dOP0Uwen5OiYy2tdEzdQxqoGdBlL489fvTM+YkfIwq20ZK9BwWxbAopqNsRgw9C5KonXrO08+W3ymybSOMyByTlu5ZHkLPEYgLcx7IThV5BnAs2OHpfUyEmG+8Mxl6trIFfZGo5VO2bYwIPYuMeEvuv1piJnqNSYmezex0OQE9CvQcQWhO3oocTXcz0kPPwZjBaaToWZSEqdkLsoyzBhW/OFSTfuoZwEDo1EXfK+mj54gYTul61kbP9ItVRs8SRJadmoZwQ9DptPY7gZ4/rjNUBuiqTwb15H5CQNIwaRA75t3ulP2EnN2uEU1V9RMmP3Jby64dHGdbumJVQtuG2+Ox2+20R8LQGgWAdrudli0rKyMJry2R9Dl9DG3juF5/v8vpXK6p+EiGoeMR4Ygw9MYNa+22oprGrWnpO2L9hGOOoSGJAGobGjVWyg+NiQxqZO2HFo8WQyc77ZH4zlNhaADVFetr6+qTnQJJH0PL22XiPCIMDaClpUXG0HbOVl2xobah0e1pT4iha+sbkwWitTF0bUPTqJ0bKSdNDC0Hn/e++Icxoc+KAxgBhr7E4HPiA1Bg6IyZ16QTRh518DnJAcwfRUuhdvDZ6+EB7PfS/3sALCjmvnT3ClGSvruu8ommOgl490zvvCLuq/esONjueWHn7vi+wXYPf8+KZZLCmIGkfYPu5WWlErBzd4uNs3t4t7y+3cPLfYOqgyQZdHzfIIA6l9MTY9kAPLybs0fvcFlZKcMgvmPA6XTyPJ9Mu6FjQFi2vs5JrDleu0FD2++ICz6TdkMCZDH0d9dXIk67Ic8TTXUH2j0JtRsAqKigzul0VFYgJn1WazdcdZmW7EV3fEal3Vjy/5X7cq545sVdAB7bXPdweSWArQ2uDB3T4wsof4HWu5wenj9x0beweFhKejAivXO6d16R7cmmuokSkY/lTADoiYnOokWLYgAaCgat3CINZ9AGQFRuYWAAIgoGrQf0khSUJdEMwzKMWZQGRXGAYQySFCYGLUkhmUEDYPV5QqR3cBhKztYxGaHwyYgY1OkyI1JQrzOZDDMFsV/FoDPYyaHwWSESiN0wyqD7+g/HtlgBWDOv8YeO9YeGNBRZxlm5WZ8eFHoGIz3yRotpjtk4+2wcg7aarjrp47uDQzqOPNP1+VbuzMBr/eEzgfAZ2mhmpxdal8YzaAAWdsbrPf+tdHEoldBWdqachp5put3C5scroa1svi8GmK4zr7bqC94JvBCvhAbQEzlBDBpAMiU0Es1IldAjsm1oTx47+zbzfUFRGKmOQ448E4scdaXhpeg4komeRzS3WRYtn/z1Ues45BhyMuHGwtySjp42xDA04tCzUvS872JUr5EQPSOWsI5ImJe9mMQas4xzvT1tGuiZIs+DIuKFJK/69ynR82eyUqSeU55joFcFoeerTMVXmYoBqDLLqpEjz4IkpvliVomeR4qeZ5vmA8jWF/Qmf8fJ6Dkqek6jY1Apeh4Rep5hug2ARfFZFD/jnXpWoeeB8LmEi8c19SyjZ42Vo0PP2VmfTh89X3rqGbGmwRGhZ4ah1DObaFlq9CxJkba2No1Dmph/8EkTQ3Mcp23CTSaGVvFoh8PR3Nzs5nkNI4d8SHQ5cDIUWF1VMeDr4TibKXsS1Q8mnOgeNTPaiPFxhoHFrGWqSWl89vBuCrjt3N1SUeUYNYaOnzQxtNvbHuXFFetTYugoeovD0HZbgl+II8PQtiJ7cREjiaa8aSkxdHX5+mD32fHD0I6qCo3YcuI7T4KhKWVstxXv2fHipWNonucpSknbLxFDu3lPbf3m6ooN8RgaQHX5OrutiNBz+hhaDj6PB3oe9pxoYmgKPo85eh5+ACkw9BgGnxMfQNGCvc8/Ezp7FDqdRhh5TILPyY8hXT20RvC5vLJqQ0XVhoqqBcXcQxsq93t5qh/s8PCUz71meo4EfGdd5ZNNdV+9Z4XskaC+wbO9flm7sXrFsoXDjRnEi32B/nibRHEijtxU71qzchmlp+O/1eHhAcTfasWyUsRYNm3x8DzH2Sl5TWc3VTdxOp28211s4xJqN3p8gYrhe0mo3ZC3H/B6Emo3fv6HHart8doNmq/cs4IE0PFPVHwPIWk3Bvx9dgU7plpXAPHajVv/aeX3Ngw9nx0eftYka4aOGRZ85vlcq9nr4ZWCjg4vP2uSdTAiTQSfP/bDSLLyfWI+8cMwTCzvTCMCEqCPfa2PbTEobhQGGEaxRUIY0FPYSpICDGOWpCDDsLG/YwFAFAOAoGOydLrM2JYBCQKrz4veqXBGp7NACrP6HJ3OGFsTGhTOGvR54Uh3lvHK2MpuUQplKuiAf+AwAKNhmiljmrwxOHg2Ig5kZ107EDoFiAQIfAPvGdlcJVkIC309/X+zGAstpqG45aDQ4w8dzWSn5JiuCQoXe4PvTbfMpy/Mhumq68FP+twDwvkb8r6m3Hgu+Jf+8Jnpplst7EwAxKPN7IwP/LtnmG4n0CPP6eCrAeGUTzh5W+63hx6UcPKwf3u+6Y580x3yxpd7fmpl868zr6b/9Ald7wRezDdGMVNX8JA/chJAtn5WX6SLAW4033s8eOBYaP9nzF/oFY4Thj4W2q+thAYw16gF4EjWcSTUrr1sdHMk2H4k1M5ZvzrVkDgAKw/lWy8FOie72+7IsVsti2ZkFKZc/Jp/3+v+tlutJaODzgln14VfsTqQVTmd9cSdNRYQcZbp84lg5yxTYUdPW2FmYWFmIYC2i20lk0oWTVq872Jr28U2Lq8EAHFnAHx3W1FuCXFneXfzc0pUfLkr2Hki1KnajmjqOelT9Kp/HwBBlACouPOZ8NE3+/ctzfsagDcC+/7i35fOz5peFVcbbQSdldPS27A8N8E/cd4L8u8FPSN6Mb8aeKZHOD7HmBZ0pjka7Dga6phlnE/cWZ7jwQM6MPEKjmPBjmOh/bOMqVUbNF3BgydCB+VPgzTWHzoZOhT/ceQXTp0JvnqNZZVq/angK6eCL0/LvDkldwZwLviXswN/mZx5Y0ruDOBC8K0LA2/mZl4TH3k+6zuQbx32E+8Ovn1x4O1s01UpuTOAvuAHfcEPrKZCbe4MwBc84gt2mo2z4rlzT+DtPPPQowiEjgMQpTAAbe4MIDh4amDwdDqiZwARMQxAxZ0HQkczjUOfhGGhV4j06HXWlNwZgCzc0Fgpiv2iGGAYo/L3NQBRDOj1VsV/BiVpgGEytCPPkhSSpMGSkpLW1nGR2k/MeAzDMORujv9WrdPldLmo+F79LVdddWU5YjkpR1VVtUP997w8bp53Ol0S4HA4nE5nfFIMgNvtdjqdDOBwVCU8GAClZcs4jnO6XI7KClVL0vDdeZx19W7es2fndiqaq61rkHSsihHQHgE4HA5VYZRynE6n0+m0cVx5paM4yYHRNLicDXWu8sqqcsVf3Q0uJzO8xsrDu+tcTgaodDg4Tus3Gs+765xOnueD3Wc1lgFwe9prGxoXFc2P53G1m7dIjK66PIoL3d722oYmSNLGDWsTlhMO3ae3o2bzFkDauP57NU3b9rz0nObi9tqGJntxkbyjBAvqm/a+9CyA2s1NNQ1bqivWV5ev135cAGobGmvrGx0OR7XDASAzKyvYdzHZYjfvra1rAANHVWWyVxFNpiV7z/YXahsaAaa6slxZSJj6zisrZE2qm/c4XXV7drw4tMzjra3frH23tXUNtXUN8e+sTEt2S3Oz0+kkmYDy5cHzbsrjK7fLG+XXsOJ95CgtK2vZtcNZVw9Jqq7YAIBEKPS01zY0ApK9uMjtbSeJImFoJKqLhHwKYfzRc/y4ve01DVsgiRvXP+huPzC6ssFLO4COms1b3N6Ojesfql73IOTOw/UPjQd6TnwM7ftrGh9jJGnj2u/ai6L/jKTg83ig50QHcKBmyxMAlAcgb9+XRkR6QTG3oNg2v9i2bXPdvCIbBZ/3ez3/8/xOAE821UkSCEReNyMHwPqKKmXfoMr43FTvaqp3cRxH0V15yAStgsh1Lif9oYFEwed2D093VWyzb6537tzdorxhvctZUeVQfYbXu5wcZ1cZn2noV4ajqspu535Q63ph5275W6tXLOMUNmSaXKuZoHO8c+PxxjpRkr6zrvJra1Z8++GKOxdGP3ZIu6FCzzcX5M4rsiUMPj/eWP/A+sr5xbafbqmXn65YD+GwZ4/S0PEfTbWuusibnvJVXN6/ugZfjRYM1vzX/9b81/8+8+KuBYo485wpVgAVlVXKh1nvctbXuRwOh9vtfmBDJcWfSbvxnXUV3xlSVHt+8XjjxD8gP5YzkYCemKF59NFHh1cO6mLyDUlh52AQKyEEQDloCWH5ThjaEs1BGyRpkGFMkiTIOWgAOp2ZYYzKW+l0mQxYIdId+08LADCGQeGsKIZiG40Z7LSI2K88ZgObp2OMA4oscwY7Wa/LSlhLeNH3irKW0Jp5jSgJqlpCgz47JFzwB48q7nColtDETgoJFxGrJQyEzyhz0ADyrfZMdkqnb49yY6yWcLcq8nyVZZlf6DodfFW5mJTQAJTBQwubf1vut1VKaCubD4CCz4jqONRK6D6hC8AN5jVWfcGbgWez2YKESmgAuezsXDax25R0HAm2X7JtI+XMNRXdar7vrwNtyXQcoxA9j2jS0XGMVPQ8oiEdxzOnn0qp40inY5CCzx09bQtzS4hE03t7loJup9MxCEXqWZlupmizIOJWSwmA9DsG5cizIEqfyVoUn3qebphzZrBzFKnn0pzyePqccEbaMYjYWyBbX5DLzkoz8hyfetYeVeo55fqu4MEDvU+KjAggHfocn3rWmFPBV0aUej4X/Mtb3b8WIAC4dOHGgHBe/npEqee+4AcnevZEpEEAf5fUc3DwVLf/tYgkALicqWelcINhDAxjSLYyUeo54bK0hBuSFBJFnySJDJOZbM3E/MOOM4kBg4TOAKPZT1gx4OuBJKY0aVA/IZ8s5jyU4kzRTzgQ8IPRZVpza131SXZna9m1o2XXjhRi6JjxWTtrzHEc0ed0jM8XfQEAk6xmTSOHPf00dKXDYedsKVPDlIaWdHrjlILazVu0VirS0KlWDqWh3Z72tDwbgGnSjNqGpvgFbk/7Ilv0N2b1hnWhC6cYSVy66p7/P3t/Ht7Ged574/dgBgSIhYt2idRiO0ocu4liW7ZEEgMpbW1S1OItztLT5u1Jf33f7m1sSyIJunZqAiC12E3iNO2v19vTk7SnTRzFsWRTpH1OLc0ApGQpThzHexzti7VyAUiAmJnn/eMGHj6YDQOSshOH9+XLFzV8MBiAAEh85ovPV0qUaB+5dmnofIR8+8M2sWXzndtLOaaRhg6LIj4sOyOReHEf5hTS0HjB/t7nIh3tXT072TR0V8/Ozu1bO7dvwzh8uKkBgJRMQ3f17DqYGHReUThTQ9PQd977pQ+ePkPhuZCv61x4nWfhdXDNgs+Wx1Csh76mwWeLAzBJQz++65u/e//vm9LnppCIweemkLi1rQMAMPj8pbs3Yt8gBp+/+8zzqIyg9PmpXZMCaLDoG9zVHSMAe/btZ6+R9g0aI8wJWUK5s2nw+b5NG0RR3NZurt0YTo0ZdyjLshV9liVpPJ3qjHREozEWoM+vDhjpc3fhczOm2g2kzy8PJDQCSJ912g06397djfewqXbj33/0/F9tbf/GzjgqntFPAgXtBnsHAoCpdgPpc+LtE+tWfwq3o3bjxKVRlj4/uSMWEkVdvrs7Fk0mZJ0g+4meWEKW3zo/zGafv3zfxtmP0H1UZxZAz45uOABg+DJXkG/QjcigFWYNX2DQWuEyAoDGEmeO8xKiaYxng+O8hORUbdKniQw6p7xPJR68yy/wtRPKBdpJ6HJ5KtwLXJwnp1ylF0QGnRp/h9YS8q7KSk+9kUH7vdcp6uj4xHlm42KB9w2lJ5XQFUKVmw9qZOJK+lX2fqG1hNXejw1n3sWNCwNrVJLT1RJWuuenlfPHR19IK+/TjfO9q1YEm7GW0C8sQhIdEBbfEGhNKWeMSuhF3ttslND4z6CwJCgsWeJd/Vb6WYTOpkro09nDpzKHl3rX1HvW/Dy9x1QJXS3UA0ANX2/FoIeUU6wSegZtGyUHdRzncseo1hmHcme4NuiZjo2OY8qi57IGdRzSlZesdBwlRc/4BdJn+gVFz4eGDtR7VkA5HYM26Pn/XvLYbcH1iz0rlhQy4w7RM9o2TIUbr40dfG3sIADMIHqeIyy7XLBwTBk9q6A1Vf+1E46M6FkFzR49Vwv1+NyEaaDn1TV/goWleGrKen1p9BwQFqP8B9GzyuXKRc8rax+Y672pUpg/rlim9mbc9UyHoucFVY1+z1I3X51VhkxXOkTPOXV4aug56LvR457HWwSQf8WEG6bLykbPNrx7dn6Vx17E7KyfsK2/9zlZlkqzY4CS/YQdkQj2E9rsqr9vv5xIOuwntDFyOMTQZRUPXhlNOxBDO8XQADA+OkQ4viSGRlaLGJp6Ng4mB40CDeTFhHM5ANZokW7q6tld0rPRuf3hzJXzYI2hixZve/iRbQ92de8oC0MDQBmk2AJDS7JMAes0MXQ03m1ktTA9DA2Fh+V0MHQkEgmLIpWnzxiGTg7cueX+O7fc/wFj6K4du+7ccn9n29YX9v3o4MDhkkLzazqd2x2p0q/FIIYmHPf47m+sa1yzrtHRJ+Rm9AAmMbSN8RlnR3eMADSGRBRAQ3Hf4F9ubUPtxuFkAtvnXh5IfPm+jU/t6t7a3mHsG8Q9oMGZADy8vWN3T4yW5rF9g7rDiMeiCVk29g0CwK7uGM/B5ZE00ueeeJQqnql2w7i3jRtaIpGI8SM1zc3NQEh/337dRay0G5gL/qut7abajdsbQjoxhZV249u7u//xie6/2tpmpM8A3L8/07umUQSAw8kEakNaW1pMewjjsWj//ueN2o22LeL2zSIAJN85Gb7t04//079X3Nqq024cSspfuLv173fE24o5/qbWFt7F0Y894RnoB7a0TqjkOz+cLEh8eSCBsffZ+PNHdWYB9OxMzrp1iH7wUaFj0Byz0AXAAyiMAJoH4AwMGndS2MJVAHCaNllLCCAQQhT1MiH5KLTLVcm7qhT1qotza1oKCrWEqjZOGTQAuFzenHo1k5tME7uFWo97yXj21ETuMs/7kERXeuoJUdOZY3QZKqEBIDMxeVlvxWJvxUJDLWGd4PJdSb86wdAKrCUczvyCvdOqvSsrhJr3rv6QrSWcU3lzbeWNx0f7L2YmKTatJUwr51PKJAS/IdAaEBb9IvUcm4+GPPo5o2PQqIQ+OvSPOiU0DT6DQQkNACPq6VOZw1VC3c3++02V0MPK6SHl1FCBfJliaFRCv5L+Houejcuu0dzq/0KQr/vhla6LuRO6yPO1Q8905ruXh6v+oJZftv/K/zw/cRxmSPTsfLCZ8NjYcTYK7aRjkKo22C8IwFeXfw0ADg0dAAJ/vexrdZ7rjo8fL9kxODCUz0HboOfJY/asKAs9m97w18YO/u+h76C+eZ6wfJ5gZ2IpK/U8h192RTkxU+jZRmJzIjP4s/T3ET0v9eqdG7qpEuqGldPTRM8O1peRegYAip7ne0s7N3To2X5xWegZAKaMnm1WOk89Y23A1NCz1bKy0DMAEKI6cW5M5M7p0DPHVdBftTgO0TMhGfx1P4uef0OmMxLp7+uTrUXMRjG0McicB762YujCrvrs+wmxBlAMh5tbNrBYXGTeGOv6Ce0xdFgMlbxGxNAtLS0zgqEnxdBxc6yPw2LomBmUlyVZDIWgkDQnHF8S1yKrLdlPCAVeXBJDS8mBAk7dPmUMjSpq3cp8stUxhg43NYWbGrti8fJIcTRuld+fXDxVDC3JCSmRNHVWQPkYWn/xaWBofIbqOjx/TTF0145dhHNlrl7o3L7VeQPnzI6UHLzz7s8RzpW5ch4f4Z1t2x7f9fUPGEN37XzSs2D5usa12QsnaBraSUPgzM7BgZdtnBsoPkbovLPAoAHAtG+QEPjOD5/H9rkv37dxdUPo9sYQWPQNYlp5z779D28vQsls3yC7HTlykmkgpLOrO7aoJsBzYBp83rihxaqK0AUgiqKOPkej0ZaWlrAoUhWVJMsqAQC4Z+MGFwfP9fbpdtUdixKAkCiuaQqx21G7wUaDn9oV/9OH2lC78eqZodUNRev/6HObOIDVDaE7Gidv4zd3xVcurAbgKNo+PCCLoljQbhT1EGJyHIp/w0JBu3H1nzuQPgNA4u0T0o9/9vg//fvfbGtn6fOTO2JfuLt1fVjU9Q3WBP3rGEE2/mJ9YHPrbWubWLaOP/o/fbBNd9Nm56M0swB6diZn/fr1jGoDCsZnKGzRiqk0Xygh5Av/F8wYtEo5NTJoQvIMmuN4juM5zq9qI/SNMdYSUhcHmDFoga8CABdXkcmdU7V8zpp3eT3uJYo2pqpjVNNR4Z7r4rzpzDG2ltDjXjA+cZ5l0AIfCFauHBp7Yyx72uepH5s4CwA+T11lxSIjg57jXzWc+UVxLeHKBYE1tJaw1vvJK+OvVwrz64PrR3NnDQz6rtFi0AwAC7236Bj0Iu+tKeUc1hK+m9rHLl7sve3jgc2Yg0YjB2XQGHwGgDrv7XWe299KPzuqnAkKS+o8dwCQ19M/BICb/fcNqad/nt6z1Lummq9PDD+5zNOwzLMWAGr4+iHlVI2wdMi6Bm1IOXUtXM8Op0ZYKo9+92LuxDWNPFsN1XGwto1rjZ7ZoToO/M9hxyCSaB16fvLEo4ieAeDw8EuHhl8CKN0xqBLAjkHI25zN0fOPRw/8ePTA6ezxk+PHp4Oe/9fFv8tp2kpv6BPe8Ce84XnuZZcUk0ZKqmFxLtx4L5O8op58N5Nwjp6PZQamkHpG20adZ01J9IxzKnMYAGYEPQeFJSOG/sCy0PP5zCsoCJo+eq50LxhjTtFBmeh5OPPOiavPA8CHiJ7HsqfRoTFT6BkAyk09AwDPB+ydG0b0bBzn6FnThgnBBgiTHsLCsln0/NEZjDsxQWBLAwaLoUvkju37CQtYLWYbOqb9hJX+QMl+QnsMDQD9/f3hcLilpcWmeBDBt26ZLMu6FqmSxYPsspAoIgRJWGecEUMTgKDfZ4qh6XR2tEU62rt27CqJaymkk5KDpYB1HkOXxHlTw9Cl+wnLxNAv7t3zyLavloWhTVPGJovLx9DhUKhz+9au7h13bbp7mhi6s327JMtG08jUMDQ+rSRZ1j1HYEoY2vR2fQAYumvHLs/cxYRz6XThLIYumeKficPYfefdnwuHmljFecFm88Fh6K6dT7LiaZ2U4wPD0DZ9g6jdAIDGgnYDQ8e7umNrGkNg1jdItRsagdfPDf35w21HBhJJWTb2DaJ249zVFKXJAwlZluSg32faN4gcGUVGum+hP3rv8306+pxM5M+tGrUb8Vi0OuBzAXREIrrzr9FoFAhB7YZub6bSZySzBGB7RyQhy2sK4JjVbugO+I8+t8lUu7Gqrub2htCfPtR2dDCxplDeyGo32PV42L19/boewngsij2Esizj3wOSLFPtBruHxNsnb/ntTScujero89HBxHO9fUj/kUFjuLuvr48l9fhbFdPudONTu+KHkomfnRla3RgKeIT169fD7HwUZxZAz07RPPbYY8WqDZZBAwBhUs8sg4bCRQQCCgGlsEIA4AnJUKsGx1VwnJeQNCEZAIEQleMEZNBaQaDBcW6Bn8txbpVRdgh8rUbUiVz+Q9wuzuPiPC6uIps7yzJor3uxoo0BANVxGBk0AHjc8zWijo6/y+w/UBu4JasMjWVPu/kqVEW7+WC178bRzC91SmgAGMq8TUUcAOAV5iwwKKFNGTQArAjetaBy1XupXjbyvNB7yw2BDb9IPadTQn8ssMkvLH43tU+nhP54YPNoMV36RGBLUFiiU0KfyR4ZVc6OKmfqvHdU8UteT+8ZUc6YKqEB4Hh2cIWnAQBWeBqmoIS+doPsD4Cr5Zf9TvVWFTSdjuODmTfHJXn0uzf71s13Lz+fPf7BHwCdU5njVkropd4VLH0+nTkOAIie19ash2L0/PWTj+JppXsX/GGdZ4UNesbIM4ueFQ1M0fP//+xjCiEKIYsqli/yrGCP7ZXUwbLQ8921kU94wzapZ0TPmI92jp7fyyRzoAb5OoenUvDhhxFmK/SMEhs6OtFzlVBnfxWnModPZQ4PDn9DA3Q3f8ip5/OZV3469M8ap2ic4hcW+YRF9uuvXeoZ0bOi5RZVr6sQarKMfMk4JdFzhVA1oVyFKaFnlSjeioX2R1sWeh4Ze2NmhRvXBj27Oa4CwAWgmC0rgZ51mevZ+fUaiqHRgGG+piB0LmlhFkNNugiz8brsMTSu6evrQzG05WEXEFtz6yYbDN0ZiYyPjYGtAwQAIpHI2NiYJEn2y5AvA8CcoN8GQwPAc719be2ReCxqj6HbOyLDqTECYG/kKKhFSmNohHThUJOUHHTCi1EMXRaGLu3Z2P5w5/aHu3p2ObFIO8fQhcVOMbSN7MJk5+Vi6Pz6GcDQkY6O8XQKCJk+hgYA1qg+TQzd2WZZF3ntMDQbfDZdgPc81c5cCwytCz6bHMMHgqEx+Axm4mkWQ1csXom1hNdoUDxtpd1IJuRkQt7RHQOAgYSM1uZdTAIag89InwkBDPk+tSt+46JqjcCfPzxJVwkAa8zAtDJqN3RXSsxgMQBg0etoeqwjEolHozqQjdoNXansjnj+GWe6t6Qs7e/r64hEZFmiSWGq3TB28Eajsbb2DivtBnbVJmWZxp+ttBtP7Yq/PJAw1W4cHUz87MzQnz7UdqSYPrPaDXbnSJnZneD5TryXZFnCbtWuWLx5w0aq3cBJvH2i9o9ja5tEFj0DwBfubvXy3HO9fbrsM+/i8Gwuc4dEZVl+6/zwHY2TMecv37dR1eBfflBkJZ2dj+TMAujZMQ4lzlxx8JlaOFRmMV9YjxtdhVpC9s2qC0ClDBqAx1pCAPwPOE5wuao1MkEZNABw4Na0FMugeZcfOPdE7oKmZV0ur0ayAl9VISzI5s6ySmive7Gbr53IXaZbKtxzKz1L05ljqIQWeL+ijnnc83lX5ej4u4qaoiuxljCnjlAdBzJoYy1hwLMcawknr5epJZxT+cnLmXy3YX1wvQKKrpYQAFLKeWMt4aqar9BawkXe2wpf3OoXFr9jYNArA5uDwhKqhAYAFL9i8BkKSuigsGREPQMAdd47Pum/9/X0Hisl9Cr/A8ezgzV8Hsc4V0JfuynIpjkA7npv4/XeRgC41f/FIF8vjXz3Ys4kDzvjQwO2Lo57YO4jN1WG11d9eY6wvPfy/zw3cfwDOAAcRLc/GT1gs4ZqN3Qdg4ie8R8sev6LpY/dUbUeAF4eOUAAjo8fd9gxqGhwW3C9KXr+g4V/+2n/uk/71y10r6CYHtEzdgw6R882t5RGnnOadoO3qSz0nAN1ubdhubfhqlriAUwjz07sGTjldgwietZA00C7vfrP6ry3B4V8d6jpjChnykLPZzJHpoaeUfT8IQo3WPQc8NqpV6Cc1HNWGZoaekb6LFhQYIfomed9FD1Xepbbo+ecMqxDzxxXYVzpED0TMoEKrLLQs+k1AgAhWUKyDlLPymyHzK/d6OBvOBweHxuzF0MDwPjokJxIVAZrLIFvR9v46JAsS3b9hOFwyWwyrhHD4WjMrp8wLIrj6ZQohptbN1mRcaC+EVsjBwAg+JYkyYZBA1M8WMr4LFIMHbel1e0dEVYMnShAAd04x9BSIukwtsz2E7IY+mBy0ChhQJwKnKuk7hl3Gw41HkwMlsSU9hhaSiZpkyFMA0M3b9ho9GIbbqAjDC0lEsXrp46hJTkZDotAbenTxtDGYs8pY2i8OZ3bH7a632YWQ1sFn62GtZ937dg9U14O0+Cz6VxTDK0LPpsfQOPaF5/5XvbCCXC5KhavvBaB6JLB521tHVvbOra2dSQTckNIBIBd3bGH2joAYCAh39EUQtys6xs8PJDA4DMAfGtX982Laxotgs8sfd7VE1tcGwiJoiksrg74OIAOs+CzlXZjRzzaE4+1dUSstBv7C8FhWZKRqxq1GzhSQWbVZtjVptYWAnBlNL29+FtG7QYO3j+rG0Km2g0dtzVqN+jOXx5IrG0S2TtEliXUbtCNsiSLotgVix/c8++sdgMAevbJm3f9OwuOAeDJHbHl84Lrw5P57u54NBQSa4J+3sWxwWc8m0vYcCMAnni4bW2IgvVv7+5+9NFHYXY+osMR3UNgdn7jh+O4AnrGIcUhaFchFs0zSBq3sO9CcwCufBshqBy4CeQAePbdLCEZANXlmnwHrmlpF1fhclXiPxX1sovzEVAEvpauUbW0pqVcnMfl8qKLQ9OyijrMu3xuYXLZWPaXvMtX4Z7LF/YGAOPZ0wIf8FYsGE7/vMp3EwAo6thY9niwciWLFTIT5xQ17fPUufkgs8MzijY2x78KABBGB7zLU5kTOXVkYaAIMw1n3h3O/GJO5c0sjrmceePK+Osrgs1+IZ+he/3qd1YEmy+OvxoUFi/03sLu4f3MT1LK+YCwBAAoMEop536Rem6xd/Vi72105bnMj89ljmIVYVBYghtHlbNnM0eDfF2d93bccmT4H6qEujrPHZjEfDP9TBVfv9S7ZkQ5cyp7uIavX+pdcypzeEQ9/Wn/53+W/j4AV8PXH88Ooo7DRspx7XQcxzIDx7ID13marrfY/1Xl1Cvp/7ymDmhEzzf71gHATYZruZg7cWDkO7cE119TC8e5iePnJk5YcWc27AwF9IxfrC3UDx4aOrC2ej0ArKn+7OHhlw4NH7ijej3lzi8PH1hdlV9Z4YKl3utOZY4NDB1YU72ecmfIp54P6KAzDgo3VgXWfdqvvx+++/7f3RJc/5PRA5/yrwMAK+4MWDOYPnhjpWjDnS8pJ94el+e7l785Ln3ME3ICnXHeyyR/kU0s9zQAwHLv5PtVafiJ3642fyOBD79lnrVOIDIAnMoc5oA7kR2s9zji1MDYNgCAPlUB4K30j+o9JqHpM5mXAWBYPY3P95L7x1NTfmExMC8jNnM+88r5zI8XVOqhM36Aw0iiL2ZevTD+qu6FzmpOjx4YVy7WVK50InoezrwzNP5uwLNCx52vpF+t9q70MK/zADCSeW8k857fs9SeOwMAlge6+aoaf4kDRtdzQbhRlHpOjb8XrFzJbslMnBufOF/hnmcfeQaAbO7SRO6Sy+X1uO2S1NT1DAC61HNOuewW5tJ/Ys2gy+W34c4AoGljmpZGfbM9eiYki7/HddyZkAmO43APhGQBgBANAGzQMyE5AAUNXbN/Z/4aDcdx/X19bFKJDsWvkUhHuDgs1tyyob93HwBIciIa7waASHubKSpl1nCRSEc0GqN9RLppbm6WZNlY7oSDRxIWRatD0h2eJMuR9rbOjjYAaG7d1N+vzwTgrSMAkUjE9ObT6z0oSQCwvT3SZH2NSVnuiUeNy7a0tujsn5iAMyUd7CRkCbuz6K2wmvzdSwgacnXf9dYuyAxdyq9MJLu6dwCQzu0PG43MRftMDnT17AJCHtn20OM7dne2t5lW7eF0de/o6t6BYWerNd45i7KXz0nJgcd7dgPAI9sfsj8APIbHe3YDx9Hb1dWzkyNa5zaTayksdnW2bw+LJf5UuKt1y7qmNY/37O5s2+oEcUqJga6enQCccefeqjmZq/q63cJ66GzbZnO/FX4c+d3e1bol0hnRPaq7orFoLBaJRDoNTwr6AO6IRNjP1MuyFItGZVnuY57XuJhjnjiSLEejMQCCz9zJR1HbNgDo6t4BAHjndPXsBCD594UchJsapeSAXfS+qdHJz9dqMPjsED2bXLxnp5QYAKI9su2hcFND6QuYjZQcfHzHbifo2eyy+NzRHtn61XDj2qkdQH5XA4ce3/nkusa1NujZ5oIcIY889JfhRkd/oNru7fDju79pI33GQedGMiE3hsSBhNwQEh/e3rGrJ7a7OwYAb78/TPsGAeDlgcRTu+KrG0I0+PytXd0vDySODiao9HkgId+3acNDbR264DPd5/P7+3TSZ4wqtxc/I4J+3/mh1K7u2GBC3mtwMQPAjniUA0gk5PaOCLvDeCzaHYt2FAeHN7Q0R9DCYRZ8zj9hO9qjsfjQ6GSijg0+041bWltuXRv6xs74XzzcpkPP2Mf4Zw+1AYBGgKW0//hE958+2MYGor/yuU08B8DBX21tZ4PPAPCNnXEXB1/d1rF8XnA0nbeVstoNurK1pVmWZV3wGQB69sn/dYl854fPf/m+jQ9t71jbJALAkztif78jrgs+b2ptSRh+g0ej0Wg02tEREcPio3/XhT/9p3bFn9rV/f/+4LnbC2D927u7v/1E9+yfjh/hmQXQs6OfAoCG4oA8hqCRO+MXWjGDVgpSDnopFYBw4CaQ5cADACSfd558A0zIBABxufzMlgyAxruqAEBRLwv8XE0bJ6DwLj99S0zIBEqivRWTxGEid4Fl0GPZX7r52px6tdKz1MigcTce93woMOjKikWs1vNq6icAUO270cigA57lE8owACAcQQZd7V3pFebQlcig64PrK4X5k1etXDw9eoDyndevfufm2i8DwPHRF0wZ9PnMTwLC4o8FNrHbf5F6LijUUQadUs6ey/x4sfe2d1L7lnhXs1jq7dReyqCPDP/DEs/tZ7NHPum/F8HWmczLI+rZm/33AcDr6R9yANV8/cnsIQBY5X9gSDk9rJ5mGTRYz8wy6GOZAQCwR890riqnjmWTi9zXzTiDpujZyJ3ZuZg78fr4QYHjWuf+XzN7AADwSuogAFih56XeFdTCgRiaRc8N1Z8dHH4J0TP1Zpii59UFoLz30r/yHBACdd4V00fPAPCz9MFXUwc/5V9nz50BoCR6xnk7I701Lk8NPbPcmY4pgC4XPQPAqczhk9lDVUI9PqGcrD+dPbzEczsUo2ecM5kjLuBYCweiZ43TAMAJekY1vAZqSjmvewExHSv0jKMD0Gnl/THlvHP0jOfeqr0fyypXFwZLvPuyQs84qcwJF8dTB3S56Blf5CdyF22CzzboOX8MDIAuFz0LPJ5t5ayCzzboubAgD6Cnhp4JyZgCaEIykCfLbtPIMwLowtfO0TP+tTAx+3fmr9FwHBcWRRsIa4qhKYDOr3GMoSU5YcW7wRYK4zEghuuKRqPRaKSjw/j+n7m6Sb4WjXcbAXTJa6TX+1BbhxVf1o1x2Zygn8UQdJBHGAGKbjZuaHYBAds7tnB7zTE0C6DzK8vE0FJiALOxNisBoKt7h5RIWO0TATTd7dQwdFfPzke2PWhzEYcY+q7WLS8++zQAdO3YNU0MfVfr5hf2PWO73imGlhKJ8XTKdM0UMHTA70NRAPvAnjKGlpLJru6d4abGdaGGg4nBa4Shy/px2E/+zp8Shu7asfvxHU/Yn1ApfQDTxtBOgs8ljmEmMLRV8BmH7RtMJmRqfH6oraOxSdzdE0MMvbg2AAAUsyJ//LOH2pA+HxlIfGt39+q1oT99qO0rn9vUEYk0hkTUNO/Zt1/XH7irJwYAD2/vuH/zhkikiBdv3NAsimFj8Dno9zWGRFEULYPP7R1tHZGaoH84NUa/VdBu6E+XBvw+ADD97dMVjQGQzo52SZYfj3XTU4/4ar+vt0/3u2NLa0tClrGDkd2O98+/7nnu9sbQH96/6U8K7Xyo3TAKK77yuU2NIdEYfP7Gzji2BR5Kyk/tivf29QNAoYew6HYhkjZqN3r2yZ/Z/Hv4U7txUfWJS6MA8OSOmJfnjGqRZELWnV2ORqOSlL8PN7Q0//FX27BtUtWKfNZHBhPf3t0d8AgvvfQSzM5HdGYVHLOjn8cee6zwpVpcQsgORqRVppYQNyrMFh6AI5ADcOXRMwhQeK+bvwDHAyga49ngOC+AC2sJXZxP08ZdrkoX51XUq6xIGjPRtJYQACrcCwhomVz+L1qXq9LlqvS4l4xnT7E6jkpPPSFqNjeZUBB4X5XvpglllK0lBIBA5Q3DY2+NZSc/C09rCSuE6lTBLRDwLvd7ll5IHdbVEgLA6dEDVMQBBiX0gspV+MWK4F0ap72X6mWvHZXQKeWcUQlNgNBawoCwZFQ5S5XQCJ5wPhHYAhxBJXRQWFIlLLnRf/fp7GGEWaiEHhz+BlVCD6unq4X6T/kfeDX9NABU8/VGJbSpkWOmlNCsbeN3qreWpM8AUCssvdX/xYymzqCOQ2fbsF883738Wug4qG3Dij4vqsjTZ4cdg6xw4+WRA0+dekwj8Cd1jyF9Pjp64B/PPLbAvYIQuG/hfzcKN0w7Blnhhu7wfpY++N33/25CI/Pdyxe4V5jehNfGDr42dhAdGiWFG29npGevRnOaBgAO6fN7mWT/cE8O1HD1g6b0GQBqisXN5XYMAsCpzOHk8Nc10Oo9d1TxJUTPuB5Fz2jbMNJn3ZzJvHwm87LGaRqn6c4wmc7ZzNGzmaMaqBqounNapqMTbtgvvph59WLm1ffHX3Es3Hjj3atPqyS7rGYDviTazDUSbqSzpy6MDGgkVxu4BU8xTigjpitNhRvGwfOX5bieL42OvaVpOW/FUvzIjulQ4QYh6szWDHKch+O8VsFnQjIYfCZE4zi/lXADQCNEJUQjROM4txV9JiRHSA6AAFQU6PPs/JpNWBQjkY5oKRFzqX5C7B5sQwuzxRWF+nufA4BotMv+ukr2E+ZtzhxnJ/dgbAOSnLDaVclrxC1s8eCW1hbTXRmX2Ug52joiQ6PpkmJoAOjf3xvpaI/Gu+1bFlkpB3JPy5WOJc7UniElB2y0Ejidbdsc9hPm1RnbH3q8Z3dZUg4pkXS22LGUY9vD2cvnOKJ5axfY32lw7d3QUEjumxznVKQcYm9ff3skwj61py7l6N75yPaHHtn+0MHEIACsa2pA9DxTUg5cbG98LmvYlsKSWnN2unbstjE+l3EAjJTDs2B5184nnV9WGjh0571fADPjc3nHMO2WwpL0GQBQ8Uzp80BC3rNvPwDcv3kDDUFDMX2mfYMA8K1d3X94/6bVBRXD0cEE0mdd3yAUtBtQMEEPJGRKn1G7YUqfUXNsRZ+TCRk1zQlZpmFerI1F7Ybp3vr79hu1G5X+ANJn3UWodkNHn3ti0YTBiczeP7c3hgDgyEAC6bOpduPIYOLTdTW8C0y1G997theVzU/uiLdHIlS7YUqfQ59YZtRuUPqMEo9DSXn5vKCOPidkeVNry0Ci6IUL7diEFN2HLw/INy6q1tHnb+/u/qPPbXJxMDsf7ZkF0LNjNS7GtkG3cAxf5goCaFpaCAC8kUGzkJph0GphAQBw6KbMr6EMGnKFLW7eVaWoV6kSmuMqXK6Aog6zDFrgq1xcRSZ3TtUyPOfVtHHe5fW4lyjamE4JXSHMzeYuKurkuU2/dzlbS1hZsUhR04HKGybUEZZB01pC9p6qEGrm+Ffpagk9wpyaypVjufOmDFqnhJ7vXeVzL3x16F90SuiAsIgqoemgEvqVoX9CJXRQWJJSzqISelQ5a6qEBoAR5SwqoYfV02+mnwEzJfSwcnpYOfUp/wND6inAKLR6ilVCg8UMKaf+a3jXlJXQFD0jd3aCntm53tsY5Ovl0WkxaKPo2fllb6oMf8Ib7r38PzGzPJ0pKXpeVLHiM4H15yeOg4OOwT3v/w80uP/F0sfqPCus0LOiwX9f9OgtgXWns8eh0DFohZ6fu/Sv2DFoj57vn9t5U2V4nnv5hdxx3Roqes5p2ie8YYfo+c7qbdd7m2qFZVeUk/b3oRP0rJty0TOKmxE9r6n+izrvHUGhDk3rNhdh0XPJq6CiZ+fo+ejQP1L0jPSZfT3RjXP07BMWXRh/9WLmVQUUBZT64PqpoeeMctl0cVnoOatcnTJ6thqH6BlHUVMfInomZEIjmSmjZ8xWF752hJ4JmSBkIv95Jkfomcyi51/3KUCo0hhaDIftegXF0PjokBgK2fQTAkD//l5RDDW3tHTZSp91UFiSJJ2dIG9zLgg3bW4aANjcNHqN9ipqYPiyffEgi6EBIGGNoR32E4ZFkcXQVsuggKEJx1OiapW9dS5xlhIDFEraY2gWbeswtDEJOwUMHW4qSyRtiaGpuBmHYuiS5YdgwND2i8ExhobJU0GWp3mm5oaeEQwdDjUdTA4+3rP7WmDorh277txyf1hsmhH0XHS3lIOhu3bs9syrI5xrmui56ACaGl/Y+8PMlfPEJTjE0F07n7zzni9MQbtheQxTwtD2fYM4GHze2R1j+wb37Ns/kJQB8XGTeP/mDYMJGemzsW/wW7u6CQFs0qO7Ne0bRIpNTdADiUlezPYN6o4Q0ere5/t09Dkpy1taWziA5wxGjngsunFDS9iCZSdkKSyKRk9Oc8uG/v3PU/ocjcXb2iPdsWhN0N8UEnXG555YdE7Qn5BlHXp+eSChu3+QPn97d/equprbG0LGHsJ/fKL7z4o3QkG78b1ne1GXkb9d0WhrS4uxh7C1pZl7e6Dj/s+GPjH51zjVbrBikENJ+Qt3t2JanG7sjkU3tbasK3zYIn/zo9GWlhbd+QBZlp/apZeHoHnju888DwCzAuiP9swC6NnRz6OPPgpU7lVUQohDiv/pKt6CVFpligp5AIHNSnMgcOBiGTTH8RwnEFLEoDnOT0iOZdACP5eQLFtL6HIFNKJOFMWZqwRXMJs7CwAqyQAA7/J63YuNDBoAxrLHWQZtrCUU+AAy6OGxt+gyZNBuPqirJZzjX8XWEqKRY2Fw7Vju/OnRA+w9XB9c73HPTefeT+fepxvne1etCDa/l9r/fuYndGNAWBwQFqeUM79IFZ3kXOS99WOBTe+k9p3L/DggLBktYKaVgc0BYcnbqb2jhbrCJd7VnwhsGWXaC2/03xPgl7yZfmZEOVMl1H3Sf++IevpU5nCVUFcl1A+reQZNgJzIDn7a//kh9dRQQceBe7BqJvxJ+nso0HA4V5VTOvTs/LK6ud7beKv/iz8fP/DmuF10yHQod54CeqaDUejTmWNTZtBOOgY/E1gPAD9NHcAvoFTH4O2McOPw8AEb9Eyv4vDwS9gxaETPGHn+Lf867BhkD+xn6YM69Gx6/LqOQRv0/HZG0qFnm7uFTrnouZpfOjX0jJ2BiJ5xe5VQN6KctrpIWegZAE5nX6Ydg87R86qar1D0bDPlpp7HlPOVwnwFlLnemz6s1HMqcyKVOZHKHteIOoPoGQCco+fMxPtDqVcJ0Uo6N2zQs4vzaIXPAJWdeiaqi/NZh5RRuDGmaVn71DMUdM+lUs/oyMoBaBx4bP5cLEbPs/T5IzIIoURRtEHDGD2WZVmSZZvuwf7e5+REwiax29nRPp4akaWDlT7fdKCwk3Q2Dr1pzc3NVmvywWoAn89nj6GxeHBO0G+TcUYMDQDd8Wi3Na1m+wmNGJqF1xRD2/N9KNQ/Ioa2WQYAnW3bMkOXHHUJ0oR1z040M1iutMbQJovLwdBScqD86HQZaWir8kOTnYcaX9j3TDjUICWS5WDrUmnoyVNB08XQsizPIIaWEsnO7Q93tj38+I7dM4ihZzz4bDpOMPRMBZ+tpnP7wxRD27QUdu188uDAoRd/9L2Zos90ysLQ9sHnjo6IKIpNIRH7BlntBgDQkPKunhiGoAHgjkbRtG+QEH0YtjEk6voGBxIyG3zOb0zKITGckCWrvsFYNBr0+1wciAZj0o54dMvGFlEUi2O8UkgMY99gysCyY9FowO9DLVmkOPuM2o3x1IiOSnfHo4mEvK+3z0ife+Kx7e0dIVFkAfRTu+Jfvm/jv+55jtJnnKODiaODCR2jx/uK4+Bf9zx3ZDBB48+HB+SPLahC6TO7+FBSBoDevj72duFdJC4QOu7/bfmN400fX4bbN+/6t9THm3RikKd2xUOiiGnxydsYiw4kZF0eHKXP+w3XtbohpLsV397dLfDw9vvDdzSGXh5IrF+/HmbnozuzAHp2TGb9+vXFDBqKY85gsHMQBkMjg9YYBu0CAAIKijhwCwduQjKETAC4CFEBeI7zEpKmgg6OE5BBa9o4PTDeVUUZNO/ya1qKd/mBc0/kLmhaNr9rl6dCWJBTr7IX9LoXE6KNZ08zu/JVCHOzuQvZ3EW6kTJoAKAYOlB5A8/7WQYNAG4+mMoev5J+ld04x79KJcr7qaJf5AuDaz3uGuzgohvnem/yuOemlfNpZZJB+4WFK4LNo8o5lkEDwA2B1oCw6Bep53T56I8FNo0qZ84x2g0AWOy9Tcegg8KS1TV/cjZ75EzmCG6p896uY9AA5PX0D6v4umq+flg9/Vr66WXehiq+Xhp+YrmnoZqvH1JPr/A0YCEhWM+x7IATBn0sM3AsM3A8OzB99EwHdRznc8ekke86vIgu8jw19EwHGfSESsrScbySOmiDnilo/kxg/WcC63+aOoAJ6J+mDgAAAaj3rjg0dACff6jOYG0bZ7LHn7nwrxoBjcCWeX9og55/kjr4P85/DQAUDXS6Z51tY2FFEShE9DyhkbLQs80dgugZ89FG9DyHX2oM2r+XSZaLnk9kBk9kBk9kB6+oJ6eAnuu8d7COZpuLlJl6PnJk+B/Kcj2z6Nm4ICAsYv85BeGGAhMKTIwrFz9c9KyRCY1MzAuWuA+doOdc4UMzY9nTF0cOOUfPmpYLVH6cbRQwzrUSbhBV4Oe6rK+6gJ7ThCgul98ePWvasBP0TEga0TN+bsliWY6QcVv0nLO67Oz8WowN3qLT398fFkUbKQQ1ctiLI/r39/bvf97GyAEMFEbqbbrGIYbGmyaKos1NAxqsliSbowKA7R2RK6PpkqqNkCju7e0jADVB/5QxNDthURxPjQDHOcHQ/b3PSYmkE3sGYujSvDifsHZ5a+aVhaFtVsLUpByFxY727AxDs7oPJ1gZAFBY3NWzsxxs3XjXpruvKYYWw2FRFOPRaOsMpaEBAIUtM4Khu3bsgmsZfDYdKwx9LYLPVoMYGr0cOgzdtfNJz4LlAPDiM9+bZnWhzbAYumLxysd3fVO3wEnwORaLyrIMAATgh8/tp7oMANjdHduzbz/S58GEjF8PJOQv37dRI/Cve/LJKuwb/H9/8BzFkaiS+PYT3Q8Zgs/3bzbpIRxMyAlZ2rihRQdV80cYjSZkqa+vD9sCWfcF9g3qQCoAJBJydyzqsmDZCVnq7+vTGdi7ojEr7YYkJ5pC4l6D9Bk/N3N5JL2tPZKQ5TsKhYE67Qadb+3u/tMH20y1GxwHOlT9jZ3x/3bPRqrdoPOFu1tRyMM64jEbvr/zKx33/zYAyG8eC31iec8+ufaPY1S7gYN1iC8PJHRp8U2tLTwH/X37w6IoyTIBCIfD0WiUEEilx9jr2tDSHItFddLnT9fVCDxQv8csff7IzyyAnh2TWb9+PSPf0DFojklGWxmiwcCgsZxQ0zHoQjIa98xznJ8QpZhBezQypmPQQDQsIeS4CkIm8gxaKWLQ2E+YU67SC7qFWhfnGc+eVrVxAECOUOmpV9S0jkH7PCvGJ85TAA0A3oqFPO+/NHokp47iFp+nDgAEl+9K+tUJZYiuDHiXu/mq91OHPcLcoYLQo9r7cVMGXSnMPz7ajyZoHL+wcEXwrlHlHCqhF3pvOZ/5CX5hxaADwmIjg/54YPPbqb1ni7ejEhq/rPPefqP/7jfTz7BK6NPZwwDwW/77q/n619JPVwtLTZXQtJPQRgltpeNgRc+3+r84I+iZnVv9Xwzy9T+80mWv45iybaPk3FQZRiV0ySg0omcr0fOiihWLKlYgaKbEmX7xh4seXVSRR89/vexrRvRMbRu3BdevDq5fHVx/dPSADXpWCflvC/72U8W5Zoei5wmNWOH7+cLy19JloGeMPOc07Xpvk5PUM6LnHKjlomcVNBW0es+aamuxDB1q2/gA0PNnav54kffWkutLomfdTBk913o/Wev9pP16h+jZI8yBqaJnn6cOX3KtptzUM6LnmsAq5+gZPzdjNQ7RMwBoWuaaoedqe/QMoEwDPWvFyyh6ttE9q7N/ZP7ajWQGdjsjHf19++0hbEnE7ARDF1K9bSUxdFgU7Y/HiSTE4U1jHSCyLNvwZYfGZ6TVBGBTa4uNkUOHoa2WQSFCDhxnL4YGgLAYcmLPAGuJs7H8sJCwdoqhw6EQwkfnZBkZpZPFnrmLnS4uYGj7ZjznGFpKDISbmibTzc4wdOf2rZmrF3QYWkokdVHN6WBoWZLaIxHEzTOCoXXecIqh79xy/7pQQ7kY+vGe3Z65iw8mD13T4LPp6DD0tQ4+mx8Do4dGDH3tgs/mB9C49sVnvpe9cAJcrorFK2kg2j74LIoiZp/xgYrR5vs2bWCDz+eupgaS+cAy9geiOoMGe48MJP7w/k2EwL/84LnbG/IvLGgB/tNC1R4dnXbDcDzh0WLQidPa0uziAD89I0lSU8EinZTluVV+DkCHngGgOxZNyPJ+M5a9oaWZK+wNAPCpAQBd0ZgsS6x2A6crFq8MVIVEc+0GAFAZSDIhY/JXp93AwYT4kYGEMfj8R5/bxAaljwwk1jSKqN04cWmU1W48uSO2fF6Q40BXdRuLRrm3B1L/63HxpusAQH7jWOgTy3r2yd17ZZ12A3PZvIsLMa9OqBZZJ4ps8FmWZZ/PRwjogs8Bv08Uw+yLG96Ev9zaxl7R7HzkZ/a9wexYDWeGmPEtKDGzc6Ahmk1GoyGaDUC5zRg0YTg1cJyXZdAAwHEeAqqqTbqeXa5KDgRk0BrJAQDv8gt87YRyoVgJXZ1Tr+oYtMDXjGdPqdo4z/uQRFd66gnR0oxPQ+B9Ps8KAMhMTMaTvRULTWsJTRk01hIicMGp9n58YXCtvpbQvWBO5c20lpDOiuBdPvfC91K9LG7GWsJfpJ4z1hICwLupfSnGsxEQltxa8/+wtYQYqAwKS44M/8OocgYAgkLd7dV/Nqyepgz6k/57T2YPoRJ6qWfNa+mnTZXQiKGv81j+yT6knPqJgUFPU/TsfFDHIY9+16jjmI7o2fncVBm213GU7BjE4PP5ieMYfIZi9AwA/3r+awCwtno9lOoYXOJZgegZxRpW6Jnly+eyxx2iZ4w8m96Nb4xLb4xLmEZ3jp4x8myDnmuFZVfUk8DYNnKgLvc2OETPP0t/H9HzUu+apd411UL9sGruzcDRiZ7t0XOVUAe/Yug5ICwuFz2/fvU7DtHzuHKxrNQzAEwfPefUYd3istAzNs1OBz3zvE9lxE1QDnpW1JEJ5QLHVXzw6BlTzwD8jKae7dEzPbs82ybzazZRM1zrSAzNdA9apXFxjRgK2a7JY2hUZFgi73zMeab6Ce1uGhSoHADY82XnxYPbOyLb2yPd8ahDDF0dsDS/43R2tNv3E0pyQgyFWHvGlCXOZteex9Al0TYAsMjSCYYGACNZNhVJZy+fM11sted1TWvKoOFlSjmmg6HDYb0rAKadhqa4eToYWhTDmKMHAB2Gzlw5T4CbAoYGACmRdNL9eC0mHGoMhxql5ODBgcNScsBJTeLMH0NT4wt7fwic6857vvD4zr9/ZOtXr13w2Wo6t341e+HEZCDaNvgsyzKBIpTJBp8xpLyrJ0a/HkjI92/eMJCQb28MYbBX1zeI8+3d3QB5DTQ2EIKhb5Ad/NZAQrbSboTDYSojlgvVgqjdeK63z5Q+JxOyKIqigdIG/L5wOEyDz7SHALUb/ft79TLoWFyW5bAY2t6up8+o3Zikz7J8R2PISrvxrV3dRwYTf/6QnsijdoMNSh8ZSACAqXbjyR2xwwOJ01dGAUAsvLbgXcS9PYDBZzqJt0+mPt6ka0R8alf8x4eST+/rfXD7JCnujkW747FIR0exdiMGAB3FgulYNBqL5V0csizj+YZv7+7+8aHE2+8PU/r88kDiD+7dOCuA/sjPLICeHZMpaKDtY866ZDQOMdg5OIBcQQwNAG4AIAyV5sANeSV0YQvnJUTT8q5ngRCV1hLSNcigCZlgLlUh8LWqNs4yaN5VpRE1kzvHbPF63EvGs6dUdUzV8hyhwj2Xd3nTmRNUCS3wPo97fmbiPMugqRIaGbSvYslY9ozPU1ftu/FK+lWjEpqANpx5h270CnNRCU0ZtE+YP567UB9cr4BiWkv4Xmp/QFhEjRwBYfGqmq8YawkDwmK/sPidYgYNACsDmwmAUQn9VvpZquO40X+PBoTqOABgSD19KnO4Wqj/Lf/9VkpoADiWzf+JZq+Exv9mRPTsfIw6jhkRPTsfKx2HQ9HzT1MHkD5j2SCi55Y5/xcU0DNi6NOZ47Rj0IiegbFtKBrcEliH6Pn8xHEr9AwAPx498PLoAYfo2fT4ET0rmqZoWmtNiRPaUxA9X1FOsrYNh+hZGn5CBa3OswbRM26vEuqGrcXNLHoueRV4Fmem0HNAWDxa/FyG8lPP72d+cj7zk1HlTFno+Yba+4zouVIoUh5fzrxxOfPGxfGfORZuvHtyaH9WuTLHv+rDSj1nJs5heSAAfPCpZ0UdyUyc0ojqFhayv7Z04xA9Q54+l4GeC6ln1WLZDKJnYNCza/aPzF+7wbfQVmyL8i+dGFoqchOHxkeHAMBGCoGwEr/uisWtjmQ8NeKkn9AJhnbYT1gSQwPA8/v72zvyfNlqjUMMTZc5xNAAUBmosrrHwNBPaJOGnjKGtlqG09nRVnKfUiIZDjUWgp+OMDQWA4IzslzW4nBTY7ip4ZFtDz7es+tXB0NLiWQ0GnPwWHWEoSVZZmnadDF0WGRz9MBg6Lu23BcONU4HQ3d17/zgMXRXz04ALjN0yfnplmtzGLuAwIt797y4d8/jO/VSjg9spOSglLS7XpGp+4MCg8aewPs3bwCmbxAKgWVUZ6xtCjU0hZA8GvsGv727+9N1NQB5DfQRhj4PJmTT4POuntjhpLyvt89odo5Foy4OxsbGIgwDlSSpKRSm2o2QTtMci9YE/S6Os9JujI+N6bQbkixbaTeaN7QCIeirYQd/a6B2g93+8kDCXLuxq5sD+J97nr+9cfJorbQb39rdDQBG7caTO2IuDp7e2wsAg4n8qwFqNzru/yxLn+U3jm3o+hdsiWT38OX7Nlbw3NN7exuaxCd64m3tEShIn8fTKZY+d0VjkizrxNmxaBQg7+KQZQlJ+lc+t0ngASsHcZ7aFf+DezdC/oP4s/NRntn3BrNjPoUnv65jEB8wlC+bGqJdbOVggUGzb7l5AI4UJaM5ALWYQVcAcAUGrQAAMmhFvUxI/oIuVyXvqtK0FK0l1DFoga9StRGBD3LgzuTOqVp+/7zL6/Ncr2hFKTZk0GwtIe/y8y6fRpTU+Ht0mY5B47j54Lzg7Vnlso5BV/A1Q+PvmjJorCWsFOajlAOV0MdHX2CV0FhLmFLOQ/HcEGgF0NhawoCwBAA+Fth0NnP0XObH7GKqhAYARFpBYcknAltG1TNWSuilnjUakJ+n91AGbVRCA4BTJfSMip6dDzLoIF8vjXx3BkXPZQ2r43CInpE+0+Az3Q4AP00dBCYBvbBiBQGgHYNW6Bkjz4ief5I6+JPUwVdGDxrR88/SB//9wt8phCysWHFX7ZenjJ73XO5C9LzSK670igAwR1h2STHRoUwBPf8ykzya/g8AcGjbAAY9N1T/1VLvGjzFYj9TQM9nMi9rnEaALPHc/qGnngHg/cxPXh36F4XLzav8Lb/bDraCAT3bL0b0rJKsSrILA2scomeVTCysDgU8yyYUfX6ZzgeAnoO+Gz3uebzLx+qVildeW/TMu/xWyxyiZ44TNC2tKBfLR89Wy5yhZ1AKZ6NLoueJWfT86z4l2VZYFEuKoZ11D7YBgCzJzRtaLU3NHe39+5+XpYPObBtOUHUMiom57qY5wdAhMYwYek7Q32OtcmYxtJNlJTF0WBTHx8aAc9ncY3AtMXQ4FJJku59pWfuESf9AHkPbrIRrg6Gl5MC6poZwU8OLz/4AMbRjg4ceQyNYN1lfPoYOh5rsn4NQFoYGCPp9sZlLQxtz9DAlDI3/GQ/7A8PQXT07vbULALjOtm24pazU/8wdxi7vnEUckBf37gk3NRZ8Mls/eAzdtfPJx3f+vdV3UbgREsPtHREAwP/HY1EkxYtrAw0hke0bRGS8qyc2kJB/sK/3oe0dg8nEkcGEad/gEUO3HoamAWDPvv26I8FvCRzs7e3DwkD6LVmWULsRMXBkANiyscVKu5FM5LUbsWi0YzI0LVHthu4i0Wg0LIbGUyOm2g0xFMJfcJKcQPUzajeaQqIOPWMc+88eajPVbnAAf/5wOwB8a3cc7xyjdoOuPzKQMNVuuDh4cHsHAAwmZYT1VLvB0ufYnv/a0PUvAKDTbty4qDokig8yJwASslQT9KP0mW6UZLm5ZYMsS+z5AFmWAn4fMDZtfCH6dF1NQyiku6Jv7uze2tYxS59/E2b2HcLsmE+hh9AYczaqNnSGaDDD1nzxTpBBZ3ELV3izSkiGRrSQQROSBhCQTXOcl+P8qjZCGTTHuQGA1hLiCHytRtSJ3AUAcHEejWQFPsi7/NncWcqgAcDrXuxyVU7kLtMtFe65lZ6lY9njqIQWeJ+qjXnc81wub2r8PZZZBCpv0EDLqaNUCQ0A1b4bNTLB1hJWCNUVQo2i5d4fLfrrga0lNDDofl0t4c21Xz6f+YmulhCV0D8d+md0dASExSnlLFNLqGfQHw9sPps5ytYSfiKwxVQJPaKcGVZOL/WuCfJ1yeGvDyunTZXQyz0Nx7ODn/F/HgBq+aWIoa1g9JB60koJfU3nl5mBY9mkOvlA/XBmvnu5lW3D2DEIjG0DAKgGGpgENAH48sJHV/nXnckef3nkAHYMWqFnvCyNPKuE/G4xX6boGcny+8X1idgx6Bw9t9a0U/SMM1dYdpkB0JeUE1NDzy8O78iBGqp2asTToWerZVXCpAN6yuhZ47Ql3tVBYYmDizhCzwFhCT5by0LP72d+QtHzjbVfmuf9lE9YmM69b7XeOXqudM9n0XO1d6U9es4oV1j07Pcus1lcFnp288Epo2fblU7RM350ZmbRs6qmnKWex1VtBED4gNEzgWzhjwEn6Jmf/cPyIzCFz9qLNgJl1p5ssRNH3YMv9O7tbNsejcatoKpzMTT2E9pgceRoYVF0gvZEUbQh2gAQEsPDqTGO4+YE/TaqDeTLAID0wX4ZYmibfkIA6IxEIpHOaKy7XAwtJxJGgzMUI2N7iTMAREqJPoz7dI6hyyLLAFCSD9LFVunmg4lBqvJADA2ElCOSviZpaCmRdMKXwQGGlmQ5JIrDqTEyQxhaFEU5kcSf/nQwNL0HrALRFEM7qX+cwtDgM6XPdFgM7Z2zqKunxINheoexq6tn1yPbH+rcViSe/oAxNNYe2tBnAMCyQexEbe+IYAIaMTTtGGQDy+jHIIT8YG9vQ4GKEgLGvkEA0HXroYuDUmx2EHCLBbFyMiGzTonWlhZWu0EnGo3KsmzsGwSATa0tLo7bX9zLh3vb0NLCajfoNDc3S7Lcv79Xt70rFgdCxkeHKH0OFehzTzy29/k+I33uiccATKTPRwYT/7rn+T8vTiIbtRtQUGkLhr+8ULvx9L5elh3Lsmyq3Yjt+a//Op/7j2ef12k3ntrV/eD2dnYPgwnZqN0onJpqirRP3hC8A3UuDgA4Opj47jN6u7SXd10YTjUZwuyz85Gc2fcJs2M+69axEUijasOJIZpl0LhFKa4lFAjkCmkpjQOBy7s4Jhk0x3lh0hmNtYR+VZusJXRxPg7cOgadryXMXQAATZsAABfncQvzsrmzrBKa57wTyuXx7GnmgpWVnqW0lpB3+VV1zOOeVyHM0TForCXUMWidErpCqJlQhgLe5QIffH/0UEaZhN20lhAAxgrNhHO9N9UH178//opOCQ0AGqdhLSEdVgkdEBZTW/THApsIEKMS+uOBzQDA1hIiMtMpoYPCkhH1DAAs9a652X//z9N7TJXQJ7KDNcLS49nBGr6eAAFr+gwAV5VTr6T/8wNj0L/MDPwyM/B/hne6AO6s3rba/8XV/i+dnTj2hkEJfU0HTRSvjx00rUMs2TEIBfPGHy569DOBdVCMnl9NH/zO+18DAI2A847BT/vX2aBn3DjfvZx+92fpg9gx6Bw929whb2ektzPSG+PSlNHzMm8DAFQL9cO2jyWH6JmdKaDnw8NPUfRMBeuj6hmL9UfKTT2PKmfLRc8Kl6Po2X59Wannq5k3x3MX07lzTtDzcObd4cy7Q5m3Zhw9j2XPYA1ssHLlh4KeJ3KXU+PvqFoOAGYWPROilkTPinqZgOpyVdssu2boWbD9W9EePX/I5/9mZzqD8UlZliv9AXsjBwBMrXswHAoBQFhsKhtDWyWm0bZhWyoIhZR3c8sGG7SXv/mSZEO0AaC9IzKcGnNmfO7oicfslyGGJgA1Qb8Nhi4EusvD0CX7Cft7n3PUJcjs08qywu7TOYZGXumE/wIAcOBE3wEAndsexjJDZ4sfyl46MwUMDQAzLuVg+bJNl6YTWo0P1CljaJ/PFy1cii0knDKGfnHvHpZEh0NN4ZDJn4Vd3Tvv2nyPk/vK+RiDz6aDGDozdAk417XA0FJy4K4t93FAspfP6ejz5DEwGNqzYHnXzidn9hhw7IPPHR0R7Bts74jIsoxx43gsShPQDSFxz779bN8gAKAA+sHt7Q8Vsrd1c4KDCdm0b9DYrXd0MGGl3RA4uDKa3m7gyKbaDQCQJKm5uVmWpJABbqJ2IyyGWUIqy7IohmPRKMeBUbvRFY1W+nxG6Ycky6jdQPTMDtVu6OjqjniUELg4rP9MHtVu3FFMmf/oc5tMtBu7uv/w/k1/vbX9jkZRl31G7UYDs/GJnjgAmGg3Hv+XsRvW/sezRZzhqV3xCp47fWWUpc9P9MTw1UZHn2VZ6u99rrOjLRrvxjszFo3KsqTrcsQi37ffn7RLo/TZy7u2tncAwM54bFYA/ZswswB6dsynkIDWyTd0MWfNsIAdU32HxjBoFzJoAkphby4O3IRkGEsmz3FeQrJU0MFxgsvl18gEZdAAwLuqgGhYS1jY4gfOrZHs5NFwHo+7TtXGKIN2C7UAwHEVqfF31MLeeFdlpaceGbTA+9DUwfM+n2fZePacrpZQ4APDY2/ZMOiAZ0UqcyLgXe7z1BsZ9MLg2vECfcapFObXB9fragn9wiKfsMhYSxgQFt8Q2GBUQi/y3mpUQgeEJYu9q89mjqKOA8dUCT2inH49/UPUcdzsv99UCb3Ms3ZIOfUZ/+eH1NND6ukavn6owAStSPQr6f/8Zebafpbtl5mBV9L/iXF6FnHWCktX+794duLYgZHvmOLgmZ03xqWnLz/++tjB18fMSwgddgwWMPRBI3rWCPlvC/52oXsFRc/OOwbBAj2z38XI84RGbKQlztHzpdzJtzNSTtNymrba/0Un6PmXmaQRPeNU8/VDFuLmctHzqcxhAJgael5d8ycUPduuP3ImcwRRtRP0fD7zyvnMK+czPyaglYue53k/pUPPPmFButjhUy56vpp5UyETGmheYY4T9KySCZVM1Po/ZUTPbqF6Qh3Cr6eAnlWiVPt/S+AteS5OSfTM8z5FTcOU0LPHXSfwQZuVTtAzx1Xo0LNt0+Akep5+6hkAED0D8OWjZyNKdpJ6JgDkwIEDNoc0O7/i09+3v79vv72RAwBoKtZ0J866B5te6N0bDjU1b9hoI4ZGDA0AlslrZ2JoFInYp7yhcPMp0TYiDBxWDG2Hods7HPYTXhlNI4amRo6ELInhol/H5WLosGh3/+PQLkFTDC0lkjRDjfsEjrORfRdW6jG0sT9w8gAKXXb2/PdgYrBz+8POLdIFkHetMPQj2x8Khxq7espLQ5uiVSkxoGszQ+IDADZdmnCNMfRoekwj4PP5MAZbuK6pY+jHe3YfTAyidIK5Z8wxtJRIzhSGtgk+W01n2zYWQ8+Il6OrZ9ddm+9b19RghZ7ZwUdv9vI5cPEzi6GdBJ9jsSj2DSZkqb0jggno0fQYFDTQpn2DhJAzV0aRPu/uiX1uc2tDSGRr9Ni+QXbjp+tqXGbVxZinFjjQoeeELMuSHPT7TLUb0Wi0paUljPKQ4g+goHZDZyvGh33A7+M4MAafu6JRIGQ8nUIT+uT2WLx5w0aq3Zi89nh3QpZNtRtzq/yEwNb2jmRCpnFmnXaDzrd2xQHAVLshuODd94fXMKj6UFJmtRt0nuiJDSZkU+3GbZu/+Nfb2gHg6zvif/Fw+8sDiRsXVVfwnG4PD2xpfaInHol0sC9QzS0bgGj9vc+xd8iGlmYAYEPl6OJIyJIuYf0H925cFw4jfQaAZEKeVXD8JswsgJ4dy3nppZfWr19nRpA5azsH4BtOZgspLj7iDQy6AkE2KYikOfAAqCyDBgBCFFYSTRm0y1WpkTEo1BIq6lV6Qd7lF/haVRtRGEDsFuaxDNrlquRdHo974Xj2lMoQ7UpPPSEa5qDze+N9Pu+ynDKiqyUU+EA6e5pVQtvUEl4df0unhF5eu/HK+Ou0lhBHV0vody8cU87P966aV7nqvdR+A4NuTSlnAIDF0Iu8t34ssOmd1D6DjmM1KqF1Og5WCQ0AAX7x6+k9BQZ9n6kSGgAODO9e4Wmo4euH1NOsEtqKQR/LJl9J/6fpt6Y5NPJ8gyd0vbfJFHGu9n+xylV/TRk0Rc82a5x3DP40dRCfS0b0TIGysWMQrNEzhppt0PMb49LF3Imz2eP4XVP0fDF3wjl6fjcjv5tJqEBymmb1c9ENouccqEb0bDUnMoNTQM+nMoc10Aho9Z47poCejQuCBW9GYf0kel7kvdUhetY4ReOUm2u/XPJ47NGzcaaGnhUyUeW9wSPU2ixm0bPfu2zGU8+Inr0VCwCAd/nZ13N2nKeeFTX1oaBnAMBP6kwPPSvssjJTz4Do2Yo+M+jZ3qThBD1rxR+Tmp1fj5Fk2citnIAtxJGiKJbsHpQTicpgjaUYun37C8/vkyW5MlBlox0AAFEUS9o2HPQTdvT37bdJeUOxGDohywnZfFdUDO2weNAhhi4thnaMoQFgPDXiBBlTDF0yttzZ0e5wnxRQAkBJuy7F0E7I8q8IhgaAF/b+sHP7Q84xNFYOOkSrVOhcFoaORmMhUf+33BQwNAB0RCKIHekBTAdDA8C6UMPjPbul5MALzz0bDjXRR9o1wtAOg89WQzH09PXQXT277IPPlseAShkX71mwfPpeDifGZ/yC9g3GY9GQGBbDYmtLMweQSo8BAAafdX2DDxXY5e6eGACcvjJKGwh1fYN0vr27++ihxL/uef72RrGxGBbTvkFj8BkAErLU19dnSp+RF3dGOmh2GwASsky1G7qLyJIMAP19ffq+QZRNEYLJX0mSaQhap92YvHtj3ZKcsNJubGvrQOo6IMu0mNFUu/GtXfGjg4k/e6jNVLvxl4XF39wZ/+q29id3xL5wd6tOuwEAD2xpPZo4IH7yOnYj1W4gfcZ5alf8y/dt1Gk3nuiJ1c8JhkIia5HqisYq/QEx1MTecElObGhpEYtD5ejiwB/QX25tp1f0ymDyR8/vp/R5Zzw2S59/Q2YWQM+O5axfv96WQWvWhmijnUMtfI1vWQkUlRC6C1A7Pxy4ixm0G8BFiKZj0ARUVRthtugZNL4h10hGx6A1omZy5wCA57yqlnW5vB73wmzuok4JXSHMnchdUgu1hADg8y4rq5ZwQh2ioT9k0GO5iyyDhvzdN4E6DjqmtYR+YeGKYLNRCX1DoHWR95aUclbHpj9T88esEjooLE4pZxd7b1vsve3t1F6q46AMGpXQSzy3A8CN/rtfT+/BiCgqoX+e3lOshK5f5X/gp+nvA0ANX88qoXG3phh6xnUcrG3jem9TrW0p4vXeptX+Lx0Y+c6M6zhs0DOVWpTVMYjoeZV/HQAY0TNyZALkM4H1uo5BG/SsEGKDnpEpr/SG5hUO2LjmjXHp52MHHaLn3qG4QrTfrn74qnLSIXo+mv5PRM/LvA3O0bMK2hTQswZanff2IF+6lrAkejasnzp6nu9dNd+7CgCM7aN0qOj5GqHn967+kKLnKu8NAOAR5mSUK8bFZaHnnDI8oQxNGT3bjHP0nM1dmshdIkSbDnp2cR72n87Rs6qlgWiETHCcMIOpZwB3KfScobDYAXp2FX6Pm98OZ65n+jcAb72r2fkVnWg0ZiPcKCGGxs5A2+7B/t7n+nufs41LN73Qu/eF5/fZGDmgWEI9rX5CUSyZ8sZlkUiHKIrdsejGDc0OMTT7rWRikoA4x9CTYui4JXOEYgxtlR/HnwhFxvYSZwDo7GhzaM9wvk9MySGRLOk06Nz+sHOyPDUM7QQjUgxts2cpOYBJ3vyROMbQndu3XlMMLclyQpZMH65Tw9CiKKbSYwS4aWLozraHDyYHcZ9d3TukRPKaYugpBJ9Np7Nt23RaCmnfYLnouegYtj2cvXxuOnpoaeDQnfd+oaTxGfsGZVlG20ZClnr7+gCgtUAY8WGDwWco9A2ywee6OUEA2oCXWN0YMu0bPDKY+MrnNrk4vXcCh/YNGgXBW1pbRFHs7+8PF386RJIkn89HeTEUZOgA0B2Lbmpt0Wk3cGLRaCwWHR8b0+2tKxptbmkRRZHuTZblsBiy0W50xbo5IABgpd1gM793NIZMtRsvDyT+r/s38i4AAHY7ajcamkJ/yaDqwwOJwaTs4pD1s9qNWP2c4O82rn5ka1GJDtVusOKOQ8kE7zLRbjzRE//R8/ubRJHn8ieAu6KxaCwWaW9jbzuegzRqNxKypGP6KH1+5vn99EzDznhsZ/csgP5NmVkAPTslxoJBs7EmK0O07iJKMZXmDAxaI8wWDrcwxJnjKgjRNMb1zHFe3PmkEtpVybuqFPUqVUK7XAGOq9AxaIEPcuAey/5SLewfGbSipXUMmnf5xrInWQbN1hJ6KxZmJs5DoZZweOwt9q6r9t0ouHzo4qAzx79KV0tYU7kSAGgtId0+13tTbeWNx0f7AeDCeN7I4RcWrgjeNaqcM9YSppRzv0g9xzJoYJTQwDSboRJ6VDnLKqE/EdgSFJa8lf4RemyDQt2N/ruH1VOUQdd71rBK6GHl9JByepX/gSH1FAB8xv/5spTQ09Rx6ETPDoXCAFArLL2zehvqOKZzADjIZK3Q882+dQBwMXcCvyi3YxAAXk0f1AgxQc8EvjDvkZt96zBDjegZOwaN6Bkjzwox92lQ9Lyxpv3jXnGusPySISH+xrgkjXxX0TRF09YG/ptz9Hyd1/JjtuxQ20a9Z01J9FwtLB1WT7Hoeal3jUP0PDj8DYqe67y3A0BVQXpuOuWiZ5SqTxM924yuY7Aker6UeQ0AykXP9TV3UfRsNWWh53TmZDpzUiUKAHyI6Hl07C2iqT7P9bytcHnGU8+AwWeiAdFcrkrszjWdqaFnK/pMyAQhE/h7tlTqOcegZ5s/Cx2iZzzfPLns4EG7D4XMzq/URCKRSCRig2JZ/mUra7brqaNiaCmRuKt1iySbwE2nYuhCNnm6/YTOOt8AYH9ffyQS6Y5F49aOZoqh5wT9PdbLWAztYFmHVMptjRgaOFdloMoKQ+N0TqlL0GaHDvcpyQkEiy8896wTta4VWabA18liqz2/uHcPADy+Y/edd39OKsBQy1u37aFHtj34eM8u0z0fTAyyZXrTw9D3GA2z+vWOMXRYFLEvzuqsyZTT0NPE0ICB8bY8hw2HmhBDd7Zt02Fo3KI7bOcYeprBZ9NhWwqdY+gpB5/Nj2GqLYVdO5+8854vSMkS62nwmfYN9vb1y5KckCXUVqDkF+kz2zeIF9/dE3uiJ66L4v7R5zaBWd/gH31u05rGEE3+fmt3/KEC0V5cG6B9g+z0xKJzgv6ELFtpN1hPMUufXRyn024AQCwaRe1G2PDU62Ji1HSjJMuSnDDVbnTFuiuDNRyQcCjE5oVZ7Qa7PpmQ//D+TabajT+8fyNS5sMDCVbTgdoNHX0GAFPtxtHEgezFU51bH3x855Md938WAGJ7/ivwe49Q7QbOoaT8pbtbG0Li04WfIN0Dz3EXhlONxdlnWZZ0oe+uWHc03r2/r4/tctzQ0sxxQM8Q4C/WTyysptJnHKTPoG8gm52P7MwC6NkpPS+99NJjjz1qiDkTQ8yZNUTzzBYovK0lhp3kiosKSTGDFgCAkAzHobgDE82cpqUJyX8MmeO8HOfRyBghucIWN++q0tUSCnwtAS2nXGK2BN3CPE0bVwoJZQDwuBdqRNXVEvKuymzuYjZ3iVk2yaAFPoDlhFhLaFRCu/kgVULj2NcSsgyaKqGheFYE7zLWEgIArSVkN6ISGmsJg8KSVIFBrwxsHlXO6pTQS7yrR5WzDIO+RwPt9fQPAUCnhF7mWXsiOziknP60//MEABPQrBKaRqFN51g2OTUGbSV6Lmumr+N4Y1w6MPIdG9Hzzb51+C36Rbkdg4ieaXNgMXoOA8AC9/LzE8cx8qwyK3F0tg0dekZ0zqJn3D5XWMbeJ3TN9Z7QSq84NfRcIyy1yrzrRM/VQr3N/nGGlVNDyumpoefbq/+MomecoFA3opgA6HLR89nM0aND/ziqnP1YYJND9PzToX+eMnoueTyXMq+9dfU/FMh5hblewY7MggE9Gxd4hNpsIQE9NfSsEqXSU6I58ANAz+j9Z21L7Fwj9JxT3kf0jKlnDtz09xcd5+gZAMpBz3ZNgwQUMtkMbIOetYL3o2z0PDu/jsOkhq2TzpGOkmJoJxg6HAqFxaa7Nm7uiveYH4xDMbQzDI39hFB4G2y7KzsMLYrh/X39LoDqgM8eQw+nxjiOc1I8CAD2tDqZkPv7+zsikS7bmwkUuHMu5/2EDjG0lEhGY/EZ2ScY1Lo2K8slyw4XS8mBcFPDi8/+4JFtDznB0IXFlhja/EjKxtBNsizbYOXJ9c4wND0dMiMYmqVLM4KhETEjcUbQ3NW9g2JoKZFEF/nUMPRMBZ9NxzmGnpHgs/kxlImhrbQb1LaBZYNs8Jn2DQb9Pg5gf18/xbUA0NgkmvYNAhRFcVFAbNo36OLgjXPDOvwKtn2DPbEoz3Gp9JjxVA3VbuhQckKWa4J+F8eZBp9pRJd9cZMkqbI4Rl00FtoNWU688Py+zvbtUiJBOwN02g06O+MxADDVbvAFyszSZ512A+ebu+K/f+/GhpBopM9+knnxR98vurF7/iu25yWdduPrO+JfunvjoWTiwe2TGweTcv2cIM9xrCIDPwKF0ufJO0pOUObO3qsBvy8cDtPgM/7O+oN7N24tvh92xmMvH3gxd/LnkG8gm52P/sy+SZgdR/Poo48aGDSYxZw1RqahS0ab+jpcAEphS/6TvwSydA1l0FQbjQyakCIGDQCqNkJz0CyD5l1+TUtBoZYwp1yizYQuzuMW5gFAThmmt9QtVHNcxXj2tMqkqr0Vdaqa1jFon2cZMmistAILBu3mgxPKkJFB01pCjzA3k7sChVrC06MHWCU0MuhKYT5bSwgA872rfO6Frw79C408B4RFALCq5iumtYQLvbe+k9o3qpwdZSLSKwObzZXQylmqhK7z3h7gFw8Of4MqoYfU0z9P76kS6qqF+iH11M/S31/ubajm63VK6GPZgRphqU0UulwltBPRs/O53tu0vKJxCjoOGnm2gtc3+9YhdMYvoBCFPj9xvKyOQQTKVNzMomcAeH1M+t6lxwGArqQHUFL0/Ma4hHFmFj0bl7Gi57mCJWe8rJy0Tz3X8kuvKid1G606Bm3mZGYwMfykBgQApoaenVzL1NCzBuqqmq8s8t6i+wiCcSh6vrn2yzbo2S8swi+mjJ5X1G6u8X7c656XYU686aYkemZnOujZnj47R88C7x+fOD9l9Gw15aDnUY1ky0LPAj93RoQbhGQIyZ+ItXZuqGWiZ13ToP7oCh9dstdozKLnj+AUICZnl3QusFqwQLpUDG3TfdfZvj0zcgUAvFVzrDA0ruGIZhPsZQwh1raNcBh7/EraNkrKRqBA31wANkYOAECa0xO380dDwfgMAPa0Gk8PIIa2upk4nZGITgzNlkRN7rAcDA0AkUjEYedhuRi6ZJKUJcsAMKNSjl8hDA0A/f39+NSbPoamP6YZwdAhMRyLRTeUk4ZGObixiJKiW6TMLzz3LGJo/BoKGJp6OcrF0Nci+Gw6JTH0zAafzY/BAYa27xvEbklZluXCA6a3r0/XN9jREcHgcywWpc5l075BnUH4gS2tg8nE6oaQad+gET0fGUigdsOInpOyPCfo5zmuIxLBByHVZUSjUZ8FL8ZfUjo1BE4sGqURXUmSKLZG7QYbo8aRZLnSHwiL+uAzADS3buKAvNC7Nyw2AYAkJ5tCYQDY0tqi027g3LNxAzYQmmo3/lKPpLtvXlyj024AwDd3xTmOW9sUYtkxajf8JNO59UG6kVw5L795bOyGtccujbDaja/viP/9jvjT+3obmIzzEz2xBza3bjUQ82gsppM+d8W6m1s3dbZvR+aOJ6jwQRKJRFjtRjQabQqJF4rvh3s3bqjMDv3v7/+Pg4NHZunzb87MvlWYHadjYNBc4U2pjkGrBQUHmDFonZ2DA+Ah/06YK3y8VyBMMpoDgQN3Yc8A+bffXkLSxYKOfC0h3cK7qoBoinqV2WLCoHlXlaIOmTHoU6o2XuGem1OuAIC3oo4QbSwzydF43ufzLONdPvZe8lYsDFTeMDz2VlEtYcUSm1rCrHKZRqGxlnAsd15XS1jpXnBh/FVaS4gz37tqRbD5vdR+1HEEhMVp5TwA3BBoBdB+kSr6iFNAWPyxwKaAoMdAi723GRl0UFhCldAAUOe9nVVC3+y/L8jXncoeHlZOf8r/QBVf/7P092sMSugVngaYISV0WaJn51MrLF3t/9LZiWMOGbSpbWN+sTEZ0TPS5wu54wBAc9BQZsfgz9IH//fV7xACpuhZJeS+OZ3zhOXvT0w+qEqiZ2TKiqZ93Ctaoee5wrJyOgbltzPS1IQbU0DPKHquEupNY8vsOEfPQWEJAJzJvDwd9LzQe0vJ9Tr0XHL9NNGz/eKy0PNI5j0AmD56NrLdMlPPF9KZY7zL92Gh52zuDAHVZcudYabRM+Tps0aIxnEVhU8XmS7L655t0DMAOEbPGtM2bLPMHj0TmO0h/HUeTA2XSDr37QcAm4QyCoKddA9KctLKyEHXyJLcvKHV+EHpwgF3jKdTQIiNbUOc7Ce0w9C4K+wnRKwmSbJo6HPriETQyFFSDB0SxWRCLlk86EQMnVdt2EpF6DKKoa2WQXkYusAWp4ShUcFhXNzZts2h0CDc1Ni5/eFwqMnh4g8MQxuVIMYjCTc1OHY9T54Bmg6GDhU/U6aJodEC3B6JxKJOMfR4OgWcS4ehCefy1syTEslwqCkcCgHH4T8RQ1MlNADcteluJLwUQxcuZYehr2nw2XRMMfS1Cz6bH4M1hrYJPouiiOYl2jqI09rSgn2DGHzGvkEMPo+NjYXD4Wg0KssyDT4DwOe2tAIAaxBGEtrQFKINhDi0b9BIn7+1Kw4Apn2DPbHo5tYWU44cjUZlSTLyYgDoisYkWU6lx3Sv3jTHPRnRlWU8Q9llEaPuisaaWzYAQKTdRLsRDjV1tm+nG6VEIpmQ5lb5m0KiMfg8vzqAgo4/f2jyHmC1G3TjN3fGAeDHgwmjduP3793Icdxfby26D1G78eKPvs/SZyk5iPSZDT4DwNd3xFEbjf/ExPoTPbHDyYSOFO+Mx5IJub/3OR19nkx8y0l8/GCifHxsjKXPzc3Nkiw/8/x+docLqgO/c/unHvnqnwGAdGgWQP8GzSyAnp0ypsCgVQv5BjCqDbBYAIWItI5Ba8w7VRcyaAIKsxOekAxTS8hznJcQBRk0x3kAFJdLz6CxlhBQwYkXc/kFvjanXGKV0LyrihAtm5us+3ML1R73wvHsqSIltDDH5fKOZSaV0Dzv83mXZSbOZyYmLyvwgZrAKlpL6PPUjU2cdfPBat+NWeWykUGP5SadGzgLg2t1tYQ+YX6lMN/jnvv61e8YawlNldABYdFPh/5ZV0v4scCmc5mjqISms9h728cDm89mjrK1hPjfW+kfjSqWSmgAOJkZXOZtWOppeDX9tE4JjS4OwjwYbBi0qY5jyqJn51MrLF3t/2JGVWx0HBdzJ2xEz3SMwWe6HQAQRhs7Bhe5l1t2DBK4yRe+2RdG9Hwhd4JFz5+sDAPAfPfy93PHaUq6JHrGyLMVen4nIz8/FNeArPSGSqLnQ6l/V4imEO1W/xfs0XONsPSKegpmAj07ucjUUs8obv4VQc8XM6+mlfMjyplfBfR8MXVUJRMA4BaqS6Ln94cTM556BoDMxIXh9M8JUQOVJW6dE/SsamMwJfQsCPNdxWccDXt2hJ4J5JyjZ9Q926aeET2nS6JnACg0DZZEzxpjhcbhDMucpJ4JADz66KM2hzQ7v1IjG8QOYQe4NiyK4+kUAGeTUO7f39u//3lbI0fTC717O9u3d8V7SoqhJVm2Z8fl9BPaxZyxn1CW5eaWDbKtkaMkhk7IMttPaMWXnfcTRiKRsbExwPf2pcTQYnidJCecI2PTxDrFMSyGtpdN6zC0nLBG22V6dV/Y90zn9m3lYuiuHZOuDyk5sK5J/6fI1DA0ADg55s7tD2eunLfH0Gzf40xhaN3MlJTDCYaePCoGQ3d2tI2PDhHO1dW9Iyw25T8G4QxDI3q2x9Bd3TtNz3Nc69E/hhMDL+7d88HQ58ljMGBo++CzLMvRaJQQEMWwLMuUQWPwubWlhQ0+I6oGgGg0KklSQ0hk+wYbmkK68rrBZAI10NhAiNtt+ga/tSv+yuFkSBSNfYOMdiP/HkeWZIw/Nzc3AyH9ffuNvLjSHwCigWFMIaksSbK1dgMfzyZUOtYty4nMyBWWPuePOR770fP7jfR5R7fJdla7QTei3LmhKfRvzzzPLkbtxtqQiPT5UDJB2TFqN8LMK1vXzifuvOfzf7OtXafduG5elU4bPZiUH9jSynMcS4oB4N6NGwaTclgMsR+j0SW+u+I9ohim0mfmfotW+nxi8fMRpc//+3v/A+kzABwcPDIrgP7NmVkAPTvlzaOPPvrSSy85UG0QQzKavqGl/1eZi/CF9TQ6XQGgUQbN5d8Jq1YMOn9NLj8BVdVGmC2VLs6naSl6QY6rEPhaWkso8EFVGxH4IAcVLIOmtYQAMFHwn+YZdHEtIQBoREmNv8duMdYSUgZ9JV0k05jjXxXwrGBrCcGghK4U5o8rF+d6b6oPrj8+2s/qOGgtYUo5d57B0Au9t5gqoQGAKqEnj7aghGZrCZd4VweFJW+ln2UYdJESut6z5mT20MnMYLVQ/yn/A0PqKVMlNI1CD1knnXVK6BkRPTuf671NpkpotFWg69l4KbZj0Gh8BoAF7hWvjx3UgGhAwlV/cH7iuLFj8Kepg9Ydg+EF7uUA8PqY9PqY9Fr6IIuecS7mTlyYOIEdg07Qs+nNfycjI3pWCPmd6q01vB1kpLaN5Z6G67yNTlLPQ8qpq8rJGUTPVXzdsHLaeJFy0fOZzBFUzQyrp1GAXvIi9ujZLyxin1YwJfT8+tXvKDAxp/KTPncJLAsO0LNXmDteOMVVLno+PfSCSiYqK5b4PUvdfLXNYoqe5wRvs0HPbj4I00DPFe65UMDHxnGeegaADws94/lRQkg56Nk/ffRMQCmgZ/uaQYqebbCy5kAbnV/22GOPEjKbgP51GkmWTVGmczG0bE05jZFYfONavMYRhg6LoUhHWzQatY9mO+0ntAV8dFcAIMuSbMGXdRjadA0w7M9Z8eAkhk5YgONIJOJEDI19dDoph+Xt3d8LHIe40GoZTObf7U48sPuMdOjTjiYry8HQ4VBjuRiaAOeZu5jF0BaLy8DQuPNHtj3U1b1rpjB00fppYGibZVPA0LI8+SGAaWJoAOjsaAuLIQIc6nccYmgMNdtjaFyMro+Sd9eMD4pEwqEm4LjHe3Y7rCic2Sl0bLruvOcLVmvYyHMsFiUAqH4GACTOGHzuiESQKo6NjUUikbzpAoC2/+1mQDNuweAzADy9t7eBsT2gdoPtG6TzrV3xmxZXewQOALa3FwWcsW+QN+ibZVmSJMnn84VF0ZQXy7LU3/tcWAyxyW5ZloyQFEeSZUmWjTHqPMgGwO2SLFMOSyGs/trjPU0h8eJwiu0hBIB7Nm4AANyeTMgTGrmjMWSl3UDKfHggYdz+8kDilxdHkD4fTsoNIRGVzTrtBgB07XxCEXyiKK5pmmTHqN1gTSlP9MQB4IHNraHivDbmlPGDFDT3bZr4BoBYLMpKnwGgKxqNRqP4U6B3xc54rDI7lDv583UN+Xdqjz/5DwdnE9C/STMLoGen7Fm/fn2BQdMxMmgo3sIyaK7wNhgYBg2Fd7zsm1U3w6BdABoH7mIGDRznJUQjRCWECjq8AC5VG6G1hIgDFPWqFYPGQQY9nj2haZnCBb0e90KXqwgTVAhzvBV1Y9mTVAld4Z6Hi4dSr2IhIQ5VQrv5IDVyVPtuFFw+nRIaADLKZWMtYVXlDToGTWsJdUroFcG7fO6FAKCLPN8Q2KBTQgeExQFhsV9Y/E4xgwaAlYHNBABrCdHIscS7+hOBLWeyR0yV0ABQ71kzpJ5+Lf00ZdCmSugaYSlVQltZoVEJPbOiZ+dzvbdptf9Lr44dQB0HjTw77xikXzww9xEAQPRMofCey11g1jH4u7VftuoYBIDXx6SXhr+DHYPhqj9g0fOb49IPr3TVCks1IMaOQSgHPSO//p3qrdd7GwGgVlh62aBsBkPHoBMRyrHMwLHMgAoaADhEz8PK6XJTz6cyh6eAno8M/wPhCOFIQFiCFg77cZJ6DgiL6RNwyuj5htr7ar2ftF98KfPaNU09I3peUNXo9yytEKoAoEKoYj1FdHTo2X7POXV0OujZapyj55xydSz7SwD4UNCzpo0TUEnRbz2TuWboWbBVOVPdsxP0zBVqhC2XIXqezT7/2s1LL70U7+62QpmOxdB2fgZWDG11GPnuwRL9hLifkA0TN2JombF8srerv69Ptk1VhwufVTfiNnYohi7ZT/j8/n6O4+yLB1kMbbUGisXQTtLQiKHtkTGKUxBDl5A453EnZ8+1gQaoOc5bMw+VvpYrbTG0lBgIhxqZxZMY2r7MEArwFzH04z27S3kzJjF0147d9nvOJ0+njaGt9TJlY+hIR0dClp08FB1iaACY2TS0JCfyaehrgKGlRPKDx9D5Q933o87tW1/Y90xn27bHdzzhxBU+syMlB+yvtNA6GO7oiAAA7Rvs7euDQt8gYmiskqPB52g0L4CORqMAUGcAzU/0xJ7oies00IMJ+ehAwqpvEIPPrLuDTk8sOpCQTbUbsizjh2+M9JkW5enE97FodENLiw6S4nRFo7g3Y4xaZqg0pc9WELYr3oOPZCvthjH4bNRuQIEy/8229jXFOXHUbvyvH/XSLV/fmWfHRu3Gnfd8XhF8HZGILMvU+/z1HfHDAwnjvT2YkHW5bMwpb2/vYHUoXbHuaLwbpc/srZYSCSxyZO9S0NTx0aGwGIrGu7e2dwwkZJQ+0+AzADz+5D/83ZP/MEuff6NmFkDPzlQGGfT69esZguyEQbsK/2Sj0zqhhwqQY67KDQAkv4UnoHBIpYvszxUAHEz6OkwYNADwripVS1EXBwAIfC0BLadc4l1VNA3tFuZlc+9TBg0AHvfCnHIlM3GG2VWJWkK6ERk020kIAD5PnY5BB7zLAcDvXaZj0F5h7sLg2kvjr13OvFHpXjBWINHIoI1K6AWVq95L7Tcw6NaUcoYqoQPCkpRybpH31o8FNr2T2ncu82N2J6iEPps5qq8lNFNCj6hnRtQzqIR+Lf20lRJ6hadhSDl1nafor3wrHcexbHK1/0szKHp2PqjjeH3soL1tw7RjkEXPT19+HNEzFCgwEEBfc7kdgyohn/CGP1kZNqJnheTJsmlq2wl6xsizQsj13sbrbYPM9h2DpnMsM/Bfw7tU0FTQHKozTmYGT2YGT2QHS6LnaqF+RD0DBfSsgTYF9Hxrzf+z2HvbYu9tJS/yAQg3jOjZK8wby10wLkb0rEDOIXrOKJfHlUtTQ8/2i8tCz+PZc1dGfwygedwLPkT0rJKcW1hof+0l0TPHufFc5hTQM8d57ZsGrxl6to8qO0HPOKWV0LPo+dd68K+7r/3d39lU+TkUQ0ciEXsxdKSjnb5XN1/jRAyNgmlZKhlhxn5CS77sTAyNy8Lh8IaWlpi1fFkUw9hPWB3w2fcTDqfGOI6zV20ghgYAn88XLWV8tsLQVG9KVwLnKplcxrvXUZdgpMOJGBpo7eS0MbRhceML+54BjvPOWeQQQ4dDjXfe/TkHZLnhxWd/AACeeXUfGIa2XF8OhpZl+bnevqHRNBAyfQxNA7MzKOUAAJqGngKGRuj8K4KhpUTSWzMPgLyw7xl6giR/duSDxdBdO0rXYxZaByUMPuNjQxRFWZLjsSgC31g0KssS4mbMGgPkBdC4k8GEbOwbhGINNAA80RMDANO+QQz/egTu6b29dJ/o30jK8pbWFp7j9vf16/TNsiwF/JbB50p/gC3Ki8a7EV5j36BOuwEFR4RRPwUF7QYr95AkWQyFrLQbXfEeKZE0gm9T7cbOeAwAjNoNAPj9eze6OO4/nu0FAJpc/uau+MqF1VS7wc7vNq7OXjxl1G40rfttbGtc2xQCgENJGbUb9N7GeaInNpiQLwynGpm89s54bDApXxlNI31OyHJYNL/hXfEeSU6ERZE+MCRJam5uBk1lhdE747F7Nm6g0mecx5/8h77vPf2Xqz85C6B/o2YWQM/OFIdh0MYSQitDNGd4yBkvgstyzKV4AI4wVBrfchOSYWsJAdyaNkxIQdnBeTnOTxm0i/MRovCuKkKyLIPGWsIiZQfncQvzcsqQLu7HcRWZiTNqQTDNMmjB5UMjB9YSjmfPsUporCUcmzhbVEvoqTPWEnqEmrmBW66OvzWceWfy4sLchcG1Y7nzV8ZfZ4+nPrje4557fPQFVgkNAH5hEa0lpHNDoDUgLPpF6rmUci4gLMbgc0BY/JmaPx5VzhgZ9McDmwGA1XF8IrDFqIQmoI0op6GghH4t/TSrhAaAVXkvx6kaYelV9VQtvxQ7CWuEpbgRzOZo+j9+mfkQPjSHhmL7NVYdg+urvgwG9IxWc5RmvDkuXVJOnM8eZ20bP0sftO8Y/GRlmC051KFn3bEhesaOQSfoGSPPRvRcKyy9UkhATwc9N1X/9VLvGuTI1UK9qTQDB9Ezukpu9t/nBFiPKKcpeq7z3j4F9Ey3B4XFo8UfBcBBK3pZ6Bmfd9c09Yzoucb78ZLoeSjzzvGr+1SSBYAPHT1rRKn2/xZfqr7PCXrG3tepoWc8AI6roD207DhPPRMy8WGhZwAVQP1g0TNtaDD+BmeXzaLnj86sX7+eEOJ2u6067nS41nQnTsTQkfa2/t7npIQlYnZi5ICCYFqWpZKlgmFRtGHr9hiaOqBRvsxxEDCQOHYQvdmLoQGgvSNSUgyN49z47CQNXUCZrpLImIpTAKCEu8NZPyEwGLokGTRiaCk5EG4y/3hc5/atmasXHGJoAHhx756DyUNOyHLntoeyl86AGYaWkgPrQkUf8JoOhqbnCezWl5mGbuuIzBSG7ohE0A48fQwdDothMcTKXsrF0PjI+VXA0F3dO+7adHdn29bO7VuN32UxtBMDzLSOZMeux3vMH8y0b7CjI9LREZFlOSSGASAei2ICWpZl1G7IkowFfXi+LRqNtrS0UAE0ADQ3N8uybNo3qMvVYiD6dgvtxh/ev1EURXqRwaSMtgfsGwyLYWPwGVPMEcN2QF5MtPHRIZZ7AoAsyajdMA0+y5LU39cHABEGZ+u0G5O7kuVovNtKu0GAQ/osyQlqnGC1G3RxMiEDgGnweeXC6oaQiL7mQ0n5jkYRDNoNnMNJ+ffuaT2UTBi1GwcGj46mx/DekyV5bZP49R3xL929UZ9MT8r1c4KDyQR7bJhTdnGAJz4BAH8xGX0jkpz0Vs1Byzb9iXRFo80tLew5AACQ5ISgZFjpMwD87uf/+1X5pe9uCR8+e2lWAP0bNbMAenamNS+99NL69essYs50C5QyRGPwWSss4AqJ5iIGzXJqI4PGZYSkGQYtcJxf1cbYWkJTBu1yBVRthCIJZNCaNk4ZtMDXgIFBA4C3oo4QLZu7RLWkWEuYU0Z0tYQAQGsJcXS1hAHPitHMMY9QMy9wy1juIsugAWBhcG1N5Uodg57rvcnjnnt8tJ8yaJ+wCABurv2yVS0h5qDZiPTHApsIEF0tYUBYsti7mq0lBAslNABQJfTN/vuH1NNUCX08O0iV0EPKqRq+/qp6CjE0BqJtlNDvZZMfGIP+ZSaJ6Pm9rMk10jpB+47B18cPUvSMkWcggMllpMYEyI2V4oKK5cDYNggB2jEIBvTMHoYNep4rLKORZ0XTSnYMsrYNm5k+ema/Vc3XD5v9uKltQwNCabX9nMocfj29BwCmj55xAsISHYDGR74Galno+dWhf1G4nE9YgE9D+ymJniuF+WNKPgE9ZfS8pOazQe919osdomc3Xz2hDk8ZPWPqWeD97GsvO85TzwAwZfRsNc7Rs6aNqeoQx7lL1AyS3DVKPRd+G1osm0n0DAX0DLZXOoueP7KDnR/JZNKKY1IxtCTL0xBDh/p7n4t0tHV1l+oeLCGGRsuwnRgap7+vb0b6CSORSF9fHxpFrYwcAEDF0ABghaFZMbQVhsbwKTIge7E1FGNoK9qO0xmJOBRD4wHYJ8ShFIbWxag727d3trd1de8sC0OXjgkXMLQ9/JUSA0iKZwRDmxxz+Ri6c/vD0WjU6sSPfn0pJY5upomhKa+EGcXQrOylXAzd2bats20bi6GhoGA2vWnXAkPjPgFI5uoFU/pMBzF05uoFwrmuBYbu2rELxTJWC2jfIADIstTb14c/XPxRxmNRURRN+wYB8gJo/CdGoRsYZPmEQQMNhUY7juMaQ+KfP2RCnz0CZ6XdwL5BU/qMKWYovCTiYC0tEE2HngFAkhNGNzFOc3MzQB6yF92TxdoNdrskyzr7BBS0GwQ4vHZKn620G5gFTiZkI33+xs7u/3j2edoWeCiZWNMY+uauuE67AQBf3xn/0j0bCYFwcZMqajd6+yYN1wlZOpSUDw/of0BP9MQe2Nz64PZ2AKBHiMcWEkVWu4EOKJ1vpCvec9fGzbqTLl3RqCwd7O99jv1BdMW61629/X9//3+w0mf3st/6tJL6i9U3AcDLZy/OJqB/o2YWQM/OdOell1567LFHzRCzVQ4aCm9lTak0NUTzAArDl3kAoZDGwssIHLgpg+Y4HvJK6DQVdHCc4HL5NTJBIEcz1LyrCoimqFfp0SCbyCmXWCW0W5hHiMbWEgp8VYWwIDNxhnYSQqGWEADYWkKfd5mullDgA96KhfYMms68wC0qyRlrCQGAKqFxdLWEfmFhWjkPACuCd2mc9l6q6HcVrSWE4lnkvdUvLH5l6J90SujF3tVUCY2DSui30s9SJfQSz+0jyunX0z8cUc5UCXU3++8zVUIv9zQczw6iEvqqeuo6T+NV9ZS9Evq9bPJo+j+vWkPq6Q+i5/eySRv0TIlzyY5BKKBnio8per5nTuTGyvA8YflrxbYNRM/YMWiKnt8cl+xTz+9k5MvKyQsTx/G700fPv8wMYBvkTKFnq9GJnh2iZyp6BoDpo2fjsOh5ofeWstDzjbVfmuf9lM+9YEw5b7P+g0k9s+i5QqjJKleNi8tKPefU4QlleMro2Waco+eJ3OXU+DuqNuZxL/lQ0LOiXCRE4/kSDYeaNq5qY7boWYEPR7jBlYOe8Zcvu4wY1zz22KMvvfTSLHr+qA41ctiLocOiKMvy9MTQeQx918bNd7VuMT0YVgxtdcAUQze3bLA0hEzGnKfdT1jYVUkxdEckIoqifRraCYZ2fvx0JQBU+nzRaNRKLsyKoW0wtCzLkUjEiagEyklDF84ulIGhw6Gmuzbf09Wz02YlAHRu3+q8n5BiaCeVgxRD4+KDyUEbl3RZGFpKDvT19WHUvSwMbfoTkeR8npQdiqHtg/lGDJ2QJTFctLdpYujmlg2UIU4ZQ3d179BhaPyvs22baTkhzCiGxuBzONRoj551gydIKIaeES+HTfAZCtlnlKhg32BIDLe2tITEcEck0trSDAC9fX2yLNv3DUajUUnKSzlwC0ZowdA3iHCzMSQ+bODLtG/QiJ6f6IknZNnYNwgAaKOmKWZZksKFR2NXNNbcskEXuc1/K9YdFkUr7YbIUGlJlvEV0qjdoNcSjcXCoZCVdoNeOwJoU+0GAOyMx5IJeXt7h1Hu7OK4Y5dG1jYVXe/KhdUcx+m0G1/fGSeEvPv+8Jqm0Lqmtfkj2fmEZ/5S1G6wi2VZbgyJxh/QYFJvgkbtxr7eviL6HIsmZPmF5/cZtRv0pIuUSIbDYZQ+swYSSU5UBmui8W6j9Pm7W8Kz9Pk3dmYB9OzMwDz66KNmDJqztXPgmGJrUtjCM2+DcSc8gRyZ1D27OHATMkHIBAAPoALwHOcnRGEl0S6XH8DF+qBdrkoOBLaW0OUKcJxbI+PGWsJs7n3e5UErtMvlqRAWqGpax6Ddwpyx7EmWQXvc81wuL1VCC3xAUdOByhs00IbH3mLvgmrfjRqZmFCHskwtYdB7nVsI6pTQNZUrCWg6Bl0pzF9Z+wCtJfQLizAQPd+7yude+F6qV6eEXlXzlYCwiK0lBACjEjooLE4pZ1EJfXToH1kl9OqaPxlVz1AGXe+5o85z++vpPacyhwHASgldIyylSuhj2QF0cQBALW+Joa8qJ4+m/+NaMGgaeTZFz7XCsvnu5WV3DDK2DWnkuwQIRc8A8Na4lBj9NwC9beP1MQk7Bo3oWRr5rkI0G/T8/FBcI+QGT9McYZnpzcSOQefo+ZX0f6LUYrmndFsgjkP0XCXUDat5BUe5HYNQjJ6ROweFJZjEt5qy0HNQWHI2c/Tt1F7n6Pn9zE906Nl+/cXMq2Wh56uZNwHgw00946Szpy6MDGgkBwDTRM8C71fUyQR0uehZI2qlZ7nA17AfatGNE/TMcRWaNjE19IynG9nfJsUrxxX1MgHV5fLbpJ4B4NqgZxs7MxR+mXJTQs/GNdpjjz362GOPPfroo7PvHD7ygxj6t3/nd2zkFf19+/v79jsUQzdvaDXdSVgMjY8OiWLIXgzd2b5dkhM2Zo+wKI6nRkr0EzrG0LSf0HQBOMbQwKShneRPe+JRm35C5xgahSGiKCI8KrVDB2loZ75suGYYWkokM0OXADhv7QJ7DM32Exrhr44a50nx9ocf3/GEQwyN/YRScrAkQ6QY+q7N9zlJQ+NPDRxjaIc/ETptHZG2djvVBg6LoROyLEsme54yhhZFUSciLwtDU/RsiqHxi2uKobu6dzgJPlsNxdDT1EOXDD4DgCzLhIAohmVZbs8rfSXaN4gYOh6NAoBp3yAwwWcq5XhwezuN0Bq1G4eSiT379iN9HkjIdxRgK/YN6qK49FKDFn2DsWg0IUtsx10RLzbTbiD6lM3M9ajdYKm0JElhUbTSbgC2GnIcmjqKdsVoNybv7URiR3cMzLQb92zcwHGwt7evKTT5jk+n3aDz9R3xtU2h//jR8zr6/Hv3tBJCMD19OJkINzZAQbvRW3zvxaLRoN/XEBKNyXQAYL3bjSGRajeaGPK+pbWF4zgACIuTz6O7WrcA0V7Y90z+3ksMAEClz6eTPnfFuptbNz2y9W/CBUQOBenz239y/x1L5uOWP9grzf4Z+Zs2swB6dmZmGAZN8TGYqTY022S0q3ApKOxEx6ABt+gYNIBKyARAvhuK47w6Bs1xXo7zFLmeXZUuzssyaI6r4PkaKwY9KehweSrcegbNuyp5V+VY9qSulpAyaIH3I4nGWsJLo0fYZkKsJZxQ9AzapJbQPYfWEjL3CdQH1yugHB99we9eSAOY872r5lWuMiqhA8Li85kf66LQAWHxxwKbqBKaeglQCf12aq9OCQ0ceSv9oyphyensy1VC3Sf9946op5FB65TQVXz9q+mnh5RTn/F/fkg9jV9QJfRV9RSgo+MDUULb2DZwbvA0zeGXXsydmO9ebt8xOF9YznYM6mwbN1aGb6wMX8qdeGtc+tGVKADcXTv5NwGNPKuEWHUMfswbMg01U/R8Z/W2673mf1gjesaOQSfo+f8M79RAW+ZZu9zbsNxbmj4fywxMP/Xs5CJG9IwT5OtGzMTNUH7q+Vzmx6PKWQ3UBd5VztGzwuXKQs8KTDhHz+9d/aFKch5hjleYO3307BFqsoUXq6mh59rALd6KDzP1jOjZLVTbrHSeeiZkQtVGpoaerVdS9FxdUrgBAA7Q80T56NmGFysFibPdjXCIngHIY489imO7w9n5SM2jjz5aQgydp40d9hh6PJ0SxXBloCpq2U9YQgwNAJGO9v79z8uybIM1O/Nr7MTQjG2jtBhakuWS4o5IJLKhpWVDS7PpGgAQxfD+vn7sJyyJoTmOmxP0O8fQVstwnIihp4ah7TXELIYOh0K2K8vA0J1t2yiGtpdy2GNo/eJyMDTtJzyYGHDCEMNNjdnL59Y1NVhhaCkxwNoAKIa2/6nld244MWCMP7MTEsXnevucY+iQKMqy1GpximVqGJqKyKeAofFxosPQANDZ3oaPh2uHobu6d2Df4NTQMzud27dOp6XQPvgMBU8FDT7TvsHevn5ZkhFDF/oGZcTNlDXTvkGE0awDGgCe6ImDWd9g/Zwgx3F79u3HRruBhHx7gT7TvsGGJv0j84EtrW4XBwC6vkEAwFA2K8oo4sVm2g1Eny88vw+Y+DYO1W7oLiLJspV2o9IfwKx0NBqlKWCddoO9aklObGvrMNVuhERxW3sEAHri0b/c2g5m2g2cL93d+vc74n+9tX0Nc199fWf8+vlVdzROmqMPDyTCTQ1dO59A7QZ778Wi0Xgs2hQSG5omX3XxnAGr6h5MygCwoDqg024kZXlO0B8Sw6Io0tdtvNXhUEORdqNnJwBE2tt09FmWDmQvnOjc+lUpeWhdw+0HB49Q6TNd9tTRNwBg9o/J37SZBdCzM2NjYND00aWLOeM/2TU6Ks0ZiXNhC6aq3cUMGpBBA1tUyHkJ0bRi3yghOVpLCAAc5+ZdVYp6VdXSLi4Pr3m+hoCaUyY5ssAH3cI8AFDUSX5d4V5AiJqZyGcweVelqo37vR/DWkK6zOOe5/MsS42/p6hpBNBQqCUcHntLV0vo5oOXUz8ZzRybvHhxLaFHmJvJXaG1hDoGjUroC+Ovshv9wsIVwWadEtovLAoIiwLCop8O/bMuH40MGpXQQWFJoa5wyccDm0eVs6ZKaPwnZdBGJfQyb8On/A8AAKJnADieHUQG7VwJfTT9n1bfdTgl0TMA3OBpwlg0rf6z6Rh8Y0wyoue8bcO9/K1x6a1x6a1xGQDuro18whsGgHnCcp1twxQ9Y+R5bnGu+bJy0hQ91wrLaGcgMLYNhRDTjsHi+ySPnsPVDy73NlQXzgHUCPV4YsA4iJ5V0MpCzyPKmWHl9IygZ6sZVc5MAT2/MvRPBNRF3lsAICCUYKwsep7n/ZQpevYJC9MFbw+Lnmu9n3SOnpfVbKj2rvQKc9iTT8b5AFLPM46eAeBDRM+qlla1NAeCy+X/UNAzISrHWZqjgUHPAJopeubABUAIKCSvqHKOnu2X2aNn+skkMqt7/g2f0mJoUezv2y+Kok36GMXQACAnEpJZQs2ZGFrMl+PF4tZmD70Y2nQZUjBZkmzSpuFwOCyKHaUSx+FwGKmNk35CF0DJfsLh1BjHcVtaW6zWAEMefT5f1PpKnfcTshjaKmbOrnTShhcWxUikQ0okbOLthZVlY+iunp13bb73w8LQAPDisz94ZNuDj/fscsIQO7c9bI+hdROJRJz81PJHzmDohCwnSqWhnWPohCw/19u3vT0Si0ZnBEPTVs8pYGgU9dDHCcXQAICEegoYGlPV9ncXTDv4bDpsS6FDDC0lB+7ccr8NfQ7n0XMY+wYx+Ez7BoN+HxQwdNDvw7PTGG3WsWYkttQBDQDRaFSWZau+wYfaOqy0G2zfIHup+jnBsCgi62S/hdoNU32zJMuyLOlcwzhdsW4OSGbkChvaBTPtBp1oNBrp6DDVbgDHmRg8DNoNetXReLep9DmZkPc+34f0GQCSCRnlzkbtxtd3xK+bV9UQEnUujq/vjB9KyO++P6wzR3vmL1UEny42HotGNUIuj6SBsXWbqrrxRML29g6ddmNza0tbRwTPWCB274r3dMV7Xtj3Ix19lhJJXQK9uXWTS8m8+Mz3AEAaOLRu7e2PP/kPv/uF/06lzzhPHX3jtcBCQnQfjp+dj/7MAujZmcnBdya2MWfOIJSksg72BYgYGDQByBU0HQDgBgDCEmdwA/DFDLoCgNM0WksoAAgAFToGLfBzCclqJEc3ulw+4ASWQbs4D++qUtRhlkELfBVbS4gMGmsJxzKTQJDnfUHfjTll8oIAIPCBQOUNRiW0m6/K5K7oGDStJfQKcymQWhhcq8HE6dED7G7nem+aU3nzhfFXaS0h5Bn0XSyDDgiLU8p5qoTW6Tg+FtjkFxYjgx4t4OmAsGRlYPOoctaohAaAM5mXccsn/fdW8UtMldDLPGuPZwd/mv7+Cm9jDV9/YHh3WUroq8rJqSmh7TsGb/A00S+QPuMXF3MnFrhXgG3HYLjqD4zoGQBo5BkAmoK/j+gZAN7OSJeUE+cnjpfVMQiFOPPbGdk09VwrLL2snASD6Lks9Kz7brWw1Hg+4Fhm4JX09xA9O7Q2A8CpzOHk8Nc10ADgGqHnM5kjZzJHzmSPTAE9O+8YLIme2Zkmei55PGWh56wyNJJ5b/roGctU2ZlC6hkAKj1LZxA955SrztEzEA2IZlMeCNcYPXOcGwBM//TSoWer4DPJZ5DVUrpnrfBbdZrouXC1ALPoeXZwnImhO8bTKXsxdFgUIx3t0Xh3c+ummcLQpgfMYmgAsEJ4/f399v2EkixjflkUwy0tLTaol/YTBvw+5HSyJBuTfR2RCBo5SmLokBiWbfPXUGDfAGCKoSnsKxdDUywoyQldVRcd6ssu6X9AywqNstquLMLQRd8yYMS8EbhMDA0AM56GniaGFm093WVhaDEcDolidzy6qbVl+hg6IUuYp8aVM4KhofjJyGJoekqJxdD4QoEYmr4sQDGGRkUvkrJyMTQUos1WGHoGg8+m4xxDd+0o/RiTZBkfTgTA2DfY3hHB4HM8Fu3oiCC+1LFmjEJTKQcOEmqd1QEAsG/w3NWUjj7v7okBgFXf4BM9sZcHEjrpMA7tGzTnxe1tOvEFAHTFuiuDNRwQmlOWEvlXLTyzaCWDlmRZF3zOtxpyHLtekuWw2GSq3cBrB4D+3qKPFxdpN4qf3SsXVrs4zqjd+Psd8a9ub1/bJAIQGn9G6fO/PfM8u/ibu+IAoNNuyLIU9Ps0QhB2JxMy5s2pdkNvgk7IV0bTOvqcTMjDqbF2ZmNXvAeIlrl6IRyafHd51+Z7dR+twx/BurWrO7d+Fbc8vvNJAGClzzh/sFeau+kLL730EszOb97MAujZmeHBdyaFd79Ilk0ZNFes2nAxBYNc4eVMMSSjc0w+mgfgihm0AAC0lhAKDJqQNCEKxwkACscJHOdXtRHWIsq7qkjBsJG/MpcPOCGbO6Mx23lXUNXGdQyadwWRQbtclUiisZZwLHNSV0vIu3y6WkIjg64Qqmr8N+kYNDC1hCyDrvZ+3OOueffq07paQgB4f/wVVELTobWEGHkOCItSyrmAsPiGwIaUcsaohF7ovXXUoDhYGdgcEJa8ndrLKqGXeFefzr5MGXSdN6+EHlHOAKuEVk8v86yt4ut+mv5+jbD0M/7PWymhAaDWTGpcrhL6l5nk0fR/WomeET1T4oxr6Bc4F3LHnXcMAoOeMfKM6PmScuLtjPTs1ahKyEpviGarAeBi7kRJ9Hwo9e8aIRohq/1ftBJu1ArLHIqeoRR6Nh1q26j33OG8MJCi5zXVf1HnvaNKqBuxtTaPKGeco+cqYQmKyM9kjhCOEI6sDGyeMnr2C4vYjwKwQ0XPDtHzmPJ+Wjn/K4KeRzPHzg695OYDbr76QxduaETxez/G28JfJ+iZd3lUkqHoWSW5stAz0mdqXmLHOXrmOMExek4Xo2erlaXRMwAUUs+cA/SsWVihCbMMf1GWNkfPoufZMQ4rhrZKFjsSQyM+jnc3t24yvSLE0KIYumvjZitkifsRRdFeDN2/vxcAnNg27GPO+RY1Yo562V319fWV7CekYmh7DB2JRDojkZgz4zOUkjbogKbVMmCwIFize7rSXkMsSbIYCgETZbWxrOSPs4ChS6ZTsZ/QOYYOhxqB45wETu0xtJQcDDc1MIunjqG7enbZLy4LQ8uStL09sre3b3t7ZKYwtG7ldDB0eyQSFsVoNKr72AE+3nQSGMTQ7Pkq3dkpAHihd29YDEmJRAE9zzCGvhbBZ9MpiaGttBuY3sXwMn4tyzL+yse+QTEsYt/gaHoMv+YAUumxjsL5AJY1G/sGJUny+XyEwP5iFTJGmE37Bnf1xAYSsmnwGdsL3S6OktmeeBRBqixLqN0woudJXmwWfJblBNuVJ8nJsChKkoQvcaZ7kyQJXzCLt8eaWzaYZqWttBuVwRoA6Oxoi8a7afxZp92gsyMeBYC/2dZupM8cBycvj3512+TdhdoNKn2mg+6O3r4+nXajtaVle3tHnj7LckNIxB+QLrFOTdDsJGUZpc/P759UlCRk+a6Nm4FouuCzt3ZBvvOzAOIxAP7I1r+h9Bnn00qKlT4/dfSNT/zjntb/+89n/6r8jZ1ZAD07Mz/r168nhKxfv84sB81uIWbJaK3ApvFdsWpg0GxQGhl0ltkPD6DqGDTHeQlJE5IBEJBEu1zVGpnQMWgX51PVIbrF5fLxfE1OuYQMWuCDqjbqFuYSok3kLjDLPBXCgszEmVxxLaHL5dXVEvK8T1FTtJYQh60l9Hnq0tnTAFDjv0kjyqVUkbgZawkzyuUs86n8au/HFwbXnh49wOo4KoX5cytvprWEdAq1hPsRPaeV8wAQEBbfEGhNKWdMldDnMkdpLSHOYu9ti7236ZTQSzy3a0DeTOfrCFDHcSp7iCqhg3zdsHJ6WD29zNuADBoArJTQNcLSq8pJUwYNzpTQNPJ8lXFTsGMkzvSLO6u34ZoLueOfrAybdgy+OS4ZOwZZ9Ix7eDsjvZ2R3hyXVEJaa9pXesU5wvKLuRMAgDt5Y/xgyY7B6zxN13ubrNAz3lICuKxE5Lks9Fwj1IOhY7BaqLe/FBTQM5YZInrG7VV83bBy2uYiJ7ODzlPPI8rZUeUsomd8TJa8yBRSz2zHYEn0fCnz2ltX/0MFBQBmBD17hLkZxuczBfSsEWV+1Vqfp8RPzSF6dvMBmAZ6rhDm2Kx0nnpWtaymjVP0bEOfTdGz6ZSTes6o6lVCFI6zqxkkJENIhhCV4/iS6LnQNFgCPRd0z5Zr8AALv2ftPc5UaeWyFkPPoufZKT0ohn7sscdKdQ+WEEPn8XHhs/bGcSKG7nQghgaAkt1uzjH0/r4+yToxze4KAGRZmiaGxr05xNBO+gkp0CzZdIcgxrG7w1EbXmdHm328fXK3YhNbPWe30jGGlhIDZel3P4A0tJQYkGXZJlmf33mZaegmUfzVxNAA0N/fP272fDR1kevOVxkxtCQnkT8y6HkGMPS1Dj6bjimGtu8bxHsJHz9iOAwAWDOYkCX8ESCGRtzc2tIiimEEvrFoNBab1G7o+gZx59FotKWlBbPSsiRTrbCub5CdXT2x3d0xADANPj+wuVWnfcCJRaMbWlpMtRtd0agsHRxPjYBhmls3cUBe6N2r025Istzc0mKKkqkMGo3SzLVYaDeiUXy8GemznEgYtxu1Gzg74tGeeEwnfT6UlK+bV8VxQNHzkz3xv97ajtqNf3vmeZY+Hx5I/P69G4MVfNhgLJEk6fJImr3GwYT8RE9cVxRJTdCNIZGa4lG7ERLDbPAZjeGdbVt19Lmre2f+lbZ7R6S9DYqlz/k7f+DQnfd+QUoe0mk3vnn0zZdeemn2D8vf5JkF0LNzreall15av349Q5lNVRtgzaC1wha1uMmQL97CAwgEcswWgeM8hGSYjBuPtYQA+B8AgMvl1zFojhMIyanqUJEkmq9R1GGsJXRxHo1M8HyA4yomchc0bbKW0Fux1MV5dAzaW1HH1hJ63PMAgNYS0pVYSzg89lZxLWG9mw+cHXpJV0s4N3DL0Pi7RbWEBiV0pXvBmHKR1hKy9/V876oVweb3UvvPF9cS3hBoDQiLfpF6TqeEBgCqhGa2Fymhl3hXn80eqfPeHuCXHB5+ClOuOiX0Uu+am/33DyuTSuhj2QFWCb3C08AqoWuFZVbsGGyV0E46BpE11wrLMAStQ88vDu/AjfPcyy8qJ0w7BgkQ7BgEa/ScHP037BhcG/hvKwt8ea6w7JJyAiPPCtHWBv5byY7BWjMnyVXlFN5SFbT11Q/V8HaEEdEzEmHnqWcAKLdjkEaeNdDqvHdQ9Gx/EUqrb/Tf41C4gaJnKJwOKXmRkugZpTT0nzr0XHL/FD1fX3tPrffGSmEe+6EE43wAqWcdes6pw6aLy0o959TU9NGzy1XJnpaD8oQbwzllWCM5AJhB9KyqQ87RM4DqcgUBeKtlFD0TonKc2+avLAY9O2watEk9A6N7tkfPOKW9HLPoeXacD+rX4t099hi6hBga8XEiUdLIISUSskXm2okYGgqKDCfs2L6fEMGxEzF0OJznPjZiaBZD6/oJE/IkImExdEnjM8XQVm4HYNwdlT6f1U2QJEkUxTIV0qUxtBPLCh2sngOOAwB7MXS5aegX9j0TFpvu3HK/Qwy9LtR4592fQwwtJQfWNZn/WVUuhl4XakACaO/yzu/8g8XQ8Vg0FDJ/CE0NQ8uSLBbgZj5lP20MjfFnyEs5ZgxDd3Xv0AG4D2x0GNre+ExfIuiDp7WlBQB6+/pj0ShiaHwVSsgSDT4H/D4CIIoivkSY9g1Go1FC8llpAJBlieZq2b5BOgMJ+f7NGwQO9j7f12B42DzRE3O7OJ32AQDwZd1Uu5FPMROtf3+vJMus+wLTx+FQEw0+T34r3hOJRKy0G2Ih7i0XXCWm2g16EfR+WGk36HZJTjSFRFPtxo54dG6VHwB07aBf3xH/0t0bv7q9nQ0+A6PdWNM4eaXf3BX//Xs3/u5n14VFkRQ6G7EdVCNkb29ROL0nHn1we7uxKHIwmfjBvt6HmI09sWhPPPb8/j4dfe6ORY30WUoMZIYu0WeNJCdY6XN+2c4n77znC5ySo8FnYKTP69evh9n5DZ5ZAD0713AMZh8r1YbGrMHHJGvn4A1ZaQBQGUm0Cxk0AYXL79/FcR4AVcegAXhCJtXSLpefgKpq+VOphZyaYGTQGhlX1FGO8xANiwoDHFcxoUwyaACocC8AAFpLCAC8q9JbUWdVS5iZmNQ0eysWeioWDI+95eaDY9l8StTnqa/x3WSsJQQAWkuYv7htLeHrV79jUEI3G50DC723GBn0Iu9tAWEJKqFTjJHDVAld5739Rv/db6afsVJCVwn1wwUl9Kf8D1xVT1El9E/T3y9SQisna4Vl9D8wjE4JTYGsw45Bqn42omeagH7TumPwxsowdgyaome0bdzgDa30iisZvvxuRu4digMARp5LomfTm4BK619kE4ieVzgTPWugLfc2OETPJzKD0vATGsAyz9py0TNGnk3Rc1CoG1HPsBdB24YGWp339rLQM4qeaUmmzUwz9VxyvQ49l1xfFnrOKpczyuUPN/WMk5k4dzX1E0KIx73gQ0k9U/SskZx9eaBD9ExITtPGNG2MEI3jvM7RM8d5AIDjeGBacAv7LELPpYLP00HPxpO4TtAz2w88i55nZ4aHEUNbYmgnYmgdWjJbEwqLIWfdg7ZrnPE7tp/Q6rY7wdCSJOEyALDvJ8RlLoDqgM8mfJoXNJeClbgsHC6tkEZ3h0O4PDUMLReTo8mV5WBoAADgnPQTloWhO7dvzVy94BBD570ZocY77/7c4zuesD9W5xj6YGJQFEWHEpX8zq1/HJIsNxnOOkwZQydkOZGwqzQsF0PHY1FdfnP6GDoshgxu6Klg6HAoFA4Vc8bund7aBSUfRdd0bB45YVGUZJkSVcqOMQFN+wZj0Sj2DeILEQaf2wsCaLDoG0TtRrFlWMZcrWnf4K6e2P2bN4gG7wQUZB1uF2cMPvfEogBgpd1obmkRxVBnR7v+W7FuWU5kRq7o6LMkJ71Vc6REwnRvutsoSVI4LFppN5BWg8HPLskJqt1gNwLA/OqAqXajJx7D0HdClmnB4Nd3xA8lEzrtxpM7YoeS8h2NIaN2I1jB65A65tkbQ0XXmJTluVX+ZEI2qroB4AcFE/Tunvj29khPLMpx3HBqLMTYPDZuaHYBiKIYbiqA5sQASp9feO7ZyZucSEbj3az0GQC6dj4pSfL/+V//CAB/ufqTAPDy2Yuz0ufZocPNVk/OzrWer33ta4899rXi7kH2UedibJX0s8D0Q8TAbGEj0lC4CLsGWwpVjstDB0KyADzHVdAVhKQ5zsN+dJqQDIDm4io5zq1qI/gtTRt1ufws6dC0MU1L864gX2ji0siEolwW+GqBr8ItijqiqMPIndl7IDNxhuf9Hvc8JNEe9zxVHcvmLrmFKm/FQrpMUVOZifc9Qg0Lj3LKSDp72uueQ/HT2aGXltR89lLqJz73/Grvx9krGs68k80N1QfXv3v16ZW1D+DGceXi6dEDCypXzfeuYhe/fvU7AWHRDYEiA1RKOfdeav8i722LvLcCALqhF3lvPZ955Xzmxx8PbA4IS9j15zI/RggY5OuQIY4qZ85kj1Tz9ZRCnsm8fDr7MiagXcABwLB6epmnoVqoP5kZHFHPrPA0AECeQQtLUdBRKywF4ObwS6+op2zS0LXCsjn8UivuzBo2oGB8Ni7D7dd7m36ZSV5RT9XwSwHgWDZ535xOdGXcWCneWKgNfGt88q9qyp0B4O2M9Na4vNIbWmkgy+9m5HczCbyKo+n//IRXnMtQ9cvKycvKCbrA6paieEQFDQB03HlIOXUiO3ir/4vM4oFj2eRyj1PojHMiM3giO1jvWbPUu+ZU5rALuJIA+lTm8MnsoXpP6bzziHLmTPbIzf77TmUOn84eXuJxBJ1xzmSOnM0eWexdzeadUQ5jlYA+l/nxuczRRd5bnHBnAHgv1ZtSzs+r/C0n3BkALmVeuzT+89rKG43c+WrmLQ44nYLjaubNK+NvVns/5iTyPJx5FwBUMpHKnlxS89mS60czx0Yzx/2eeivufHHk0IKq/GMmnT2Vzp6qrFhUkjsDQGbi3PjEeY97vsc9P5u7CMDZAOjMxIVs7oJbmGPDnSeUKxxwADChXBb4GnvuDAA5ZRgAMPVMX5AV5aJbWKhbqWppAACiAUCpmsFxjYzhr4mS6JmQcY6rQO5Mh5AsAKf7PYJnN0tx5xyAgr/sHLierUixUhBxaMW/GS1vB9NGqFrEtzUA8thjj61bt242mTI705yvfe1rjz32WKSjQ1frREeS5Wg0Jsly//7nwxbJXEmWo7E4ABhDZ82tm9Dm3BWLR2PxSEe7EUzQ0a25a8NG5LZF1yVJ0WiUA4hEIlY9e5IkNbe0iKLYEYkY6wTpINPBsHDRMTc3I/Shy2RZst8VAGxoaSYA7R2ReCz6iPWxocnU/uAx1RiNRnWVYlaLdfeGJEld0ajuRjm539iVkiwbm7v0K+VENN4NBDrbt+s+TY9zV+sW/JYkJ7viPQDEPsGa320iie6Ozu1bsUTLW7sgc/WC6WL8gPkj2x/q3Paw/W4BAJnyI9se7Nz2UMnFUnLw8R27AbhHtj8UbtIHCO7ccn/HI3/L3ud4aqHk3cuupz+OSp/vymjaZn1SlnviUQBoa4+ErAPyOJtaW7a1RXriUY4rvT4hy93xKAfQbv0Ib21plmUZzebG73YVcrjGJGw0GgUgkY52+tJBXyskOTE+OgSGR1HhoQKIKQ1fE4qh8YuSJzboo+gDGHw0llyG9waGyqPRqJhvjAxb9Q1uaGkOFRQcUIDUxuBzNBrdX2wZBoCA32eKngFgV0/sUELe3h7Bkx9bWlv+Zns7ss4nemJP9MRNtRsYvw0bXjYBeTHR2Ff45g2t6HyIxrutgs9d8Z4Xnt9318bN44zfGR88ouEF0OfzRTo6rILP9KXV5/PhowsKsmPjqxmeC9n7vL5vcEc8mkzIGE9OynI02vUfz/YeSsqmwecnd8Se7ImvaQzpKgcx+NzJnC1oi0RkSZYkid7h9Op64jHMnj+9txc34v3/4PZ2NvhcNycIAG0dEWPwGR8qAb8PXyfxcdjZtq2zbdvk/dO9o6t7x4s/+l64ce3kxp1PchPpv/2rPwaA3/m9P/3/LfS/fPbiN4+++dhjj80mG2YHZzYBPTvXfB599NHHHnvUTLVBx8VgaLoFDMlowqSeAYBnXJY47sJF8hfkOA8AKe6b4glRNG3ybzKO8wK4VG2EkBwH7oIkOkhIVtMmf2+5XD6Xy69qk5YMF1chCHMNtYTVHFeRzvxCZeQe3oo6QrSxzCRF5Xmfz7ssp4ywOWisJUxnT9MQNAC4DbWEQe+K0cwxWkvI3o+0lpDdWCnMrw+uNyqh/cIikuduRdqNVTVfobWEAWEx8uVF3ls/Ftj0TmqfUQkdEJawdYVBoe5G/z3D6mmqhK7z3oFK6NPZvBK6mq9/Lf30sFKkhF5f/RBVQgNADb+shl96Rc1nnK2U0FeVk1Ydg7XCMvuOQbpzmoDWAK7zNFKZslXHIADQjkFgUs8oemYPA1PPbKh5Dr/0snICv/tORn4nI7+dkUumntG2oYK2wttoTD3XCEtpGHwKHYMnMoOYelZBa6j+K4TO1UL9sGqubMbRpZ5LXkuVUDeinHbYMUhHl3ouuf5c5sdTSz2nlPPLgr/zoaeehzPvDmfeVcmESib83mUVQjUr4TGOw9Szm6+CKaWeNaJW+W7yuOcDAO/yq5r5u1nnqWcAmFAuTyH1XDL47Ey4Ma5p4wRUAHC57ILPxtSz1RCS0bThkqlnQnKEjAMQDjzW2uWZFW4A8yuyhBL6sccexfcGs/R5dqY/KIZODgzYGznColgyxSyKYnPrJmsxdDv6QCsDVVaeB3aNZT+hA9tGOBxG+mxfKoj9hKIYtg8md0QiJXcFANTIkbBQjuRvo7N+wrJC084zzrjSXiGdD2Lb/jTzKw3lctYr8/2E5aahu3pK4DxMQx9MHvLMXdy1o0QxIABkrpwnnMszr65rh6UhIX8YhTS0I92HMxe5bj39wZVkymWloROyjOu3tUXisRLrnaShZVm2sbFPIQ2NyNWmorDcNDT+ZzxyKZG8a/M9H0wa2oo+o3ADywaRGmMCGgAQ3OOHHqDQN4jBZ1a7wdLnWDQqiqJp3yC+mtHrxcta9Q0urg0IBu8EFPruTLUb2Hrn4jjM/rPfkvBzJ8X0GQdj71b0GQAyI1egAOXz2zFGbaDP+aeVBX2GgghbkiS2ag8AxkeHjDoOSU5cHkmzNx+TyABA5RgJWVrbJFppN57cEeMAHtzevqapSLuxcmE1S59xWltaULuho8+SLP9gX+9D2yfvN6TPOu3G7p4Y2NJnWZbwKcBKnydvr4E+SwOHPAuWU/oMAAcP/xjp86z0eXbYmQXQs/NBTIFBqwbEzKo2WDsHFPoGjRdRmSpCtHPkmKtyA/BUoAH5PBohJMPsxAXAaVqaEKWwxstxflUb0chYYYs5gwaAidw5rUC0XVyFm2HQLs6jaRmBr8JaQpZBYy2hqo6x/lOfd5lGlNT4e7q7SyXKULpIpmFTS/j+6KGMoZYQAHS1hEYG7Xcv9LsX0lpCds83BFoBtF+kngsIi+m3AsLiz9T88ahyxsigPx7YfDZ75EzmCN14o/+eAL/kzfQzrBK6Sqg7mT0EAEu9a37Lf//J7CCrhD6eGaBK6Bph6bFsckg9SXUcNiFo4yBovqqctOoYpBuR+SJ6/p3qrdd7G68qp36Zyf9NGQr+vqnoGdEzdgyaoud3M7IRPbPzTkY+lPp3jRCNkNX+L5ZEz2jbcCjcKBc9I9qm6BmnSrDrDCwLPQPAmczLh4efAoBrjZ4JqFMUblT+1hhjqjGdDxI9+73mZ1zolCXcAIDpoGfbxY6FG8qVdOYXhGgul3ea6JnlvKqWzinvO0fPBFSb8kCYInqudIieZ8j1DNNAz1zxGm39+nWInmffG8zOzE5JIwcA9Pc+J4ZCzRs2WqHhkmJousZe+kz7CWVZtgJ5qD5A6mG1hto2NrS02GPokv2EdFf2GBqXiaIoOzBWW2FoWZZphNah4UFHMzE6bbMSbHsdcSRZHk+NAMfZtE3m91kAiN6qOUiUrFeWjaEBOG/tgpKh6Rf2PfPCvh85xNCd2x9+Yd8PDw4ccoihs5fOrGtaq8PQUnLAeCdPDUOL4XBClre0tiRLSTbKlXLMLIamj8aZwNAhpLHReM+MYGjGyPEhYOiunp3e2gVW2WdJliVZxjwvAEiShFJ7KJSsRqOTwefWQnkgFD570dvXR/8Z9OdVP6Z9g+yV0o93GLXO2De4vb1D551IJuTBhPzA5tawKJoGnze3TnYhFt38aLS5paV///NG+izJiXCoyajd6Ir3eKvmQCHbLiUSVDJu1G6wtzQsilbaDbpelmUxFDLVbkDBQ416enZ2xKNbNrboQt/JhHwoKRu1G4NJedncIAfw0PaOwWTijsb8nfzNXfGfHkrqtBuSJEmybLzDt7S25DSCho3dPfEHt7cDwBM9MQA4c2W0oWnyB7e7J/ZETzwkijr6nCz4wQFAluRwqLGrZycAVyR9TiS9NfOg+KmB0ue//es/pvT5777xzwAwd9MXZqXPs6ObWQXH7Hxwc+DAgc9+9rMG1QaY2TlcjCdaM7sIgcl38hidZt//TxQ00IX9khwAQUZASI7jvAAqIRmO83OcUFijEJIFUHi+ll5Q0zIACs/XFP45RsgEITlBmOtizB6qmiJkosK9IDNxyluxFAA0LauowzzvZ6HMhHIlp1zxeZbx/CRSyeYuaVrGW7FQ4AMAkBp/z1uxUFHTqjrm99S7hSq6cix7OqemPEJNVhmaF8jztawydDn1k4XBtV5hLl05nHlnaPzdOZU3z/VONs8CwOXMG9nc5fmVq/zCQoTR872r0sr7F8dfDQqLdczu/cxPsKvwMzV/zG4/n3klrZxbGdjMbnxl6J+CwhIq4sAZVc68lX6W9TMcHn6qWqhf6llTLdQDwM/TewDgU/4HAOC19NMccJ/xf/54ZuB4dvA6TxMAHMsmr/M0Dakn5/DLaGDZiZEDv8CNrGGDfg0A+M/rPE0YeUZtBV7v9d7GX2YGPC4XALw1Lt9YKepsGwCgEgIAxsgzAGiEAIApVqbHUCssMy0YZJet8DTYQ2ccvMfKEm5Q2wYAWHk2Boe/0VT91+wW58INOihgQeHGW+kf1XluDwp1pS5iItwwTko5ey7z45WBzXhGBGOtDoUb+NhmhRuXMq8BgFUC2ka4YZyMcunsaAIAyhVuAICOO6czJznOpbM/lxRusDOWPZ3Onhb4gJsPOEHPVLhhumBk7I1q/28VFpcWbuDg6x4VbmRz73vceoEGjqlwwziqOiTwc1QtrWkpF+crKdyAwsODomdNS/N80LDSXLhhts8xABVAcCbc4HXcmYACAHRjKeHG5NUWhBvEQqNBlxFrL4dW+DgRQefGLHeenWs9Bw4c+NrXvqapaiTSwUbSmls29PfmK44RGDk0ckTj3ajgsFzDfDxft4Byz5LCCqNZ4i6DRiPGfKTddGRZorpn9rJWy6zWBPy+8XQK1SVGS6np8RPm+KnJwbgMHAs0Sro7oPCZ/f6+PtMdVvp8mEYHgK5YXJZlo1/FOPhpd8SFAOCtmoPxRpPjdCzlkBLJuzbdDQBOyuWkxEBXz04gxNSb4Zm7OHNlssRYSg509eySEk6lHF07dj++44lwU+Mj2x+6c8v9Y4wxwORIHP/IotFoTiWNorgzHuM40H1C32qspBwJWY7Horp+M7p+ClIOWZbiBqNL1EK7gVNSygEAohhG7Q8+UwAIfYBNWcohJZIsdzO9dTMu5bAJPkPBsyFLEt5SfFbS5kAsDJRlCaXPHABlzTrjM0o52jsiCVliXyt0xmcAkGVpQwFJb2hp/pttHWzr4K6emMCB0fgMAHOr/CFRNH349cSiAwmZSlqCfh/VZRi1GziSLDdv2BgOhV7o3av7Vle8R5KTrLfnrtYtkc5OvEXG4DO9pbIsdRY/m0yNRs3NzRwQSU4YtRtdsW45kYh0tAPA30W76dOE1W7QScry5tYWK+0G9WPUzQm++/4wFKTPRj4ejUabQiK7c9RusIaNz21pbWgKGbUbg0l5d0+8MSQOJuRIJILe54QsxWPRcPHJgA0tzbIsm2o3cKO3Zl72wgkoSJ//9q//eN2aW3HZwcOv/M7v/cnsH5mzYzqzCejZ+eAGO2qKY85gKBik8g2O2cJehKXVdAsHMFG8W46QccbF4QbgCjnofC6M47yEpGk4muMEl8sPeehc2LXLa6glrOD5GlUdUdUUXZavJcxdcHEebCZ0uTwV7gWqmp5QJv9QrhDm8K7KsexJXS1hhTAnNf6eoqYAQOADipr2Vizked/Q2Bs5ZdLv4fPU+yqWjGaOTzCfyvcINXMDt+hqCT3CXK8wdyx3/vToAeY+ydcSHh/tTyvvz/euujD+KuRrCe8aVc69nylKWC/03nJDYAMUTNB0Fnlv9QuLXxn6J10F3MrAZsKRt9I/GlXyXXNBoe7G/4+9P49v4zrzfOHnFAoEiIWk9tVrYsfjJDeJHccWiYKVzaSoxXbWmTvdffvO+/ZnZnqbN95EEspInRAAKcn2dNrJzHzyvnP79vTc7nQ6diJLFKl0t8Z1CpRkJ04yWdqJs9iWZUmWJZECQYJkVZ33jwd1eFAbCiS9pp5P/nAODgpVIAmRX/zw/SXvnjRe5rWEbfImBuwnlW9huvZ9yU9zHcf7k59FHUeHfNUHk5/7zWwJAG5J/svfzJY6IldfMl4CAM6UXccpevbqGMRkMU89Y3YYrP+LKxPGS8/NUPDoGDQYc+0YxFDz9XEXmzOPMwPA9fEuL/psSz37XO8L1fEXquP/c/JhE9jVsTt8dopjs234WJ7b5M34ZTpdPbXo1LMJjKee05FNV3xrA5tKPaP7BW0bDIx1wXTPXjWDCXnd9LyLDrL51PNzSJ/f9NTz9OzLF66cNJjekfqAbJnrveb1Tj2Lwg3xBZZPU8INAMDUsxxZ1ZA+89SzT/C5mdTzrGmW8R+mRaeeSQ0Bi6lnf/rMhRuk/u1Y5zZ/4YZp/YNrhk2D4bxhg7/7fezjH+/u2TaYL/B1Ma08NnJ4bORwoF7B4pBKtQbWDu9INQBgnrSnpwcbt1yOE8xBgTFnStWG+eWBXI5SGmSbfz8hqkuAMf+ssZiGbqjaCBKtzWaz2WyWsQbuDgjcZAgAewb6/dsmhZ19M+UJBqRhP+Ei0tCqNh5fsdZfypHNdB578ok9fQ99ef8jjb0ZXZ3HDj2OaehP3v0ZtXTCZzMA7Hnofp6GVhox4uBfMlVVOxWlK6N8+8jRB/oGhgr5t1YaWnXZucQ0tEo1aplq8CdlWdLQIHDnN0DKETD4DABKNsvpMyagAYAXBlJKUbvhRZ97e7oBoGxlXcGjbxDvu80tEA2CdsNJn/cX80ifnUaO4UJ+ZTopETIyOob0mVIV2XoteuxGnwcLxe5t23Nuun98/+DYyCHRGq9qmkqpl3bD9UqhXrshrmMC2lW7AYSMHR3J+mo3+IXv7O25o0tx0ueTJe3MpTJi4hMlentn5tS4dsO6dlf6rJtsd/9AxiF9thk2sCjSRp8fHi58ZmevTaJSLOS3b+ux0edCPu9Kn1WthC4OVStlu+4AgE/e+3kyV/nH/+c/c/r8pa98PaTP4fhMCKDDeUMH/w7ZuvVOIeCMf0s7BdA8DW3rHgTrL3CjfiUCoNcfVmZsVmTQhMTcGLQuCDqAkBhjM6boehYYNCFRxuYIiUYiHSarOhm0yWZNNssXW6JrGTOqc2eEo7VG5ZWGUREZdCSSSMSunpr5laiEjresS7W+a2L6Z3YldOJmAOBKaACIyR2rUx+anr/AGXRcXlXVL65L3xGLdrxc/p8z+gW+eVX85s3prS+Ux2xK6GvTd5nE/NVUXaooJW9YH//Quer3nQzapoTeEP/w2er3UQn9XOU79Qx6QQndFtnUFtn0L5L3/qTyrdNVPyU0AFw2Xrqsn74l+S8njJf8ldBc9LwychXSZ0TV+N8iev5e5W/x3QxX9AwAv66O/7o6DsA6Iletlq/xEj27ome0bfigZx+m/OtqqVn0bAIzgXW1/4eGVYE4TtGz/7RFNp2ePXW6esoEMzh6vqKfcaJn/zlTfWYRwo1nJ/4rAKBtoyF6ntLPeqFnr1kEev715W8bbG5Txycabp6sPn9+6tQbgJ7FmlPXaQo9A8BS0LPXBEfPpjmt6xcAWJDgs25cDIKeTbMaHD0zZi6LcAPArEfPPoJmET37eZwBoJGXAwAgRM/hvCkTQAydGRs5nOvva4ihs0oDa0cQ6fP09DT2SnkRVY6huy1U7axTC67RAADc5sOXFSU7VZkGgFQy4SOG3pMbmKlMAWNNGZ+94GZApqmqKuqtGWvg7gAAL3xvYzfimwpBMDTSQwAIjqGxeNDlcrQSwsRjh7+DGLohPfTC0K65V8TQe/oe/PKBRwJi6O9+5+8ppQ0RPzQv5Vg6htao6hNwXgSGxm9v1zNfNIau+TfyBf4Ks2gMfdf2nVmli2PoY09+O5vpdGJoG49eOob27xtE7zP+Bw/C5y1ginKho6Oj+DoDAPjf+A4ZE1gzajdEBzS6ibBv0EmfwZJH880Yf0btxqEjo670ebhYUBSlyyHrwL7BfjecPZjPU/UpV+0GvpLPTF2hlIrmDZt2wzle2g1+pVxP5NRu4CCtzioZL+0GP9t8obi7P+eq3cALL2l0d38dej5Rop/b1UsA/v5Q3V/fp8a137l3+9joqE270d3drZts90CupNGuTO3fo/3F/LzJnIaNLRnFKX1+ZLj4rSePPrB7YFyjEqnVVA4V7F96fMcim+my0WcAOHb4O+IbM7G112z98Pu5dgMAvvSVr3/pz78eSp/D8ZkQQIfzRk89gybWX+DgxqBBAMo2Bk2s+4oryKAN6yPGEjJoQQmNXg6JMV5d6MqgWwAkG4OWpDQyaH60SKSDgTkv+JcjkZQsr9KNyfpawjZCWmxK6HjLJsOo2GoJ04mbMO9cnTtn3TfVkfrArD5hY9DJ2OZy9QWRQQOArZYQGTTWEtoYNFdCA4CIodfEP5CIrvvRxH8TldBJeX1KXj+ln/nl1GHx4VLyhnendngpoZ+rfMddCW3UlNC3t//xhHGaM2inEhoAbkl+HoBxLYaPErrZjsEV8lWu6PkfJw/gOx/XxTuvi3e+pr8ITXYMinNZP+3KlMXOQLDQM4qYg6BnjDybwMT8cpu8adI47XWvZtEzAJyunrpinGHATDA3xQM5N85Unz5Tffrl2VNe6LlN3lg2ztTf5Zkz1WcYYc2iZwP093f8flJeb9OXO+d89Qfnqz84W/2+P3pOyGun9VoCeinoOR2/3n/zZPX5lyaOGmwuEdvUED1H5fZy9YWlo2c5kpwX3i3DaQo9z85fuDL9MwCIt2xaXvQ8M/ticPTMmBmJrKgXLjl31tCzJLV7oWdCIhw9AxjLh55ng7meTQEo+zBlsxn03DBDbYToOZw3fUQxNFhtTuIgIfIXQ6tUQxIRRPos7lGpJubacrncaCNTM6JqJZtFNuE6TdmcAcA/5oyct2E/4Z7cQC430BBBIrBDYtWQViPP8gegWJ8YJDQdtMkwMIbOKplcf182kxksDgdMQwMh8Y7VXhi6tlPoJ1w0hnbf3CSGzioK0tW3GoYeKhb8N0OTGBoA+gb8vjcWgaFVSoXnZEkYGh0vd23fqWpaNtM5OLxf1cadGBrcpByLw9D4Foi7dkNg3BjmtWk3wAo+Hx0doypNJRMqVRVFUZQshpdtfYOa4IAGAHyR8eobBKiLCVOqdmaUcY1+euc2mYCtcA9nfzEvEVKuTANApv5Nu+FC7SYbfS7m8yqlwExblBgABgvF1lQbALhQ6eKwSkvHjjxpo88qLcXbVjpbDcHSbvArFZPXmCJ3pdXO46B2w8nKh4v5kkafHBm10eddvT0AcGhktKTRL1jdgI/uL3x+V29nJnN/faPjw8PFHL5u14tBunt6HuzP4ZGxFBSj1vMmsx3hM7t6Hxku3r+734akCSFnL0+J+pRiIS+B/Uu/raebEMBMfe0ptaTPIo9WtZJaOilKnwHgS1/5urRiUyh9Dsd/QgAdzpsz9QzatP54Nh1iDXFEBs3JtY1By9bf7dwu3QJgOBj0PLOKBAGAkDhjpmlWrP+eQ05tGJeFosJaLSHUBKAAAJKUICQqMmgUQ/NaQhyRQbfIK+f1SwAQb9kkSXGRQYNVS2h7rlKt75rVJ2y1hMnYZv9awnh05ax+EaxawpfL/9NZS9gqr6nM1xWvrYl/4Np096+mjnIdR0reMKWfe1eqNyWv/+XUYZH3cQb9/NSTaXkDN3Kk5I03pnaWjTMig94Uvy0V2XhFP3PFQpD/InmvCSbqONrlze9LfnrSePnHlW+2y5vfn/xsu7z52co3rot3dkSuerbytyvkqzoiVz9b+dvrYl0ADB3KYEWhm+0YRL+HEz1/rP0BRM94hh3yVYtDz8iUfzmruTLljshmBOgcTxtgNuwY5OgZI882jtwub55w6wxcHHo+MfkVE8yNsVsBIDh6Rix+U/Ke4KlnRM8b4rc2i57XxT/YcD+iZ53M62T+6vTHlz31fLn6nBd6jskrqoJ7B4ej53XtmWT86pZGcLZSfely5cfRSNubm3pG9GwyIxl/d8Q3dBwQPUtSHAT0LMtrgqNnvK/3zsboGQAYqzJmMDaH6NmHPvuiZ1PYNl+rGXDonu0HrMWZedWB+3UI9DkIem7s5QjRczhvncEUwp996UsAkC+6N9GhdYFS2ppq8ywwRGoZxNrhsycYxUO5aqHQmC/zfkLXPWDxZajpNT2hoY1ouyqtLbLWGEODFZZsKjTttY1fabMY2uf0mkpDc1zYEEPXYCIh8Y7VIisUxb61E1gshla18WXB0GppHN2+nK4Grxx0fnEppc7wKSwWQ2cUpalKw2AYOnvk6NiyY2ioe04WiaHv6t2VzWSqVy5lMxlVG892de7Zfb8Xht7T96DTy9EUhh4cPnDXznu8jDF8nVfqOfsGB6y+wUIh3zeQA+vzFs6+QQDg4gtc7O3pURTFtW/QGYgGAKTPiqJ4aTckQni4mONprt1wHhBVD7mBftfgM6VU5Lwq1dCzwb9konYDAKwAe8bm0FiEdiNvVReqqprrX4g/u2o3VEpVqjmVI3jhXRl7ByNqN+zSjBLdtDJ9QqOu2o1L5RruL1HalVEwau00bGxamd7SlRGLIvGwhJAH6ndqlEr1bzDguw6o+8/n84ibB4f237XjblcXh/6rpzl9furUs/K7PiKt2BT+qhlOwwlLCMN5M+fP/uzP9u3bJwScnX+Z82yXs7dQ/A9b4ZIBwABahJV5gAgnCIzNYImTCCkYmwNgkpQ0zUlJSgMAYwZj05KU5kWFAGCaZUJiIjExzWnTrPBawnn9YiSSNoxyRGqVI23Cttk5/dWovHJev5SMvxsXg9QS4lTnzou1hBeunFzTdgfWEqbj18XkjoW76xMXp34Ql1fFoyvb4zfW7q5fnJx5PhFdb6slfP7yN5Pyeqwl5Iu2WsJfTY2si38oJW/A6rZ3p3ak5Lo2M6wlLOuv3NLxb8X1s9XvT+mv3JS8h684awmxpO59yU9jLeHp6qlJ4+WrY1sm9dMvzZ7skK+6LtYJAD+ofOO6WNcK+Spk0BPGSwBkZeSqS8ZpzER/OPkvm+oYxEe3FhegMwD8pjoOAL+ZHe+Qr1ojX2OzbQDA81WNP4ptfl0tXTJOt0c2AYAXUH6hOj5pnLmsv9RUx+DVsTv8CXJp8s+z7ffhf79YPQEAWDMYkDsDwOnqqZdnT2FhIK48M/m129v/2OcuvGMQAIJw52cmv7Yxdht2DAJAEO4MAGer3z9b/d7a+Adt3Pl89YcSEKd/A98+0ck8ePcKioMNhMFrBi9XnwOrNtA18lyu/pqAxB3Qk9XnJ6u/TMUaqzZwKtWXpmZfam3Z2BrbcKn8/TVtfoJvrBmMt6z3584TUz9akfpQw5pBcWbnL8zOXxBrBtFo70xA22oGGx32vGlWJSnZUPSML62EtNq4M35mJSKJr64zJpsmJObDnQEAP+nCmAlgEhLxR8+MzfnUDDI2Q0ir9dYmA6FU0H2/vWlQB/f9ptu/aM49fPy3hTWD4bylB38JzPX32T7dzKdWHVbfK9iaauNddhCgexCs9iqwULL7Ht+Gt3w+bzJQskoxnweAAas7y3Wc/YTberptBYO8eND/ULiNUjo2etTr6mChdc395Lu7u0fHxhpeo+16xSauRCKB3Nz19AIeMJ/Pu2Iml2spFJWM/TPvgN8PhSFeQSZWydk4lHPu6t3F+wmRp3gVTuztxgABAABJREFUFapaCUPTDZvlBocPWISR7dn9gLOi0H7k0vjg8EFg7IsP3Z/tqmuN/uTdn8l9ca/4HDrLJBscXPji9vT0XJi0f+zJNiWNBqwo3NXb88Tho7gfoLlKQ9eKwo50cnJq4dsJC9CctZ/iLK2iEMQG1OAVhQBw7NDfDw4fHBw+uGf3A9lM5+DwQQCyZ/eDaqk0OHSAfwtlM52qNu4Kkf0rCr20G3v6HgQAYAwA1NI4fpuJwWdFUfL5vGKlm7f1dHcp2f6BHABs39atUeraN2ijjfxPazEQXRAOa5ttPd0ms6uNcVC7MTI6ysPFhXytuNJHu4GJbEqp+JJee2YKRagPPquU5vPFrNLFfSn2uxSHGZA9A33dvTsGcnv49xJ+8xy1zk28HEqp8x8FVVUx+Izr3d3de/p3Z5WMSrXu3h3OF7HBQjFfKCJ9Ftfxwp8UkPTKdPKli+XPuQefC48MF2/vysQkIvZzdnd3b6nn19hkuCWj2MQdeIRvPjmypUvZvDJ95lKZL97fNyDSZ9SnDDi+HwqF/KhVIZtIJKoTr3Hps/hAd+24GwghczP/+P/8Z1xB7Ub4C2c4ASdMQIfzZs7evXv37dvnq3sGt2S0cwOzUDVOBIAAzAsrUQDGFuzMEgEJLB6BQ0gLADHNSUseDYRECEmYZrm+ljBtmhXDmBBWEpFIh65fNNkcAEgkxsy5qLyKMXNOqDWTpFiLvNYwKmBxHABokVfGWzZNz75kGHW/2evGFK8lxPGpJbw49YNZRy2hCcbEzPMLd5dXrUvf4awlBABeS8hXeC0hKqFT8oaKfg6sWsJfTh12rSUEAFstoaWErqslTMsbuRIaADbFP+KuhDZevja2pSOy+QeVbwDAx9of8FFCQ5Mdg5iDFlPPeJDfVMefrXyDAWPAtrbf3xFZiJ0+X6XPVyl2DHqlnjHOfE3sDp84M9JkPH5D+mxLPftvbpc3T+qnX6yeeLF6AlPVi0g9B7Q2g6NjMGDqGQC4beN1Sj2j6Fkn86vj729In1+r/vi16o91mNdhPi6vapVX++/H1DO6m9Px64MLNzD13PD8K9WXzk9qBtNXpm9tjW3w39xU6hkAFpd6XnbhBmNGQ/q87KlnqAWfTcZMlCx5bwsk3AAATD0DMAJyI+cG6p7lYE2DPh5nU/jXsEE4Okw9h/PWn7179x4/frx04qRX6DW4GNq/ezCrKDNTV3ID/T6KCQxOZrPZnp4erz2Kkh0ZHetvZNtoqp+wobhjIJfLKko+XxArHJ0XyNPQzqwof96CexsQvjTcFjwNDQC5gQEA4uPmXriWoyNASGu6wyZp4flHa2dX8DS02E/osw2aSUOr2vie3Q8ee/KJPbsfumvnp+7a9alllHKIZZLNpqEBoKQ1SisHTkNjkBn3P9g/MFxsIj39xqShs4qClvPlTUOrmnbXrk9lM53VS+cA4K6dn/JKQ+M3SVNpaP++wcGhA4NDBwaHD+L/VRQFlQiqquLz0NPTgy8OmFrl9LlYyIv0mVLV2TeIaWisKKRUVbIKX99mHdZ2PvgolFInfS5Ruqu3B90aNsIr3mQ7JqUqJrL7czlHs5+ndkPVNJWWqlcu2egzyqCRPkO9bcmm3RCviFLqpd0Q1ymlWSUzWBjq7t3h1G5gTDurZGyfOUDtBo8t47MBAFevSrvS55JGf/nqlT99cOHgqKXe4khPDxfz9+3ud9JnAHj5UnlLl3KiRDEB/fBw4WRJO3t5ykmfbbF3zMtPW94PVVXxjToAEOnz4ND+eMdqRVGUTObOOxYqB9UfPR9Kn8MJPiGADudNHgeDBg/VhilAZx6XhvoVkUHjHUUGHQEgFoOWGJiIDBir8jsS0kJIHGBBgkFIRJLSjM2JDBqPIDJorCU0jCvOWsK5+VdNswa+JSnWEl0r1cfuIlJrvGXT7PwFXksoS4mIlEzErvWpJUzGNqMYGmsJr8z8yllLCAC8lhDHWUvYKq9JyGu8agkT0XW/mhqxaTc+0PFvpvQzTga9Pn6rWEuIg5xRVEKnI5vSkU01JbTuqYQGgBdmT1wb7/xg8nO/mR3/TXXcRwkNAnoO0jH469mSEz3/0+RBBgxTyYiGO+SrLuovcduGyViQjsEO+SpwG06TM+1fmBAc0P6bg3cMAsCLszX07HR0eI0/ek7LG69Ybx7wabZjEACwY9AkZkrekJYbcFWcIOg5JTigbR2DTaHnjviNHfEb49HVM/prXvubRc9V/dKyoGc5khbfc8JpUrhxfmLqRwCQiF375qJn05yTI6tIA4Pz64KeTXMS0TMhLQBASERoAuDbmkLP8MaiZxDQs5dtAzh6DnMo4bxdxjJyfLm4/6A/hvYXQ2P3oL+1A6xPr/vbNvAz14lEQtyjqguYBjF0Rslu6+nxsjnb+LLX+YjbfMTQADA2ehQAWpOphhgaGHOFdAvbghmfbUDTRxgiYmh/eXGtQRGI/5cJeJkkIa3pDn8jh4iheXDVd2cfZpy9pAe1zU1KOaqXX81mut4KGDqXy3VllAPFwj3btzWFoYcLLl+7Ur3NY1kwtGul4VIwNAqgvW5dNIYGgC8+dP/g0MGAGBppsq2csHaG9RjaK/iM992z+wEMXO/Z/cDg8EFVG8c3xgBgbGwMP53A+wZVqh45Oto/kNOoun1bt0ZVzhbRsJGpB8qYhnbtG6RUnXKQYhA+0uE8YRRBZLN2Zk1VCgA7ez1xdm9Pj3sVYaGIgWgb58UPRuzp380/ALFwl+LwYHF4bOQwp8/4boSPdoO/2HppN/i6qqpIn4GQmakrNu1G97ZeABg7OgKC8NpLuzFczAOAU7vxmV29ugn/44kRAPjKgSKC78F8/ilVvVSuiAfBI2uUOsUdAHCftXhCo1u6Mp/Z1UsI+daTR8Vz+PTObRLAt48sLOIbpYSAGLumlKKnyKbdGBzaj88z1bQ7b78VLOnz8ePHQ+lzOMEnBNDhvPmzd+/effv2+sacncloyQo+2+6iC3+iEysHze+FDHqGrxCQCUgig7ZqCeeEuDRIUkJk0ITICBR0/QK3SyODNlkVAAyrwLDGoPUFBg0ALdG18/ql6twC10MGbRgVZNCRSMIwK3IkkYhdO6+XRQYtR1KohK7U1xJ2JG+uzl+y1RKm49dOzDzPawlxbLWErdG10/qFVnnNDSs+W55/xcagsZZwSj9nq3p7V6oXwLTVEgLAhviHp/RXbAzaRwnNGTQISmgAQCU0ALxQHe+Qr/pg8nOXjdM+SujL+ksYeTYBMOPsip6frfwtfs/ckvy8Ez078fGEfvqS/hKPPDdEz+A2L1THRfR8dXyL6zbn5uDo+XT1VGnyz9ORjanIpuVCzzjpyKayAKCXgp4/2PEH6+O3pOSN5Ua1gYtOPft0DIrjRM/++5tFz+Xqr69Uf83ACIKeK9WXXr/UM6Jnk+npxE2RRr6LNwA9S74K6eDomTGdsfkm0XMS0bPHtibQM2Mz2A1IfGLUy4+e8V+oBuHorVvvRPQc0udw3l5jw9Cue7gYGoRIr23Gjo6MHT2ydOnz2NjY6Oio/56BXK5cmWa+pYJIZhUlSylddD8hVSnyFIveAodorlPbxtiyGJ/5toa9iHgVjLkfUFXVrEXw8QzzhSGfGsnazoH+makrXAxNNS2bybjurLUOAsTbVjbE0ADA09BBMHQ20xVE6btn94McQ/PsqueRuzqPHXo8m+n65N2fQQzt49loCkNTSjszyhNHjj7YP9AUhmYMVqaTrhjadf+iMbTPzsVhaKqqikUGlxFD4x2/e+hbATF0NtNlBaJLPhjaJ/isaiUAhm9gZLs6B4cPfnH3/eDdN2gCHDk6llGyxUJ++7aeTEbps9TMrn2DvT3dpL50jlKKhwIAmyYILDoJeJesYgv57i/mxzU64qaK1qhKAFxvwhPjmehiPp+zWLPIc8UZLBS7t21Xqeal3ZgpT9hi1BhkduXseLFKVlFEmqyqiUQCLM+JOCrVgBBn8Ll723ZFUXBdpRomnbl2w9lDqFF65lLZVgz4mZ29t23JiMFnsKTPTqEHpfT+vgHR74xHuG93/311SFp7ZLjYmVFswecNK1JdGQVfFvhbFNt6evDNG/Gpy+fz+PbbwikN7VdL4/x5xjcFQ+lzOIubEECH85YY/BimG4Pm42TQxCowtFFpFEDz6LQEoNczaFn4ex4AJAJRxqpCLWEEagLoOgYNYJg1shwF0AmJE5I0jAmh4RAikQ5WpweBSCQly6vm9FfFWkIA4LWEfCXesokxE2sJI1JCN6blSCIZv8aVQcuR1Fx9LrIjebNbLeG1vJaQL7rWEgLA5vRWHfQXysfERawlnNLP8VpCnHXxD6Xk9T+c+Dpn0yl5w5T+yg2pnQDw/NST4uaUvPGG1M6ycea5yrfb5I1l4wwAbIrfdlPy7n+uPHGm+jRu2xT/SDqysTT555P6ywDQLm++bJz+YeXvJvTTH0x+riOy+dnKNzrkqz6U/Pyzlb8FgFuS//I3s6WOyNXg0ijo0jF4baxT7Bi0oWfxhDkFBgAnd76snw6OnrGaz4ae2+XNthC0uLlZ9GyCeXv7H2+Kf4QXPPrfZenCjWB3qUPPDffjWxdNoecp/dyUfq4p9PxS+R+90HNcXlWdr0tA847B4Oj5zMQ/GGx+bVtjtTeiZ4Pp/ug5GknPG1dgCeg5Fl0N1ttarpuDo2cAmNcvvYno2TSrhnEZX72XCz0zNtskem7BfyPctwVFz7C86BmA7du3N/wIZDhv60EM/bGPf8LpXuAzNnIYAPL5wiK6B2kzJgrbHq9zHsjlRhraNrKKoij9jWLOAfsJ9+QGcrkBEaL5bmvQ/sdpnQ/WVFVVUZSASW28CsYad+jVwF8ADM37CVWqqZpfGrrWOggQb1vpZeRQaSmbyfA0dBAMvafvoerEa4ihB4cX0KGqlZxuX8TQQEh85fqGGHrP7geql84hqWz4jDWbhrZhaP/NAPBg/8CFyanXG0N3ZRSNUszqeu1sFkM7v3+WjqFz/X3ZTOeX9z/8yV2fBl8Mne3aMji8f3DoQDbTeezJbwMAfkG9MLTXZDOd6JJGmTgB9t1D33pKO6EoilffoKDdUCfKlb6BHD6r3n2DbnnkemH9wrq3kYP3DYoPgYNuDUqp8yaxCNF2QNRucJ5ruwmA4Htvdev12g0+WBvgrd2ohcepSkVNh027Ia67ajfyhSJfVynNWPQZ6rUbYMWWP/Zh+x8pqN34H98+ItLnUyWtu6dHN5k9PV3I6wy+9eTRznp+faKkffPJEZE+PzJcOKHRbz151KndwJ9W8dlA6bONPlNVBet7GPBdkx13MyLhP75g0eeP/+//LvywXTiLmxBAh/NWGfzDw0O14SOAJvUrxGLQpsWgCUAEagVQ/CAy1FqhaisEogCGwKCjAJKNQRMSA5BMs8zNHoTIhCQNY8o0FwzOkpSQpOS8AHwl0iLLqwxzhjNoicQkEnMy6BZ5pSTFkUFzWpSMX8OYMTXzK/HpSrW+a964MlGpI8iJ2OZoJPWapYRukVfM6hPp+HXJ+NU2Bs2V0DPzr84IoupV8Ztj0VUvlI/ZlNBJeX1ZP+tk0KISOiVvKOuvgKV+fnbiv9qU0DekdqbkjWdmnylb62l5023tfzhpvCwyaK6Ebo9sbo9sbotsQgZ9bbzTSwkNCwFnADf0jLaNFfJVAPCb6ngQ9IzIuF3efFkgxb+uln5dLf1yVmuInvEgJrCr41ucqef2yAKAFjc3lV8W0TMuXtFf9r/L6eopE8ym0PMV48wyomd8l8K2/2z1+2er3z9TfaaZ1PMPfzzxlwbRIXDN4HOX/0aH+bbWdwdMPSN63tTxiWbRczJ2FQDM6ZNem0X03Brb0DD1PKdfWQp69pmmUs9z+iXGDEmKLxE9EyLzV9pFoGdJSvuUB0JQ9BwBMBA9M2a+sejZtCxPPhJnCIaegaPnUPcczjtmGouh0Y2w+8GGGLqBGDqA9JnjKkppcbFiaKrSjJLFbZiY9uHLA7lcQzG0YHz2w9C4DVN+y2h8Bt/Qt3gVDQ+4AP4aYWj8gmaVjKqVGuqeEUMHEUMvAkMDkPiKtSKGdt+8+8FjT35bLZ0IgqGzmc6soijZbHdPj487pba5EYZWVVXkXxxDr2lPYYug/9gwtEZVW+7VNs1iaI3SJ0dGd/fnioX8MmJo15/ipWDofHFoz+4Hjh16fE/fA/4YGgPLx558HBi7a+c92Uznnt0PQmAMzbUb2a7ObFdNu0GAAcAnd30aCFBKu7u7a0Q1q2zr6TYBJqem+wdyxUK+PZUAxg5baVlNo7S+gRCs0LFNr4FvmymK4qXd4KyWr+zuz4HVN+hVKtjb0+Mq63AtQgS0PVANAFy1G93begHIntyASqn46YfB4rCqlbh2Y2G9MKRSzcv7AQBHLSxOaS0179Ru4OB6VlFs7a8Y07bpODRKV6aTAOAEx8PFwn/8wh9m77hNTC5z7cbtnQuLXzlQBABberpE6cp0UmeAQPnh4cL9u/vxCADwzUMjYqT6keHCuKZ1ZpRO4bEODhckgFcnp/hiSaNUpYTYZSPd3d3AWC43wL9dB4f237XjbkVRxOe5u3cHQpvw185wFjchgA7nLTRbt25ljG3demc9gybedg7iWAGLOLP6bsOILfVcAxB+DBoIiTPGRLiMDJoxnYNpQmRJSprmrLgNABibm5s/a1pHk0hLVGDQkhQ32awcaWuR11bnzvBOQrAYtFF/tFh0TURqnZj6kVhLKEdSDMwLV07aagmjkRTWEsbkjjl9Aqxawsszz4lKaGTQDEzug8ZZFb95RetN9lrC6LpkdJ1JTKwl5JOSN7wrtY0roTle3BC/9cbUTlcldEreCACi2OGm5D0mMFEJ/S+S904Yp1+aPQkAV8e3vD/52R9W/u6F6riXEvq6WNeE8dJ1sS70b4ADPeMDIXrmHYMiPvYSZbRHNl/WEXCXvlf5WzQsfzD5uYboGQ/SULgh2jaWgp4b3oWj54CFgQBwpvrMK7PPsNcz9Yzo2QDdAP36VE9T6PnGFZ9fFX9vQl47rb/qs5+j52tX7OyI3xiXV3ntjMurZvTXbOi54fk40bPPNIueZ2bPzsy9wsB8K6Bnxgw50uaw4dfN65p6rkfPLiA4cOp5Dl/nET370OfXBz0zqybXZ1tA9Bw2DYbzzpxAYmh0I3R1NhRDA4CPcdhL+lz3WNmsoigZJZv2tW0E7CcsV6YbFg8G6ScUMbSfGDqroBPWPw0dvJ+QJ7X9Sbqtn5BSmnUz/0IzGFqlmmjpDdA6GKifEDF0VsnctePuIBj62OHvqNp4fMVa/3BrNtN57MkngmPoPbncjHfPnv3gzaehX52cYgDNYujhAJthsWnoZcHQmNDH3L2r/mVxGFql2uDwQbU0bjm7PTH0sUOP12TNpfFFYGhVK6laiX97EGCzF88CAAOCgBusMlKMJIt9g0OFfF//QN9ADgA0StGy7do3aNNr4KEopV59gyCwWnG8SgXxjsSSdSj1P+zOIkR+F/wP1+Bz97btipLdkxuw31QcZkDGRg472guHqKYB2KXP/Iqc7NtVu8F1HHtyOfHlyCumnS8UAWB3/4CTPseqE/Mv/eSLX/hDvvjwcGHTyrRTu/GVA8WTJbq7f8CWnt7Z22OLMz88XNy0Mr2lK1Ov3aCbV6YZwBd2Lxx2XKMofRaDz+MaBQBCwBZ87unpySqK+GyL0mfhSRjat29fKH0OZykTAuhw3nJz/PjxegYN3gyaWIvOZLQk3ApuDBpwhYmVgxAFMBmrEoKbgZAWAMk0p3ljFSExQhJQay+0HkxKMqZzBo1QIxLp0PWLpkC0o/Iqxsy5+VclEkOOI0mxeMtVhlGxMWirlnABDceia7CWkDNoOZKKRlLp1hsmpn9mY9AdiZsvTv2gXP1Ni9wxazHo1akPTc9fcNYSxuVVYi0hALTKazant56fedZVCe2sJXxXqndKP/PLqcOi4RfVz04l9Ib4rRviHxZrCcGhhEYGvTn2EWTQ7fLmTPsXLhunvZTQE8ZLHZGrV8hXYcegK3rGyDMDxjsGcXxEGTiXjNNo27gmdoftvuIEFz3X9s+eaMq2Mam/3BA9t8mbbJ2B3LYRHD2fqT6DHBkI+3DHvys7Ass+d2mInnlMXkTP6+IfXAR6xsXW6Npp4Z0ScWzoueHxJ6q/AIDlQs/RSLsYgl4Eer5U/r7J9Pbk+xqeyRuDnuVIm8/m4Oi5ZnB+E1LPHD2b1sv7UtCzxMBsBj0byyTcAHxvNUTP4bzjh2Po7t4dXkYODKVSVfVBzHsG+lEMrVJtidLnkdFRjaq9vuy4YT8hAARB1RzgUl+WVysebNRPyI8WxPhsw9CUUieHQgwdUAyN3MffGWLD0N5XDLayOB+4LPYT8p2qpqEG2jaYm0YMPTi03+8ErH5CVSsF6SfkGLphPyEA7MnlxkZHqaouGkOjA9p1/4P9A81i6K6MYgbeL2Lo/UX3ky9plCO2ZcTQIOhflgVDZxVlT9/uweGH8avmj6EBICCG5o+7p+/BPX0P2voGMfgcW7WBAeENhJhQdvYNAmOo3QCAoUJ+R2+PLauOoWOnXoP3DSqO94R436CTL1NKXfsGQcDceBN+5kO8KeMRSS4W8lkl46Pd4Dw0ny/gD7KrdgMA8N+IXH+f7aKcUW5+Ofm8XUABXLsxOronl8MGQn5KonZDPFWVara2QIwtx6oTHD1/+dGv3b+7/+HhwiPDRbt2Y5y+e20bAwZCkyFY2o2zl6fEH+dxjZ7QqFO78dmdvV/Y3f+FhwYeHS5iReHB4cKnd25D6TPfiTYe/MiLeMn5fH5s9Cg+2/l8YU/fQ4ND+xmRRLm2SrXWdEc0Fg9/8wxniRMC6HDeinP8+HGrlhCEmLPTzmFYbBo8GDRzEGcm/IVvAEQBgFlKDQAgaOdg8/yOyKAZExl0hJAWxmZFBk1InDHdMCYAgJAoY/PIoA3jiiHElrGWUDcmTUHu0RJda2PQEak1IrXqxpTIoLGWcGb2nE0JnW69YWr2pen6WsI1bXdU5y/N6RNz+mW+vjr1IYPN22oJ49GVM/oFVwbNawnXxD/w6kztP1a3fuBXU0edtYQpef05R/2gqxIaADbGP+ysJXQqoQFAm3wUldDvT37WBOaqhL6sn/7NbOnX1XFEM67oGSPPNvTsL8p4qXripdmTrv2E4jSFnl+qntAmH0W7dPDI8+nqqZdmTzZMPbdFNk1aFg6b6Dk4egbCED1vjH844F1MYgZPPQMAip6XiJ59ZhHo+YXLTxpstkXuaJFXNNz/eqeeOXqOt6z13xwcPctS4k1Hz6Y5oxsXGRgA8AajZwDg6JmAjK/zHtsCpZ4FptwQPZuWDMq2jdVvw39fGns59u3bF6LncH57Bj8bF43FfcTQxw5/59jh7zQ0cmSVTHDps20PUmAecy7m8z4YGmPOlKo+GWFbYtrr8hUlqygKEOLPlwP2EypKNoigWXwqfGg1AARJauPjAgB3hvgckGPo1lSbV7Dd2rmAoRu2DgZPQ9cs0oTEO1Y3xNDZTGZPf9/g8MGAGHrP7oc40BRvVbVxRfj4Pz7/i8bQ/puhSQxd0ugDfQPnJqaaxdCMwaq2pBeGrtu/NAxte4NkuTC0Sqn1TsNyYmhBbnBgcOgABp+zXZ2qNv7dQ98CgKdKJzD4HF+5HoiUzXRhgNelb9AinkOFvKbRJ0dGM/hyUd83aHNxiH2DtqeO9w16+Su8SgVtmJtSVckq/CavezHGMoqSc2g3WlNtqN2w3cVHu9Ga7gAAJ5XGK3JGuQv5PJq1XbUbM9a6SmsFsK7aDetU7YOx5f/4hT8Ug88A8PBwUTfhl69esWk3/vU92//kwb4/fqD/6XGNvzezq7eHazf4HBwubMkoL9c3GaJ24xuHRr7w0AAAnCzRzoxycLhwUqM26fOBYmFco12Zunx6Pp8HxmYqU+KlofTZFnzu7t0RSp/DWZYJAXQ4b9HZu3evxaBFlTM4KgfFv+E5gxaDz1DPoPEu88JKBIA4GbR4R0JaCIkzNi0qoQGijOk2Bg0gYS2hJCVNcxoZtMmqTgYNAKZZx6AZM6pzC/FVSWqV3Bg0ryWUI8l5YwosBj2rT4gMGgA6kjcnY5sxAc0nHb/OWUvY0XpD8FrCpLzu2nT3ueoPnEro9fEPna1+zyb5Re3G81NPTi2onzeU9Vfek9oFhD1X+TbXcaTlTTcl7xaV0G3yps2x239c+eZL1RMAcHV8i5cSGgAAWLMdg16iDI6Jt7T/qa0t0Oc4XtsAYFJ/WTzmVfHb2+TNk77KZqhXZ/yL5L3BhRvNdww+81zl24ieN8Y/LKLntLyxXJ+q5nfh6Hl9/JYg6Plc9dkfTnwdANC28ZZCzxs7PpqOXxeTO8Q3bJwTHD23yG2V2eVBz6J4h0+TqefXpmdfikitS0fPkoCDF4GeJandvzwwIHomJNIUemas4kDP9t9/AqNnw3rvsyEsNi0TlOTt3ODomTTcFqaew/mtnToxtFZyksEgYmgACCh99t8TEEOPjI6NjI5iotDruvih/K3KNTkDIcGKB+vE0Kpqzy8HFTRns2NjY2BBGZ9LaIihKVUxUorOEH+YDgBZRZmpTAEQG4a2feIeLAzNgMTbVgbE0KqmqbTUEEMfO/Kkqo37YGhVK2WVrgWL9BIwtFoad/pJRAwdRLLBv3UB4N7t2/CD9j7TbBqaY+h7tm8rNTo4CBIPG4bOeJhYloKhEXeKs3QMDVZgeXkxtOXi6Nyz+wEA2LP7AbU0ToB9cff9n9z1aQbk2KHHB4cPqqUTPGXv1TcIAEOFfEc6yQAOjYxydunVN2hLN3MJMlhg2lWdzBtWFUVxfhLCFXMDAFUp1264VhEyxvocqmjUbvAorjgqpYqS8dJucCqdLw7hmXhdEX9f0IaeawZkgD2iJltVKaWu2g081dxAf1bJZOqlGSePf9em3fjyo1976uQzXtqNn5+fRPrMmwxXppO3dykifR7X6IYVqXGNbumqu/zP7uplAH9nmaBPlGhnRkHtxhNHjorR6Xu3b5MIHBoZLWm19sWaaYSxOu1GvqBSmuvvs9Hn0omT4e+f4SzXhAA6nLfu1DNo15gzsYCyLRlt1oNpsKJqfA8BmAcgQhqaMJjlxyEgA0QYqwrwOkJInNcSEhIDmCckzphpWm2BUGPQLYYxIbqkI5EOBqaNQUek9Jz+Kq8lBAA50uasJYy3bDKZUam+KF4M1hJW586LZCrdeoPJdGct4Zw+wWsJazvrawnb4zdOzDwfl1dds2L79Pw5G4PGWsKfXv6rpLyeW6GT8rpr03e51hICgKv6eUP81l9YDDolb0QPw8b4h9Pyxucq36ln0DUlNAC0RTYBwHuTn54wXuYM2lUJ3SFfxRPKwdEz1I8TEwNAm7zZxqC9hNGu81L1xEvVEy/OnhCPiZd2xQ3s4nDbhgnmpvhHAqJnAHh59lSz6BltG8idnanntLzxSv07Cty20Sx6Non+3hW/t7b1A1P6uYZ3CYieE/Ka6flXYcnoueH+5lLPs6cBwGTmm5t6BoDZ+dfK088x00jErhdfWJzzeqee69GzSwC5mdTzLGNzjOnNoOfYcqSeDeufEtbo1ycRPftDamjEskP0HE44AIKRY+vWrWhNde7xF0OjS5qzJx8ZRZA93LbR623bwD2KojQUd5Qr0wzAP0e8p1YV2Lh4sGE/oU3Q7N9PqChKw3ML6K2GBbjcwBkCC7Fu4i+GBoA9A30z5QkGJIjuOZvJZJWuu7bvDKLvQAzdUAy9LBjafXNgN7d1Jgp+6P5AsRBQsoEY2hUrlzS7zeOBvoH7+wb2FwtLxNBeswgMTSlFzYJzz6IxdC6XyyqZweGFasrlwtAAkO2q/dWAt97ZtQUAPrnr0+jiuGvXp4BIxw5/BwDu2nF3RlG8+gaHCvmhYkFUD+PT5dU3CN7p5kIh75RUgKWKzmaz2Ww248aRPZg1LRbyPtoN0VvN33rh2g3bmzGD+UJrMpVVMl7aDSeV5o4RJ4Lf1tNzdHQUAGwp4J6enmw2u8cmg6ZUpVpuoN9Jnyml2JqoUg3NJyVKd/X2xKoT//B3/5e4+cuPfu1Lj37t9q6MTbvxr+/tZcD++xNHxM3DhTyl9OzlKZE+o0zjvt39AMCbDB8ZLmxemb6jK4PBZz6YcbYFn9e2pzKK8lB/rmRluvGScwMDNvqcLxRsT3V3745oLH78+HEIJ5xlmhBAh/OWHotBu8accXhezJaMdjqjnQxaPGwEQGYwLzBoCUBirCqg5DoGXdtGWgBIPYOWCUkyNi8yaElKMDDnhdAx3pfXEuLIkbaIlEYGHZFaTXMGarWEsUr1Rd1YaCbEWkKoT0fGWzbIkcREpU4JDQC8lnDh7m61hACwLn2HCXMvl/+nuLgqfvPm9NaKfm66nhtem77LrZZw/btS28r6y2cdOo4bUzvR/Au1XG2NQb8ntctVCX1q8rErRk0J/d7kp0xgP658EzyU0BP6aSTRruh5Qj/tj4y9MDEAtEU2cQDdUBjtPCZufm/yU4vrGAyIns9Unz41+RiaPZpFz2jbSMsbA96F2zaaRc9r4h9ouP989YdNpZ5b5bXT+qtvKfRcmT1tsnmTzUcj6WVBz3Ikif+xaPQc9fWKNIWeAeDNSj0DAGOzpllmzGwkvlh29Az16Bkfmrlt402D/uiZ370xeg4/8xhOOHwQQ3/sE5/0EfUGEUPncrnR0VHVN1sq7vE6H7RtaFRN+zby8cS0T8x5IJdzFUOLDmhXX61zRAydLzQWQwcpHmworYZ6DO1zpRDYGQK1WHdjMTQA7BnoC9hPaOmeu+7avjNYbrpvcOiADUOrWimbybhvbhJDq9q4/5MQHEOrlHZlFJRgEIC1gV3PyKyDYOXOjPL44aOLxtBdHn5qcZrC0BlF6RvI5b2/OReBodG9MHZ0JJcbWEYMjannweGD2a5OcOsbvGvnp7KZDBp479pxN5DaH7nYN3h4ZFTsG2QAonp4uJAfLhbwZ1C8QKSuLllglQIAGjmmHDllsDDu9PR0LpezxcwL+bzmJlYGy27hqt3o7elmgrdaoxTBMZb7uWs38gVKKWru69Y9tBsq1fCVx/YkgGURwSullPIENNdu2OjzYD6fVTJImYXjU3whGjta++OXUppRsqjd+NiH32/Tbnz50a8dPfm//v39fU7txkc6M3/8wMKR/+JAEQB0Bt96su5iDw4Xxi3p8wmNYtL5keHCI8NFrt3AeXR/4fO7eh/sG7DR5wNDhUNHRh/qzwFASVOz2Ww+n6eqakuaD+YLACyrZHL9ffzJbE13fOzjnwh/BQ1neScE0OG81Wfv3r379u3ziDnjOBk0T0ZD/R/5Rv1BIo4VmcG8VUsoIbwAMESUTEicMWaa04S04LrFoCcZ0609siS1MzbPawkBQJIShETnrVrCSCTF2FxUXmVj0JIUa5HXzs2/ZpgzPLHYIq+Myh3Tsy/YGHQsuqY887yNQcdb1om1hNFIWzTSxmsJF+4u1BJ2tN7ASXR7/MZYtMNVCf3qzI9cawl/NPHfpha6BzdU9HPvSvUyMGzqZ1RCT+mvPD/1JA9BA0Ba3vjhjn/nqoS+op9BBg0AV8VvT0c2/bjyTVcl9LWxLRP6aSd6RmT8m9lxH/T848o3G2LihsJo2zExRm0Cuyp+++LQc5C7XNHPcPS8iNRzENFzWt6IX5ogHYPieKHnhLy+4paARvRsED24cONi9ae/uPwNAFgu9Nwir5gVFBzNoufLlZ8ieo63bIi3bJg3yj7735jUs4ieJanVFoJuCj3rxpXq3GkGpkQSbyJ6JqTVpzwQAqNnqLn+A6LnuWBxZr2ZpkGnFVrcY3L0HP7qH044ttm7dy9jTI4nfAwJjcXQAaAe3wMADW0b/kYOTEMDgA+qtomhvbaJGNonRIwYOqsohYIfDhYxtI9tI+C58QMCgL9XBDycIV4XoihZlWrdvTswye6xs3E/oarV7l7TPQME1ne4YGi/zYExNAAE8Ww0m4ZG7BsQQ3dmlCeOHLVh6HHvPsPFYeiujKJRujKdHPb20vAJiKE1SnkaerkwNLXa57LLgaFVbRwxtFoa9+kbBCJVJ16r9b9JkZmpKxhWxeDzRLmCigbeNyi23iF9BqsGkI9XBR8AUKpSSl37BtFfQQighMd2L+wbdIqVReu9q3ajS/BW8xksFCnVXLUb6IsfGz2azxc4FQWHdkNcx4d21W7wJ4e7R1y1G7jemkhQx88XajdsOg6VahpVTx7/7j984/8S6fNTJ56JXv2+C1Lbf/vW4e+Na7db6oyvHCh+5UDxvz9xRKTPjx0sPj2u2bQbAPDpndsYY988NLKlSzlRohh/fmS4wABeulhngn50f+FkSdviyD6Pa/TilQrXs2iUovQZ/2mwLoG2JlMATLyuUPoczus3IYAO520w6P7zZdDOFeff9k5fBzdEc8+GBCADmPUMOupg0FhLWLdCSJyxCmfQAAAgm+asjUFLUkK3GDROVF7FmDk3/6qwLYa1hOLZR6TWeMum2fnzohI6IiUjUrI883x1bqESEJXQE9M/QyV0i9w2b1yJym0diZur85dEBg1WLeHEzPPioheDBoCp+bNOBn1tuvtXU0edOo6kvO7Zif9qU0LfkNqZkjeerX4P6ocrofkKKqGv6C+frp7Clavit/spoeWrbOj5h5W/Qwr8/uRnfUTPm2O3+2PiF2ZP+AijXY+JMWqfY7bLmyeNhcLAZtHzmerTZ6pPvzx7yoaevZTN1r2aQM84Zf2Vsv7KsqBnrxHR86r4e4OjZwNmr1mxPS6vqtZ/tsA5r3fq+dUr4yabj7esRfSM67oHgG4SPb+qG5V5/cqbmHpG9Gya83JkFQE/+BsQPRMSMc2qaZYXjZ4JidS//uPOYKln0FmNFLPA6Llh02BT6NlnW80cbZHn8Pf+cMLxHPzlUDv5tBcTtImhXQ/CoZ6/GFpRlIFcrrenp9ejMLCpfsIgqLphP2HN0dyonxAAZipTBJhPIyJY1NgLz3mdm88BkfcBwLaebgxFul9FMGcITq6/L9ffly8OLR1D86npnmmpWQzts5NvziqZu3be0xBDA8DY2JiSzXb39CwRQ1NV7ax/qpeOof33LzoNvSwYWqMqN/AuI4ZG9wJfXyKGJsDiK9fj9wD2DdqCz9g3iOg53rGaSRFEgZRSjVIurAChb5DTZzQ/AMClct2fjWLfoEe6mfoYOXK5XK5O4kEVJYt2aS9mva2nB+/S74DgRSG+zWeopmQhIgzFQe2GoigumWgP7cZgYShfHMIXaueJORG8l3ZjMJ/v7ukZGx0FgFwdkC1SSseOHrHpOAAAtRt3blnIAH350a994vP/57+/v+8P7+8DgGdOaJiARu3Gz89PfqRz4eQfO1j8iwNDAGDTbmxYkbqjK3OfsHhCo5tXphmAGHw+UaKf29VLAP7+0MgJ6wdwXKNc+sx3ligtadSp3eju2YaaEXz5zSqZUPoczus6IYAO5+0x+KHLrVvvdDBoW8EgOKg0cUtGm44NIoOOWgyaMDABgOBKXd9gC0AUYN4hia7ybYRECIkwphvGhHDHaCTSoesXDWMqIqVRDI21hHPzr9pqCeVIu1hLiAxarCWUIwnDrCRi187pZRuDXpH6kK2WMCq3dSRvrs5fem2qjhSn49el49dOzDwvUrz2+I0etYQfNcB4oXyM+6DBqiVEJXRSXs/T0OviH3pXapuHEvrDr1S/V65n0yiCeGbya6ISOi1vnDRO/7TyOK60yZu8lNCiKAPTylfF7mjYMXhV/PY2eRO4DW/zwwdy3eN1TP/NeCGT+suLRs8I1m9K3mNLPacjm2zKZuteTaPnV6rf+97EfzHBAIBlRM9JeR1PQC8RPbcvt3AjJnfM6pcXgZ5XpD4Ub9kgR1L++5tFz5OVnzBmtMirIpGE/+Yg6DlC4oY5s2j0jKlnQmRWV+Jam+CpZ8aqjOFbei1vcOq5Hj171f3hvPHoGTh6Dn/pDyecgFMTQ395sHDwUX8MjZ9590HMQaTP+PHttHew11UMTR1QNQiq5qgXAAa9iXDwfsKZylQxGDVmDESy6Tx/EUP7Z5yx8BAP0jDj7I+hKaVZJVODy8uKoRd0z7QUxCKNGFrVSoPF4WCujxqGdt2jarUGQvxSLguGdg7H0EH6CTmGLml0XKNB9r+5GFqcZcHQAODWgblIDL3noQdmL54lwFRtnAC7M7NFDD6rpRM8+KyWxjniHCwUVar59w2i+QHT0FzvC46+QXF4utl1tvV0EwKo3eCLqqoqioLaDS9m7bwXAFCqcu2GrXxyqJDXKFWUrKt2AwBmKlP8JpVSpKKu2g0A6O7dAYRklYyTPoNDMMJfsly1G7guVhSK2g0RlKM55M47bnPVbvy3vz9co8/j2u1dma8cKL57bZtNuwEAjx0sMgZ/9fgR8aMGB4cLDw8VULvBFx8ZLgLAF3b3O7UbnZnM/bsHTpQo+m3w3SOUPvOd+4v5Xdt7svVMfzBfoFS1UfVQ+hzO6z0hgA7nbTMeDFqyaAJfAUcyjjmotG0lUs+gAWopv4UVhBoOBg1uRYV6/bY4gGQYE4zNWytRWV5jsqphLgQkI5GUFEnN6XUMWiIxw5zxryWMSEkASMavmdPL5fogM9YSzulXKgKG7kjeHI2knLWEAMBrCWsP5KglXNn63ovVn66KvzceXf1CeczBoGu1hGLFXEre4KqE3hC/FQB+PnXolfootFMJnY5sSkc2pSIbflp5HFv7UAk9YbxsU0KDo2OwXd4M9RMQE3P0HMRr0Sx6xuNjrLtZ9Iy2DRPYpvhtr4dwA4ej5w90/Jt18Q+lhDcVvGYRqWcUPS8dPcejK10T0M2nnn/zysRxAFgEem548MWh51TrjS3RVf6bg6eeAcA0ZxaNnn2O2Qx6rjJmAjB8f85756xpTi+zcGMBPfubNIKjZ7as6DlsGgwnnEVOQDE0AFD1qUQiEUT67LVnIJc7OjrqXyqIMWcAaIiqOYb2ujRFySJU8oeMQfoJAQA/5x4EQwcRQ+MlsEaqDUQ/QU5PxND+mW6Ey0om0927o7t3R8OdIoa2iZuFnUiWdw8WG+ems0oXAChKpmGZIQgYOr5i7eDwAZ+dUI+hfd54qJ2GA0OjA9prP3c9B8TQXRnlgb6Bg0OFT+0ItL8hhi5pdae3dAyNBl7nzqVgaFVVkdNhB+ayYGi1NL7noQfwCE+VThx78vFsphODz8cOf0fVSnftuJtJEUSc3InMH9TZNwgAw4V8SaNcA61RFX/WGvYNYrOo7UMJCKaxgNF2r3w+TyklHmJlxNn8XpiVxpt6e3pctRuY4wYAG31WKUXthrjO6bOXdqM13WHTYoBDuyGuA4BL36BDx6FSil8Lp3YDAAYLxXyhCAA2+vyJz/2fqN24Tcg4nyppXzlQ/JMH+0T6/PS49p517YzBHz/Q//Q45e2CB4cLjLGXL9UZNh4ZLpzQqFP6/Ohw8e+fHLl/9wAAPDxcrLWPCtJnnP3F/AnNrtLu7tkGwESqni8UVaqF0udwXu8JAXQ4b7NxMGjigM62ykH+Te5k0IZQRRgBYFCX7ItYkmj+SMigK8Ji1FFUCJxBExLHukIngwaASKSDkKjJRNzcIsur5vRXuRJakmIAQEjMxqDFWkIMQQNAMn5NRGq1MWisJQQAsZYwEdvsrCVskTvS8WsD1xK+96r0R18oj9l0HNem70pE1wGAyCtT8oZ3pXrL+ss2JXRa3nhjamdZf8XGoNPyxvekdjmV0Btjt/608i2u43hv8lM2JfTVsTsuG6ddRc+T+stBMDFyYSd6Tssb8VEWcUzXh0B0tTkWiDuDgJ7xrHzQc5u8sWycAYAz1WeWjp5xMSVv8ALQ56rPNoue8XuGi54boueL1Z++rqnncvU3iJ5Npq9puyMaaZur7/C0TXD0jIHopaPnSCRhCPJ3PsHR87x+eV6/bDKDMXOJ6JmQKH8dM80Z05xpCj0zZhLSQkiUMcNj5yxjs4yZhMi+6FkCMIKjZwazDvRMHG9VNpt6hiWgZyZuC9FzOOEsfUQxtHsUWsmMjRweGzlcyA82lD774FcuTW5o2xgZHcWoZsOYsw+qBoBcLjeQyw36EmGvfkIb8EXI2xBDi2Jon/MHi7YzAH+oHbA+kZ8hADRUi+wZ6JspTyiZTGu6Az+Y733MBQzNHdAeOwNhaJWWskqmdgJKpmGZIXDXh3bChqHVUknJ2hEqYmiqqmIznuc5Z7Pc4AEA/gFk7CcMiKFLGkWsvCwY2kaf+XAMvau3p+TrYKldgoChhwqedhdYjjT08mJoAGBAjh16XNXG79r5qT19D/G+QSWb5cFndCJns0pGUbz6BlemkwD1ggWNInV1SpABgFLVNd2Mg6ro0dFRL/rsFaa2yTowK80P6NRu8MvZ3Z9zaje6e7a5ajfwgw6u2g2qabwnUKUaZ9+u2g1cp5S6ajcUgUqrqppVMkiZndqN7m290oXfzD39nTtvfR9f/PKjX4te/b6buz6OwWc+//nhoY90Zn5+ftImff7de7f/8QM1JP30uNbZpYxrdMOKFGPsvnoT9Gd39Y5r2h1dik36TADO1HPqA8WCRECUPgPArt4emVgq7dwAWNJnRcnUS5+LKtVC6XM4b8CEADqct98cP35837699QyaOMQakpVQ4xtAWAEBW4srBGBeOE4EgDBhhYBMIFqfeiYeRYWmaVbEFUKShjEhKqEjkQ7G5uaF8KZEWlqiG8RaQonEIlIsFl1XnTszp1/iO5FBO2sJI1Lr5akf2GoJW1vWi7WEAJCIbbbVEsbkDgDgtYTiE86V0AAwY7mqW+W1V6U/6qqEXtv6gV9NHbUhy3elepPyuuennuRK6JS8sayfvSG1kwH8fOqQuJkz6Ocq3+ZEFZXQk8ZpLyU0ALRHXCLPL1VPvDh7Igh6NsF0TT2nI5smLb9H8GM6H+LE5FcQPW+Kf6TZ1HPAjsG0vKmsv3Km+gwQFhw9v1L9nit69hlEzybRm0LPP738VzroK1sb553BQs8GzPqj55i8qjr/Gv73ItCzyXREz4nYZqg50ydd9zebegaANz31zNGzyQw5kvY/bFOpZ0TPDIwm0XOL984aembMJCTq8/sJY/OMzQBAM+jZnym/Ka5nFqLncMJZ9kExtJ+RQ8mMjRze0787CIbu6enBWJxzgmBoXjzY0LaBiWmfPXhKTWHohv2EiKH9w8sDuZyiKP7nDwADuVwQMXTA04MF8AecVmMQ0mXnQN/YyGGqaUEwNFaZBdY9B0pDI4ZmQAIelmPoIGLosdHRgBh6Ty43NjqaUZSDQ4WGruemMDRYWHl509C2ebB/4IG+gaFCvikMnVGUZZdy9PT02KD2cmFo3kDo7BtEA2/3tl7RiYy41rVv0JaG5uPaN4jgVUw35/N53sjH+wazjjdC8NUv6xArg4esAwAopelkgjF2eGTUqd1wXg6OU7vB17t7tuX6+7y0G2NHR/D/qpaBxFW7AZYnZHR01AG+a9oNkUpzCfjM1BUX7cZNm7/4B/8KAJ76/k9Q/fzlR7/2pUe/xrUbOM+Ma+/f2PHMCe2/P3FEfMTHDhZPlbTnzi0g6afHtfES/fTObfft7q/XbhQ2r0zf0ZX5wu4FUnyiRK9elSYA94t66BI9oVGndmNVW3Jrtsb0a5luQfosXldp/ET462g4b8yEADqct+Xs3bvXjUGDIxltWitM0D3bGDQ4GLRez7IZq6PSEjJoxuYIwdw0eBQVEhCsHYTIhCRttYSERAHYvKOWkDNoSYob5qwkxWPRdYY5bWPQ8ZZNhlmxMehE7FpbLSEAyJEUryW0HsWvlvB8+aS42B6/sa31XZdmfjqtL5QltsprN6c/OjV/9oXyMaifpLzeq5bwFwKDxtkQvzUlb/zexH+xKaHfk9qVljeemX2Gr6flTTcl7/FSQrfLV/FaPwB4qXrix5VvorDivclP+aBnjDybYDb0WiB6bnhM14cAYGjb4Og5LW+6YvgUBjaHnsFKPQMAELYx/uHg6NkEY3HoeU38A02h5xtWfHZV/OaG+0X03B6/sWHquapfXDR6TsQ2I3r2mabQc3XubHXu7OWpHzDGYtG1S0fPEanVsF40Fo2e/elzU+gZADh69qHPi0bPPsFnCz0zAM+j1XYuP3o2gqFn/Jei4TYAgPB3/XDCeT0mkBhayYyNHM5muvy7B6enp7PZbCLhaeFHDK3US5+dw20bPnuQ4fqjXhFD+xBJsZ/Qaw9YGBr7Cf1VzkHO36ef0GaRDl6fuCc3wMXQvhdSy7ZTTfMXQ6tUy/X3jY0cVrXgrYNBMXRThz125MnB4YPYT5j1zvDic4UYOojrGQAOjYwSAmsCVA76Y+hxjXbWB5aXiKEPFAs+ehB+Pk1haI3SZXdDK4qSL7i8QbJEDI3vN3j1DVqqhwUncj5fyCiKV9+gyHBLlK5MJzVKvfsG3dPNvDnQNficSCRQVWH7vIK/rAMAxNZEPrb6xOFinqdxndoNnMF8AV86gmg38Kce9SNeuDzXSLthPW4+n8/bEC1Y2o0v/sG/RPqsPvuTO++4DSztxo9fmRC1G197eOjffGbHbZ0ZsW8QAH733u0ofbad4bhGX75UttHnR4aLKH1+dLiIDBqlz/ft7hfp88PDhc/s7O3K2OnzcLGAbzSCQJ8pVXlmHKd7W2+0JRZKn8N5wyYE0OG8XUdg0MxKQNtcHNzOwepXzHq+TARfB65EHAxaZjDPQOcrVurZEMLRLkWFaOFgTLdWZEmqY9DIZSQpoTsYNGPm3PwC7XVl0FhLaJgVXksIAHIkYaslRPaUbr3Bp5awRV7BjRzp+HVROe1UQq9L3wEAF6s/Fb8Qm9MfjUdXi7WECXk9ALx3xe+hElrcLNYSpuUNnERviN96Y2qnqxIaKaqo47gpeY+rEvql2RMoyuBmjM2x26+K394QPQfxWrw0exKPaQLzOabrQ3D07Djspiu6C4BeHHp+ZvJrjDBGWFremJY3NryLiJ7XxT/kg56T8nr8Si0Xek7Ia2aE721xmkXPk9VfzOoXAeCtg56R+bYlbpYbNQe+MalnET2Lzh+cRaSeAQBADhB89kHPNbvRYtEzyqOdDg2AJtAzs/7XED3zf2Vs24hjG7htsx2tlnpmjHlvCyeccJY6gcTQA30z5QmqPuWD9pDOUEp9sr3+YmjM5fE0dHAxtD+GBgD/YGytn1AIEXtsG5ipTBFg/uFl8fwbbguShg5Yn8jF0AAQqHXQt5+QahpvMkReHLB1MKt0ibpnVdMUh0t6EYfFMsN8Pr+8lYO7B3KXypVlwdDOWTSGLmkU/xfkfBaRhm4WQ/u8m4Lfma5vkCwaQw8OH8xmMl59gwCE538H84XWZEql1KtvUDwfvu5UkXBBszPdTLEVlKquRo58Pk9VdWx0dE8ux60a/Jj+sg7emshHo9RZn4jjpd2oUWlC8IWu7i712o26K6LUqR+x4fJ8Pp+zml1t2g3rlPJUVQHASZ9Ru4H0GQCe+v6PAcBVu/G1h4e+d0L7y28d/iNh/bGDxfesa3f2EP7ep7ZvySjfPDQiLj4yXBjXtJculm3S55Ml7cylso0+nyppD/UNiHlzlD7PVKbEN7dUSlH6LF5Ua6otlD6H8wZPCKDDeRtPYAZNHAwaHOlpo34FGbRhgRIJQAYwBQZdSz2L5yMUFS7UEgJEGKuIYFqSkozphjGxcEcSjUQ6dP2iIagzIpEUIS2mWdWFnbHoOsbM6twCtYxIrRGpVTembAwaawmRQcuRlG5MyZEUMuiJys/E08ZawnL1N3P1tYTJ+NVOBt3ResPFmZ/YGLStljApr6vo5wDg2vRdJjF/NVX3b2pK3vCBjn9T1l8u62fFyHPKWwm9Mf7hV2afsSmhU5ENP618iwNcVEIDgChlbpM3gds01TF4pvrMc5XvAAAec1nQs/djLR4939LxbzfEb8U4uS1LbptXqt/7+dShIOgZBx3QKHpeltRzq7xGjNLjXKz+9OXy8abQ82T1FwabN9g8WEWaPhMQPXMH9KLRcyy6JhZdAwARKWkIHp76/U2g57n5iwDw5qae64UbvtYLVjXNyYapZ6jR54Doeb4ePXvsDIqeg0ucedOgVI+b6x/W/o6m59FC4UY44bzBg2Jo7eTTd+24W6WaK5RsaOQAAFSg+kDV4GLohrYNEUMX8nnn5+JxcrncNPJl79NGk2luoC+fzzfE0AH7CcuV6YZGDhFD+2erA9YnAgo0Bvp94DLf1hBD1+0U+gn9zrNWJNiFumd0QC/9sFhmGJAsN8TQtgZCEUMHxL4ihi5RewJanEVg6M6MgscPIuUIgqFLlIrQrVkMbXr0Z9ZSt9YbJEEwNP/W9cHQ2UzXnr6HvPoGOYEdzBfyhcLY6Kj4cLa+QXEdAC5eqezud0k32wTNfDCnjGDadpOqqviBDzdmXbNIO2/CuLTru+qo3XAKQzRKVZWCt3YD0TC+gvGbbNqNhbsUiirVnL2LiMudkN1Vu8HXc7mc+KAqpa2pNunCbzh6rq0/+5OnTj7z7+/vs9Hnf/PpHQTgL791+LbOzFcfHvqTB/sB4LGDxb84MPRXjx+xmaBvWt/+9Lh2X71h47O7ehnA3wlI+mSJPjpcJAB/X8+pP7OrVybk20eOljTalcmCFZNH6bPtKXVqN/KF4vHjx8NfSsN5gycE0OG8vQdlf4JnAxx8GQT5Bo6NQRPrg9Wsfo8sqDzxIFE3Bh1hQnWhG4M2CElgLeHCNquWkJAoqqIJicryGpNVbQxaiqQAwDQX7huV2221hJLUKkmtJjMq1RfFJycZv8ZkBtYSIoMGgHTrDXIkYWPQWEsIAGItYUzuWJX6kLOWsKP1PQbMv1yu+6iOrZYwKa9HGL0m/oFEdN2vpkacSmhWj+8BICVvvCG1s6y/YlNCA8DG+IdRCc1XNsVvuyl590uzJ2xKaEw9g8c0i555iV9a3uiaVvZ6iIDoGRH5merTS0fPQe7CRc9r4x8Igp4B4Hz1Bz+a+G8AgKLn10m4gR2D6dbrm0XP6fh16fh1LXKH+K1rm2ZTz/PG5BLRs+/+5tDz1MwvTGZIUtyfEb8x6BlTz4Tg+3P2EdBzshF6ngOAZtAzWz70bAYwaUA9evY/IP93x0f3bO7bt3ffvr3hb/nhhPOmDBo5tm7dmi8OuRLJIGJojpgRQ7s+UHAM3TDmzBPH+XzeSxICAfsJEYo1wtCu/YRUpRnHh/qDxLT5JeBLZENhSNB+wqMjby6GPnbkSZWWVM39zYzFHbapgLPPZqqqzi8WYuiDQ01gX8TEB4YaRKdhURj6Cev4y4Wh7XcJjKH7B3KTU9NODC2GRgNi6HxhqHtbrz+GVrWSa9+gSGAx9jszPc0Jr2vfoLiO1oWSporyDZ++QXw9URTF9aaenp5cLidiWbRFOy3StgMODOSUrOKUPmve3By8tRsYvgY0O2cy4KHdwA3d23qpJYAWh+NycZFSii+nexw6jtZEwrmOahSu3eDz5a//zVPf/8mPX5kQ6fPXHh56/8aO2zozf/RAHZJ+7GCRMXju3KSo43jsYPGxg0Ooh+ZFgo8MFz67s/eOrowt+AwAnZmMLfi8aWVaySgP9g8ANnwqyv5iftf2Hi595k9pvlCA+kw3lz5v3boVwgnnjZ0QQIfzth/8lKUFC3CcBYNQz5fBjUFLjj0R6/9yVBoFAJE440F8iwqjALok+THohceLdNgYtERaIlJ6dv78vL5QjGZj0BGp1TRnsJawUn3RWUuIDFo3yrgYb9kgRxIXrpy01RImY5vFWkIAiMkdtlpCLHzriN/YEl3xcvn4TL0S+sYVn8dawmR03bR+DtfXxD+wuvUDrkro9fEPPTvxX21K6BtSO1Pyxp9PHRLUzxvL+iuohH6u8u2yBYKdSmivuaKfWTR6RgdIWt6Ifo+GD7GI1DOaPd4Y9Iyi55TcuEMP0bNBjJtX/E5SXscVKz4THD23ymtAQM/YMRiXGwBZJ3rG9ZjcMadfdu5vFj1Pz748Mf0zAFgW9CxHErpREfYvBj23xq6Jyu0SiZvWG07OCY6eJRJbCnr2mqbQM2MVfL0lxJMpO9Cz606Jgdk8embCNte0Ms9HLx09g4ieQ/ocTjhv4tTE0F/6cnH/QS8iGUQMzaXPPt7kIGLogLYNABgYyDHmF3MO2k8oYOhl6ScMiqGzSjaTIabuj1abxdCKonT37uju3eG1DawvqJLJ8J0q1VyTy8F5cc3Ikck09E0HOaxKSxx3LheGdp1DI6N9A7mmMHRXRjmh0eCSjYYYmq8vF4bWqOollV46hhanIYYeGz2ay+X8MTQAuPYN4mbUbnAjhKqqGUXx6hvE9UNHRrnzV6NUydYq+LwEzVx5nMvlnJ+rQO2GMxQM3jlivBdj4IweDxXyXLthuwuefNZXu8FPj6pqVsl4aTcscbaSq1/3ehLwVd1Vu9Hd08OpNwqg8fja2JOidgMA1Gd/0vKRu//hn8/ctqXuleRrDw/954eH/vJbh0X6/My4htJnm3bjsYNFQuDn5ycBYEtmgT6Pa9o3Do3Y6POjw8W/f3LERp8fGS7ie0WA9Dmj2KTP1qUVqPrUscPfqQuSh9LncN7UCQF0OO+EsRg0OD4KLTJoW0sh1DNojhJYvVgjYmmjxRXCGTSpfRqduBUVzom1hJKUAGCm8JF8QuKEJBmbF2sJI5EOBua8IL4AgIiUNsxpG4OORddV587M6ZciUiuS6BZ5ZVTumJ59wcmgdQFqA0C8ZUO69QZbLSEARCNt/rWEcXkVSjk64je2tb77dD2DBoDN6Y8aYLw68yNxMSmvuzbd7VRCA0BK3oBKaHERPRKcQactp8TG+IfT8sbnKt8pC2FkUQndLm+21fqdrp46XT310uyJIOgZS/xs6Lnh4EOcnj3ZFHrGyDMDZgJrWH4onmFD9JyWN4gKDht6DvIoInpeE//fACAhvKPgOs2mngFARM8NN3uhZ68pV3/zysTxptDzhSsnDaZ3pBpHvN+Y1DOiZ//N8/rl6dlfB0s9l2fnz5hsNiK1+aNnAHhd0TMhrT6pZwAzAHqu7bT0/f7oGZqJM+vBmgbx3wgv28bCthA9hxPOW2pqYuiPf6K7d8dgYch1j1MMraoqwh0+KH3Gz6T7xJynKtMaVSmlAW0bzg0aVZWsMpDLDTRCjUH7CRVl7OgIAPMvAOT9hIWC56GCnD+fPf279/Q9lB/085xAPYYWT09V7QnHPQP9M1NXFEVpTXd4fSmtnX0z5Qklk2lNd/hsA4EXi7pn11E1LWAWGxaVhlay2e6enqYxNKVd3n2GyGSDY2gA+PaRow/1DzzcjOsZMfRBR3p6XKNdjkrDJWLokuYSz6+7Sz2G9tkpYmjFQ3rjj6EtWbk7hlay2ayS8eobHMwXMPgsglGNUvDoGwSAi1cqzq81aje8BM09VoTZpnVGgQaAi5FjMJ9XKeXSedsBUbvB0XMhn+/rzwHAUCE/5MbNwco+d2WUnLd2w3YXH+0GAFhAX+MBcC9cjkltW74bBB2HCOVVqnVv65Uu/Oa7/7nuZe3LX/+bT/y73H27+0VpBgB87eEhAvDTs3U9hF89OAQAf/xAn0ifnx7XblrfTogdSXPtBk9DgyV93lL/g4PS5wuTU+IPVEmjMgGb9Lm7Zxsx9WOHvyM+aaH0OZw3fUIAHc47ZLZu3coY27r1TodqwxTSzfgNb6sctA3fI64wqEs9R+qJM8Ju2cmgUS3NWO1ohMQIkUyzItYSEhIzzYrIoCUpQUh03qolJFKLyWaj8iobgxZrCTmDxlrC6dkXRCV0LLomEbt2Zu4cryUEAK6E5gw6Eds8b1zBWkIbgxZrCTmDjsur1qc7L8z8L6cSelXr+16d+ZGYmU3K665N31XWz4pK6KS8HgDendpR1s84GfSNqZ1YlAf1DPo9qV3PVb7jqoQGgCtWTvl09dRPK4+bYJpg3pS8Jwh6BsK80HNa3mhD22ChZ2Rb/yJ5b1Po2SQmPlDZcVivMwyYeuYO6GVBz/5T0c83L9z42fOXv2mC0dF6Q0D0/OLlI4tAz2va7mgWPcdb1oHgq3FOs+g5IiVfb/Qci24Kgp4Z0+XIKokk+IuP65jmjG5cfEPQs8RfGIWd84zNBUDPBsCc9QrfED0HjDM3hZ4bbwt1z+GE85YdFEOXTpz0QYeikcN1g83I4YOYFUUJaNvw34MPFwRDg9VPqLp9Mh0segvAGoqhs4oiEb8Tg2D9isBr9wJjaC/SZ7uQsaNHqKYFwdBjI4cBoOHOrJKZKU8oSgZ1z747gypBgMexlUxDug0W62wWQwNAQ09FcAyNNyH2bRZDA8D6jpQTQ7vuXzSG1ij1iTYv3MXC0O2pRNH3DZX+gVxGUdDG4PUuzuIwNKU05903CISIVBQDua7B5529Pbv7Bx5yGJ9LGt3W04PaDdd0s6ouNAdSSvkeLyyLp+Ej68jn80dHRwccNw0V8szBzcHhDKl/oDrthngCKqU2czFY2g0QnBLUCoC7ajcAAF/GFUWpK+WzIuF2HQel+ULxzps2O7Ub//DPZ16+VL5v98Ajw8V/f38fWNoNAmDTbnz14NDXHh6yVQ4+drD4e5/a/icPLiDpvzhQBIDNK9M27caJEv3crl4C8M1DIyc0ilT6RIly6TPfWdLoPdu35QYGbMHn1mQq27VlT99DADA4tD830B9Kn8N5i0wIoMN5R83x48etWkIc4hBrSAKV5ivgZvAQOTUeak44TgRAsogzN3jIDHSHJBpEnI0MmjGRQccBgLFZG4OWpISuXzTZnERaMEkdlVcxZszOnxe21Ri0Yc5wJXREak3G3+2sJQQAXktoLdoZNE5H8maT6a9N1aWVeS0hAPBmQmTQlfmzTgYNALyWkM+16btEJTS226XkDcign596UtzMldCvVL+XFor10vLGD3f8u7Jxxsagb0rejQya2zY2xm5tGC4+U33mucq3ET1vjH/YK/WcljdeERQc3LYBwDbFP7I49AwCWPc5vUUIN9LyxuVFz0l5XWW+7kt5ofqjC9UfnZ95tln0bLDZqzu2xeWVDfdz9Lyx46P+6LlFXjGrT9jQc8PjO9EzjhxJcV8Nn2bR8+z8hSvTPzPMSmvsqqWj54gUMyyBzyLRc4DUM6JnSWr3R89g9QcuX+oZ0fMMAAOIBkDPAVPPAZlyiJ7DCee3cQIaOfb076aUYqrOuScIhl5eMTTH0P5iaOwn9NkDAHsG+oP1E+b25HJDDVUhHv2KVKVYtYdjw9B+p2eRvu6ebZRS79I/ZezoCGLogBQ4yE7MTTMg8baVNgxtayBsCkPX4tgcQ2uaV94W6jG0T6qdT0ZR+vpzw8X8sC9mhQAYulQfWBYxdBCs/EDfwLmJKRAw9LjWoNJwERgaADRKg7uhL5UrjLGGGBo/u8AYLC+Gznv3DdroM2OgKIpX36AT4O4v1qrzXLUbXqWCYGFZV+0GXritCxEsaIvaDaU+fk4p3dHbwwBcg8/oErGM1RRBsEop8nfn6SH+5rHxhXVLuyGuq1SjKvXSbiQStXWRvCPld9Vx3Hnr+/7hv+Rt2o1P/vtcZeV136zvAETtxh/e32fTbvz+p3cQgNsc9Pnpce3n5ydt2ecTGv3C7n6bduPzu3o7M5n7dg+cKFFMQD88XPjMzl4ufcbBnxeot2nj99Wxw99B+lx7HgrFaEsslD6H81aYEECH806bvXv3ujFoHFNYMX19HTYGjf8Xq7fEe2Hq2b+oUAaQRLhMSIyQBGMVUQktSWnGTMOYELZFI5EOXb9oGFOEtGAaOhJJEYjOzp8Xawlj0XVypMOmiI23bLLVEkakZCy6htcS8km33mAyHWsJo5E2FENjLeErE8edtYSmozxwfbrTWUuYkNeuan3fqzM/wFpCPlYt4VGLQa/H/3h3akdS3vD81JNOJTQDwBy0OO9J7QLCbEro29r/EAAmjdNo20jLm8B7uG0DuXNw4YYoel40eg5wl2fOVJ9hhDWFns9Wv//sxH81wVwfrGMQgqWeE/K6iqXgQPSsg66Dvjm9tVn03B6/AWoy8Ute+23oueHx5/TLc/rE0tGz6ywOPZvMSMbfHZVXGoIPx+XM34DU8/KhZ556Boi8Dui5pRF6dgo33DrXm2DKLETP4YTz2zw2MbTrnqySySqZrKJs8xU6o/S54Z4BX1tFQLEyHooxSCQSPtlYBFKUamIS03F1wfoJs9mxsbGAGDqIGJpjaB/Gh7Mnl8vlcphJfIP7CcHKTatayYmhF30CIGBo/2PWNudyY6Oj1DeWyyejKIdHRgnAynRy6Rjavj+jfPvIUSlwutmJof1HxNAHig32IyI/NDL6UF8ueEUhVjL6YGiNUuSqy4uhVaqJwWdw6xsczOdbLakFFa7FJzsMAGj+9S8VFG9C/wbHsq7omdfxqQKx5QdUlKwz+Iyvaa7ajV29PSCg8xKt0WfUbjjD16Kr2vYBDlG7YXsUL+2GqtbWVVXl8Weu3bA9dHd3t/YPRwEge8v7+CJqN279xM77BAvzCY0+c0L73gntp2cnRPr81YNDv//pHR/Zkvmjesr8e5/aTghg5SAfRNIvXSzb6PPJkvbNJ0fw4U5odEtXxiZ9xjlQLJws0VwuJ8a6B/MFYurVideymdrbfliDGWo3wnnrTAigw3kHjoNBg4WY+XAqbdYvmo6stFHPspFBi8RZBiD1yg47g8YNpjktuDgihCzUEhISM82qJMUBZBuDluU1JqsyNsfMmk46EklJUtLGoKNyu2HO8FpCHFstoRxJGGaF1xKKkgGsJUQGPW/UmgkTsc0diZtdawknZn4+YdUS4mAt4S8uf4MroVujawFgc/qjWEsobl4T/8C16W6sJcQQNK6vj9+SlDf8wsGgN8Rv3RD/8CvV79nCwq5K6I2x29IRP+4Mjo7BtLzRfz9OWt64uI5Bf/ScljeK5w/16HlD/Nam0LMB+vs7fh/dJg2nWeGGiJ5XxW9eHHrGicsrq/Wic5xm0TNPPQPAWwo9tzSKeDeFng1z1jRnlo6eCZHFDtVFoGcr9Wx/F0rYGRQ9A5hNomfW6JeW5Zc4A0CInsMJ5509XAztI2fYkxuYqUxpjaTPDcXQyI5JI9sGx9DUm6khIPM3cqiq6ioEsI1PP6F4FxuG9joxG0bXqJrNeIWXu6pXLhFTb/Ul6dlsNqsoDa8CXh8MjTsRQzc2ONcXJDbE0Fkl4y98qB02mx0bGwuOofsGchPlyuuEoR/sH7gwOdUshu7MKAeGGmNlsDA0A1jTngqyH89/eTE0n+XC0ADg1TdoLS5ILShVMxZStGWHxdlfzK9qS0JNqexCnwHAyWTxJSWfzzuVF/w0+E1UsEUjzHXVbuArXsYttb0ynezKKF7aDScCFoPJ2ECI607tBp/ubb2KorhaqsEhtvbSbiB2/+iHbgQAMfv85a//zZe//rccB+OcKFEAIAB/+a3D4kFQu/GX3zryRw/0Pz2uEYCPdGYeO1i8aX377V0Zmwn6d+/d/nRJu6OrjrA/ur+A2g1ugj5R0k6UNJkQm/T5nu3bohEyNjbG6TO2OBJTF4PPg0P7Va20b9++8BfUcN46EwLocN6ZIzBoMdTM3JLRPBYNDirNDR5c0IEM2nSknsHBoIHZtdHAWB2DlqQFBl07lhQHkHX9AmML941EOmwcRyItsrxqTr8sKqEBQI60uTJorCWMSEkk0V4MOt6ybt64MqdfWbgMua0j4aKEBgCDzZ4rj4srHfEb16c7T5eP23QcWEv4QvmYuMhrCc/V1xKuj9/y7tQO11pCAPj51CFbFNpVCe0zi+gYBEumDACbY0EjzxA49ZyWN16xwDq3bQRHz2er3xfR87r4Bxve5Xz1B82j5/8FAMuCnr1m0egZU888vO81wdGzHEmiMH3p6JnL2cVpMvU8OTP7Ir5uvLmp5+UVblikuCn07PyNhb+8L7tJwwywjQGwED2HE847Y/bu3Xv8+PEGYujRo3tyA8UAtg1u5KDUXmAIAFgqGFAM7ZOqBoBAYmghiYkRQs9tQfoJLQztb3zmGJpSOlgc9uG2e/p3V69c8hdDq5R62XW9LsSJoVWqKfUovFkMXSsS3L7T1ay9cEVWQaJP1yWfsbGx0dFR5GJBXM+IoZ2bVUoz9Y4LjqGDYFkbhj5QLHR5GzOgeQwNABcmpwjAvdsbi6Tx+K9OTr3BGFqjqutXdokYWrUyv+DRN4jaDZvUokSpLTssDgafXcE0LxV0NXKoqprNZmccqmhOZsWbMAHNtRv4OQ/xXoV8PpVMYBXk7n47fR4uFg4dGbWdYUlTVUpRu2E7vcF8nqqqiwzaTbsBVqWeSjVX7YbtGUAe7aXd0P7h6D/99Vf/45/8v8V11G68fKksFgM+Mlz47M7e2zozNukzajd+dnbyI0IP4WMHi48dHPrvTxyxuTh+997td3Rlbu/KbLFekU6U6NWr0gTARrpPaNSm3ShpdE17auudtavI5/O53ADGybn0uXZdQ/sHh/aH0udw3moTAuhw3rGzd+/e48f/qZ5B49iS0SB4nJ3JaL7ChBUbgwaACIDhVVRIQAYwCMgEooxNMza78PBSAoAxtnBfSYpLUtowJmwM2jDL80JiVCIttlpCSYoDQCy6rjp3Zk5fkBu0yCuxltAwK4ZZwUWsJSzPPO9UQs8bV0QldFRuc9YStsgdLfKKqJw+Vx4Xc6yiEnpV/L0XZ36C66vi741HV//08l85awnXtn7gXD1rTskbPtjxB85awrS8cUP8w6iEtq2/J7WLK6E3xW97ZdYFRi8FPTOAWzr+bSpYUPpM9enFCTdE0XNw9GyA7kTPXGxiG0TPBjGaQs8/u/zXOsytaL0JAJYRPccsULtE9IyLLXIbD+/bpsnU83ndqADAm5565ui5JbohEkn57NSNsm6Ug6BnQqKMzb+56FlIPfuPP3rmExw9B2HKpvCWZINt+/btC9FzOOG8k8Zm5BDBJd+DGDQ4hvaKMAcUQwPAVGUarIyh/6EQQ3sdx0piktZUmw+GDthPiAwrSD+hoihffOBPBgt5f91E0H7CJjF0EApcqwfMZBrGljmwppT6PzrwZ5IQn2Q9PhaS5YFcbtD3jYTaOViVg7Z3HaiqZurhIE7fQA7F0E1h6JJG8X/++0UM7Y+V8dYH+wfQsLF0DH2gWNjtYK9v5TS0V98g127wRapSANjZ2+OaHXaC6ZJmLxXkfYPioECDUuoafHYlsyjr8NFuFAr5EbdMND/Drnqgj9zcR7shyqAR3HtpNwYLRUrp2NEjNju8rXHRNq6Za7l87p/++qt33n4LADx16tnsLe/78tf/puUjd9u0GwDwyHDhVEkDgD+6v0678d4NHTbtxlcfLgIAIfDz83Yk/RcHhv76iSN/8kD/KSsBjdLn+3b3iw+HpLvLTfpsewLzbtLnwaH9cjwRSp/DeQtOCKDDeScP/i0hMGj+gWun7pkzaHAwaNeVCACrJ85o+XBn0JZ1WiIQZUwXGbRVSyhoo4ksSWnTnBLN0QBASHRev4gyaByxllAiccOclaR4a+waw5wWGXREao23bBLzzgAgRxKJ2LXOWkIAaFhLGJM75vTLWEvow6DFI6yKv/eq9EdfKI85dRwA8MupwzZg+u7UDgZMrCVE/otK6J9PHRI3I4NGJTTUDy/xawo9v1L9noieEQen5Q1XjDM+90L0bBKzKfQMAK/MPtOs6Jmj53XxDzpTz0l5/ZSlbMYR0fOa+P/WFHq+fsU9K+I3BTmxNzj13HB/s+i5OnfeZDoKPZYFPUekVsOchuVAz4S0mMLrBg5Hz4zpAVPPALAc6Dli7VyK69nV4AxC02BD9AzNoGcnUxYVHLauWi87B6Lnvfv27Q3RczjhvCMnmBhaGRs9GkwM3XiPvxgarMS0T8+heKhEIuHTPYguEQDiz095PyEA+PDQIP2ElNJs5x3ffeIbRJ/1Nynb+gkbYmhFyXZv2+4D06GeAueLQ15NhsC9zJlMQ2BNNa2WsC4Ug2BoLEj0wdC1i1oODO06KIZuCkNnFAXT0EHSx4ihHx4qfGqHO1YeFyoNUSS9XBja6/wXh6G7Mgo2jvrsXASGzucLAEApde0bnKpMD9gtGSpjnsHnXdt7MsoCmC5RiqltznCnHelmEGzIzrP1yh3jOauq6nqG23q6GUDZSm1TSpE1+2g39hfz+JaGj3aDL+K3tJd2A3/qx46OZBVFpZrI38GtcbG7u5tS6tRxtCYScvkcDz4/derZO299n6t2AwA+u6s3QsgTR46KHw5A7cYf3d/3R/WGjWfGNZt2AwAeO1gkAM+fn7y9MwMAp8a1LV0KSp9fvlS20edTJQ2bNvmg9NnG0FVKs11bROmzqpXu2nG3HE+Ev6aG89acEECH8w4f/ENi69ZsPVwANwbN3Kg0H+JIPYvEmVi4BFf4HSNWUaHJaovuDBogYppljqGRQTM2yxm0JCUBQJISej2D5rWE4lXHousMc7o6t0BLkUFHpNbZ+Qt8UY4kkvFrbAy6tWV9NJLitYR8sJbwtakfOGsJL838zKaExlpCqJ9Wee1VbkropLyeAXMyaFRCO2sJN8RvTckbfz51yEMJ/W20KiN6BsIWgZ7xW8FGhFPyxiu6O4A+U336nytPIHoO3meIjNsEBpZjpOFw24YXenYOt228xdDz87P6pen5C2819ByLro5FV/vvbyr1DADLknqWSMw0F37wbejZnz6Lwg3/E3j9U88+wg0Q0LPciCnr9e8Xem0LwpRB+OegAfLm6Dn8tT6ccN7ZI4qhAaA16fIxlCBiaAgcYSYAPlILm9zD67EUJYt0DKGkV/56T24giBg6N9CvKIo/Dw3eT7jnwS/Mvvoi0Wf9Tco2DM1PxvUqEKb7Z7rBosAAELAeMBAv5gnrbduDZLERQ9tOwCl8WDSGVinVvJ98aBJDa5QixiUkKPb99pGjD/UP+GBocd6aGLqk0cmpaRMg5auXgSYxtEqpks3WZXtV1Rl8BstoQSk9NDLqPOD+Yl6j1Cm1ACvdnM1mXYPP6KMYGxsTi/j4aYAbscVotqIoR0ftooxCPr+tpycjZKK5tHq44H6GJUpRV727P2f7WfbC34iSvbQbYFFp1eLvXuIRXCeO1xCk3jbtxlNPPwsArtqNzSvTmYzyYP/AuEbnTHZbZwYAvnpw6JkT2s/OTtZlnw8Wf//T2wHAJn1+z7p2AvAn1uKpce2OLuVzu3pR+iyeGyfdB4oFHn/m0me+Db982UyXLfh81467P/aJT4a/pobzlp0QQIfzzh+LQd8JAPWUwcagiQeD5ulp5BdeDFo8sl4PPmQb+yAQZcwQA86ERBhjIoMGAElKM2bWb4tGIh26ftEQ4szIoHVjQhcKDGPRdYTERAYNAJLUOjt/oVJ9UVxMxq8xmVGeeV5c5LWEolc3EducaNl4ceoHLfKKcvWF2gPJHatTH5qeP++sJexofY9YSwgArfJarCUUldDJ6LqkvP76VM/Z6vfOVZ8VD7I+fsu6+C2ohE7LGziJRkmFqxJ6Y/zDZf2V5yrfQfTcLA7G7wAvCUbawaC5bWND/NZFoOcPdvzB+vgtQe5iEz03RM9Jeb1N9LxE9Nwqr56Zf9W2/2L1Z4tAzy9NHDWYnopdG5M7Gu4PiJ6jkTbUly8Leo5ICRSm26Y54YZ+qVL9JQDEouteD+FGs+jZSj3L4osMn6bQM9qZ31T0HBFetL124vgzZWa9pDdMWxsheg4nnN+2QTE0AGQVxYswNjRyQLAIMyItWz+hDVByDO0PyPDhavlln+LBYC6LkdGxvlxuMJ/36b5rCkOjkSMghm7YubcnNzA2epRSrSEFziqZsaNHGuqeAQBbB528GEdcWdA9N8piBy9IhEVhaADQNLqjt0fzJa3NpqExGhwQQyNWfmMwdEM9SO0hmsfQ/QO55cXQUJ/5RfTpbPNDo8WRo+7oGQHuoZFRm9SipKkA4CWdQCNHLpdz3oSn4bRhgFVFiBdou6mQz1OqOrUbmiUGcZ4hprZ39w/YKgpdtRv8BFRKfbQbtnUv7UY+n6eqOuNoYkTthvH8CdRu4Dx16tk/+8r/z1W78chwEb9R+eIz49p7N3QQgP/7W0fEzV89WHzmhPZXjx+xaTd+997tf/pg35/UIWl6skQ7Mxlb8JmTbr54oFgQpc/8Erp7egDARp+1k0+H0udw3uITAuhwflvGwaCJxaAbJqNNSw/NrBXdQa51KyINliRadxQVGgwEzwbIAGBj0IQkTLNsmnW1hIyZhjFBSJSxOQAgJCrLa0xWtTFoWV4FAOJ9o3I7IbFK9Ze8Bi0itUakVkmKVaovinxNrCWUI+l5Ywo4g56uY9BYS3hl5le2p3d16kPOWkIAiMurXGsJ49HVL5SP1Suh11+f6inrZ2wMOiVveHdqR1k/U9bPipHnlLzxxtROLyU0suBm0XND/3JK3li2ALRN9JwOZoh2Rc8pga07p9mOQQA4X/1hRT9X1l8JKHqGAKnnuLx6Rl+IzyN6NtjsItDz+vY7U/FrWuR2MU3vnKZSz1G5bd640hR6npj6kVfqORJJcGE6ziLQM2NGvOUqicT8NwdHz4zNLg09ex222dSz2ch6ERA987f0AqJnM4BwA4SPqjRkygGt0EbYNBhOOL+1s3XrVsbYn33pS8WhYS8tso8YmmeQA0aYA/YTBkxVAwCWUwXB0D78FBsFTV/QBvUYmpO7bNcd9m2dd3z3iW8ExNDVK5eIqauU+vUiBoPpKtWCU+Dg/YSwIM6Ghlls2wn47AQBQ3f39PhjaFVVOVkeKuaXiKFLlGbqGeISMbSo4PDa3xSG7lKUrowSkKFDYAwtPmnLi6H5uPYNAkAhnzcBJqemAcD2XPn0DeJN2fp4NR9u5OD4FWE0WLljpxAZbwKsIqz/HuDajRFHFWExn8fT9tJuXCpXkD5rVFWyWfC2TvNQtnNE7QZfzFs/bs5ngOs4xAtH6i1qN3C+9Bf/34/9zh9BfQcgADwyXIgQ8urkVKf1RcHv/9//9A6bdgMA/o9PbycE/urxI0+P09u7agD6sYPFp0va8+cnRfr8FweLXzkwZLN82Eg3/iCMU7p/qOCUt9Cnnjp25Mms0KqK0ufjx4+H0udw3uITAuhwfosGYyyOOkGorxwkDiotORi0ZBVk8T2R+iCea1EhPraTQZcZMwiJMTZHSESS0ozN2Rg0gGyaFVstoY1BS6QlIqVn58/zWkIAiMrtWEuIDDoitRrmTIu8UpJi07Mv2Bh0i7wac9DcFh1v2ZBuvWFi+mfOWkIAEGsJASAdv85WS9gRv7GqX/RSQsejq18oj1X08wl5fcUSFl+f6jHB+OXUYXEzZ9C2JzMlb7whtbOsv+JUQpe9ea44TtFzkFlExyCXSrumnlPyxrJbZ+Di0POPJ/7SIPqq1vclog0gLE6zwg0RPbfHb1gEesbFFrljzgNAL064AQBNoed04qZlF26I6FmOtAGAJMUN0+5uxgmOnvEnnYG5dPRMCL49BtA0ep4DMAnE8IXLe2fw1DM0iZ6Z2zZWvxNfchszZWubz4ToOZxwwqmNJYb+UnfPNi8SGlwM7R9hFsXQPqcUTAytWEHaQkOAiy4Lkd6qVBN77QZyuXJl2rT8Hp5Hy2bHxsYkAulkwicKbcPQPleKZ0gpbdCL2GQ/4euBoceOHqGU2p5GrxNQ8KICBJynp6eVbLYhhgaBLA8V80O+lXqwhDT0Pdu3NQwgixj64FAAY0bzGBr3LxeGdmJ3WA4Mza0Xrn2DYGk3TID+ATu9BaHNz4s+g0M6AZZ3wsvIwbUbtpsGrZuQdaqUctDs1G6I50/dtBtiapsvljSaVRQv7QYPZePnFRbW67UbfFRKUQDtqt0AD9n0Rz90o5M+V5PrDh0Z3SKg/xMlunllOkKIGEbm85ffOmLTbty8of32zpr0+elx7SOdytPj2u/eu50A/PUTdSnpvzhYlAi5o0uxWT5OlTSRdOPTFY2QmXqpd3d3NzH1YyOHskqXqmnZTJeqleIdq0PpczhvlwkBdDi/XcMY27dvb6OCQdsKERi0mJ426vdE6sm1k0FbtV2CHJmATCDK2DRjC6hakhJOBo0gycagGZjzQgEgAESkNtOcERm0JMVj0XVz+kWsJeQMOt6yaXr2BZsSOhG7dnq2Dt3KkdSK1IectYTJ2OZy9QVeS4jjX0v4cvm4uJnXEk7r5ypCY966+AcT8rofTnzdWUu4Pn6rUwl9Q2qnUwndEEAvDj0DwMuzTy8CPZvAliLcCHIXjp5vXPH5VfH3JuQ10/VmcOc0i55b5dXLgp59Zimu54abbei54f4lomefaQo9G8YUr0Z8k1LPc/jixtEzqb0k2nYuQrjhT4pZPXoOyJSXZ1uInsMJJxzbYBo62tKC3WKue4KIoQNGmAdyOUppEFTtj6FrigarEs3r6vDMG9LbgVyuL4AaAgW4Q/m8Wjqpjp/02sYxtH8/oVKDywN530A3+GJoWwMhx9DdvTuawtA+TYZc9xykn5BSitKAngBkOZfLcQzdMGaLZBkAOtLJRWBojao+geXdAznsJwyOobsyyniJBt/fEEOXaC1SzfcvexpanKVjaK++QR585vSZWhwcAa7YNygOgulL5YrzJtRuuBo5KKUqpT7aDX6Tqqrc/+Ol3aBU7bU+zOHUbmBq26bd0Cj16gn0CmV7aTcGC8XubdvBTfrspNsqpSqlqN2w0eeP/c4fVZPrbE/yI8OFz+7sfbBvwEaf792+raTR//tbdYaNrx4sfvXhob96/AiXPj89rj09Tn/33u13dGXE4POpce2Gde0SIVu6FGK5OU+UKJc+853jGj1QLNi+Upb0uXNP/24AUGkpm+lC6fO+ffvC31fDebtMCKDD+a2bvXv3NmLQxG0lUu9xJlbqWdwD9Stg7ZmvXyGsrqgQawmnAYA3E0pSAsAwzfLC4xGZkFbDmBCtHZKUICQ6b9USEqmFsdmovJoxU6wlRAZtmNNz+iVJauVp6GT83box5awljEhJsZYQANKtNzhrCZMBagnj8iqE0evTnS3RFS+Xj9uU0FhLCPWzLv7B61M9v5w6bNNxAEBZf+UXAWoJfULQi0PPSIQZMABYBHpeH7/FBz2LCo6lo2dcbJXXioYT2zSLni9Xnztb1kwwK/NnlxE9twgO6KXXDMqRlC58JkCcZtEzAMzOX3jroGdJiktSXHz/yTbNoGeDMWMR6Nkn+MzYPGPzi3I9exmcQQg++6NnWBp6Js5tIXoOJ5xwfAbF0KXxcR8Syo0cALBoMTRV6cBALqBtAw/lQ8eQYAIh/gBXpLeUUiXrAiLRyBEEQ+dyuWzXli8f+E+fvPfz/hjap59QpaVsVoEFuBwUQytKFhsCvbbhzprEuXdHo9bBzNjIYSWTUQP4pmsJ6wAYGgPO2WwWMbTPTgDI5XKjo6PIoepitpRmHMi4byA3Ua5A8xh6uFjI1DsWbIMMNziGLmm0qf0NMfS4RjsF4rksGFqjqv9VLw5Dd/f0qJQ6g8+Uqq7BZ42qXZksAlzXvkEOpncP5EpWBR8OtypP12dmcbq7u7OK4qrdwHs5b8KTdNVuFPL53p6ejJJVsorTGQIAXLvBZ7iQBwAf7QYPZfNqQVfthrB+xGbJ96LbAOCq3YjcsOWOj/XgkzxczN+3ux+EMLJNxLy2PQUAt3XWvf/01YNFQuC5c5MfqV//iwNDf/3EEZt243fu3f7/eaj/Cw/VaTc+u7PXKX3GHxOn9HlP/26kzwCgahoAhNLncN52EwLocH4bx2LQNo0GjlMADcIK810hlqbDtgeLCrkk2pVBx2w/j4TEACRbLSEhrYzNOhm0rl802ZxEWkw2CwByJE2gZbY+ABuLrmPMnNcviYvxlk26MWWrJZQjiZm5c/61hInY5srsy7yW0MageS1hPLpaNHK0RFecdjDozemPJuS1v56qq91wVUKn5A2o48BaQnH/hvitN6Z28lpCJ4BGW3Sz6Pls9fscPQfPL3PbRkP0zK+rrL+yXOjZfxaBnn99+dsGm0/Fr4vJK+KNaCy8salnUbghR1K6YQ+DNJ96fq08/RxjJgAsC3qWSMxkVVgaevbZ3FTqmbEqvka9DuiZLVPNIAhNgw1Tz/hyHaaewwknnDd0uJGjoRg6qyg+/YRNiaEb2TZq0md/OpbL5dDIEUQMrVLNRwMiYmivTK5K6Z1dd3z323/3xQfva4ihA/cTBsXQmOlWlGxDNTNKnKmmtaY7/DE0AOQGBhBtB9U9B8DQ+PZANptNJBJ5X7iJeXaOoZH+U9UTnnIM3VAMDRaGzijKzt6e4UbMOiCGLmm1SG+z2LpZKccSMfRwsaA4FBzOaRZDK4ri2je4raenbyDnrt3YXtNudDnOB8H0kyOjux13zOfzPT09XtqNhJdYOZ9vTSScUBi/Cbf19PQP5Fy1GxpVy45AN9duOE9vuJAfLhayiuKl3RDXqaoCgJd2w31dVb20G62JxJ233+Kkz//w7C9sbpMTmksYGQAOFAsHhgq2HsKnx7WbN7QTAn9cb4J+7GDx9s7M8+cnbxeQ9F8cLD49XvrGd0aQPj+6v3jf7n7XekN8rKOjdX8Uo/S5euXSAn2mpcHi8Mc+8clQ+hzO225CAB3Ob+lYzebOykFxnAyaOFaQQRvWrax+he8h9bw7AiAzmK9XQkcZm+MhaHAwaEmKMzYjSWkng45EOnT9omFMkXoGPTP7oq2WUI50zOuXeC0hAMRbNmEtIV+JSMmIlOS1hMJOv1pCmxIaawmr869V51/jix3xG9enO521hK3RtRX93K+nRkUXB2fQXAmdkjdM6WdT8oYPdvxBWT9jY9ApeeMtHf/WWUuISeRXqt9bBHpmwJijMNDH72ETPQcB1ueqzyJkX3b0nJDXTlsh6AvV/7Vo9Ly54662+Lti8oqYvLJa/waGOJPV55tFzwAQHD1Pz77shZ5dZ9HoedlTz6ZZfSugZ8ZMxkx/9AxgBEPPEoBZj5596PMi0PNySZz9awYZ3xai53DCCafZQQz9sY9/3EcMDVYcb7nE0P4YGpkXWIlpZwwQhGq7hhg6qyj9uVzaF7QF7Sfs2sIx9OCBRz23NdFPiBlnxf/JB4A9uYGx0aOUairV/Ckw2jOopjXWPecGZipTlGpNtA46MDTqa8XNPOAcHENjCN1nJ07fQC5gPyHORLlCAFamk8uFoRe/3w1Dl7xbDReNobsySrGQ376tW/MWl/PhGNrnhxGHCiZlHKd2g0+xkNcode0bLFHKtRscTA8Xa916+XxeVVVX7QY3cmSzWcVhvcjn804XMx8nYqZUTScTADAyWksrU3XBGeKq3ShRujKdJAB9/QPOE3DVbqiU5gtFL+0GX88Xivzye3p6XKXS9Pg/Zjvv2Psn/y9xvSZ9HqmDvCWNPjJctIWRAeBAsUAALkxOdWWUA8XCH93fDwBfPVj8/U9v/+MH+kT6/PS4dtP69scODv3Jg3Wn/Tv3bpcI+cZ3Ru6okz4XbfWG+FhRieBrOA99c+mz8PyU7tq+M9RuhPM2nRBAh/PbO/iXg6NykLglo+22UzeDh+G2Ih7HdigJQAYwRQYNAIwxES4TEiMkYZrleiV0mjHTMCaEbVGsJWRszjTncFGOpKPy6tn58zYGDQC8lhAHawmvTP8MawnlSMIwK7HoGlcGzWsJk7HNKIbGWsLq/CXXWsKqftFVCS0y6IS8JiGvbY2utjFoALg+1ZOQ1/1y6rBTCc2APT/1JNTPDamdDKCsv4IkGrkzA7ghtXMR6NkJkVMecg+fjkGvQfRsEt0kelJen5LXN7xLRT8XPPXcGl1b0c8jetZhbtHoueF+RM8G04Oj56nqi+cmn2LMSMY2B0TPeHwf9CxHkvi9+tZBz7pxZU5/FQAaomcAaIieCanh4EWjZ4s+28tRrc28adAv9QwLZapLRM9EeIVcBHpu2FsIgk/J4zqA7du39/jxfwp/iQ8nnHAWN3v37g0ghs7NTE83K4amVLUZMALaNnhiWlVVLz+GiKF9AK6iZMuVaQDo9QVtXv2EVFWznVsWHrRry3e//XdASGztNU1gaE3LekRTEQQDgL/eOqsoiqJkFWXp/YRU07LWF2Vs9Cii7caeDat1EJUgficgBJyD9BPiF1GldKiY9yfLYj+hP4bGmzA6/dbE0P6bYVEYGj0hu/tzTWHovoFc3seiQ1UxVe3fN1gs5NG+7ard2LW9B7Ubtpt4utnpnbAZOXgdonjTjEPWgZFhlVKOmMXz73VkorkzBDy0Gzt7e/r6B/oGcppGxRPw6ULMKpmZqSuu2g3nOr5V47yQ7u5uaa7y3Sf+RlxE7YZT+ry/mOffM3xxXKNr21MEwIakv3qw+MwJ7blzkyJ9fuxg8fc+tf1PH+y/vasu+HzDuvYtGUXUbpws0ZMlaiPd+FhRieBzS1WqZLP4teDS59rzUBwO6XM4b+sJAXQ4v9WDDHrr1jsdMWdnMtqVSttWmO+9EIXoAv2RAKL1DFoiJAIgmeZCLSEhEUJqtYSEtCJNlqQ4gGwYE1wLiwyakKh4gRKJReXV8/qEWEsoRzokKV6dOzMnpFl5LSEy6IiU1I3pWHRNInZteeZ5UQktR1Lp1htm9YlKfS1hR/Jmk+nOWkIAaFhL2CqvndZfXR1//9Xpj/96avR89YfiQbCWEBn0+vitXMqxPn5LUt7grCVEJXRZfwW/HhvitwZHz2jbcEXPXrNE9Lwm/oE18Q8ko+um6sm7bc5Xf3i++sNz1WeDCzdm5l+dnj+P6HlF/Kalo+eYvGK2PgEtoudU/Jrg6Nlkc6vTtyVim+aENL1zRPQcb1nXMPWsG1PLhZ4jli2dT7PouTp3mjGzJbqh4WkYxtTc/NkAqefoktGz1+Y5xioAJoFoQ/TMAD+lQRwC5bprsl79ljH17B9ntk7Q/oai5wH37duLv8GHn14MJ5xwljiBxNBjY3tyOR8jB9TbNrwei9s2/HE25i7zvglZ3k/oetp8ZSCX68/livl8QwwdqJ/wwftmL5wGQhqKoRFDA0BD1cbY6FFKqc82SmkuN+DVT2h/6EYYum5nsGOCJfpADD1YKPoIH/Drksvl8o2eTNwMAP0DgQLODTG0ZpXg4XAMHQTjumLlceqdVl4UhsajNYWtG2LoEq3zhCCGLjbC7gCQUbJHjo75Y2icQj6vUtUr+NyeSjDGdrv1De4v5ksadbJdANAopZTmcjnX4LOXkQOtF07tBliZaHzDxnn+rtoNsJwhrtqNkkYnypW+gRyeLX6vumo3wGLf1PHdrlKKJneHjkND+uyu3bjj1j0P/Ad1/CQx5u68/RawtBtOs/b+Yn5co50ZxRZGvmf7tofqewhLGv3qw0VC4K8ePyIe4bGDxWdOaL989cqfPth/qqShfOMvDha/cmCIazdwHt1f+PzdvV1u0ucBgexTqlJVzefzx448aaPP2olT4Sf2wnlbTwigw/ltHweDliyNhi0ZjSs8sufFoMGRerYxaCKE+HCiAMBqRYWEMYOQFgCJsToGLUkJxuYYWyBiTgYNAJFIh2FemdcXrBfIoE1zRmTQElmoJVy4r9Qab9k0O39+dv4ChqABQI4kErFr5/Syk0HLkZSNHibcagnT8Wtj8orLM/+MtYR8bLWECXnttP5qQl5704p/NaW/4mTQVi1hnXZjffyWdfFbXJXQaXljWt7QLHpuqM4QFRyLQ88/nPi6iJ4b3gXRs0F0g+ib0x8Ngp4vVn96sfrTlugKE4xlQc98YhalbRY9T1VftKFnAIhG0vOGO4BuFj1X585PzfwKAJYr9SwJAHrR6BlTz4S0YE2oczh6jkRWNBJuVBmbMdlcAPSsLwo9xwKjZ/+mQY6eWaPfMZhg8Fh0nJnV7+Svz411zzi+ZxhOOOGEE3QCiaGz2YYYmsecKaWFfH7xHYZUHcjl8FD+SocgYmhUbTTE0LZ+Qq9HBIA9D94XRAyd7bwDAJRMl79qo9l+wjcdQ1NKKaVBPBsNMbSqqhlFQRK6XBjaNmjwCJgmdmLl4JWGB4p+NhWcTkVBfse72hqcz2KlHIyx9lRiKRiaqlRRspSq23q6TYAjR+1pX7CCz6h1Hi7mRQbNlco2WQTOcCGvKMr09LQrfXYaOSil2WwWrReu2o1BK0qccxirbdoN8SZKqY9247B15hqtxZ+9tBvIvnO5nJLNivgbtRuKojh1HACwx41i0+P/+N0n/mbPA/9BXOfaDdGsXaJ0VVsyQggAiOsHioVxjV5w9BACwO2dGZv0+fc+tV0i5H88MQIAp8Ypp89Pj5defK0sajce3V94ZlzrcpDukyVqE4VTSoGx6pVLWaWLL97Vu0uOtR4/fhzCCeftPCGADiccAABHDpoIiFlcsZk3JAeDJvXkmtSzbGLRFhuDrtUSEushCGkhJM7YtKiElqQEIS02Bi1JacOYEK0dAABEntdfM4X7RuXVjJlYSxiRYiarSpIng9aNqdn5C3xRjiSS8WtsDBoA0q03zBtXJio/ExeRQTtqCVesTt06M/+qjUGLtYSt0QVh8dXpj5tEd9YSvr/j95PyelveGWsJXZXQ5Xprh+s02zGIAHop6Pm9K37PiZ4T8vqKIwEtoudV8fcGRM+/uPwNA+YNmO+I3zgjvBXhNUsRbgRHzyabE9GzzywCPfPUc8OTh9dZuGFDzz7TFHo2jMsABiEthPhbjxeCz77oOQJvBHr2R8B6/Zt5XtuCxpmtV9RA6DkMj4QTTjiv0zjF0E4zMoLFhmJoRVFyvraNgGJolHswhx/DeUrNYmjXPSBgaJXSLx94VC2dcH9QQQzthaHV8ZNZJbNnoG9s5DClamsyFQAuB8XQ2CUYBEMritLduwMxtJcPpCkMrSiKoijBPRsB09CvH4bmm5vF0CWNDhfzAfcTAmvaU/4YGiPVopQjCLb2x9AlTXXGtHcP5C6VK0vB0Pi/bT09XUrWVbuxfVs3Y8xGRXG8lMoAMFzIr0wnXck77+JzGjkAoNXjJowMgxUlzufz/RYMLeTzxULep4rQKQYRtRt150apj3YDAJBKU1XNKjWLBdduOOkzRr+dF4LaDXzjCgDU8VMA4KXd2LW9x1kRee/2bQTg244ewv1Dhb96/IhNu3HT+vY7upQ/taTPp0oaCNJn8Qifv7s3KtXqDfmX+97t26ISOTo6JorCt/V0ZzMZm/Q53rbyY5/4RPi7azjvgAkBdDjh1Ob48eP79u21Ys6mN4MmjhVWD6aJ272Yg0EzgHnhXsigDQFMRwiJM2Y4agnBNMvCimyrJZSkJIALg8ZaQmTQ3Aodi65jzKzOnRGfinjLpqi8UmTQAJCMX2MyozzzvLgoR1IMzAtXToq1hInY5o7EzRenfoBK6BZ5xax+GQBWp2412fy58rh4hIVawpmfiOur4+/3UkJP6Wd5LSEOZ9BOJbTPNIueQSgMXAp6dt2TlNeJV8pFz4tAz9eu2NkRv7EjfmPDuzSLnq9UfzWrX5rRX1sEek7ENrmi52gkzb95loKeMfUckRKGMe21vyn0bJoz8/qlZUHPEokxcyEBvQj0LElp/Nn3GcaqpjnJmElIvFHTICwHepbq08fNomf/1DM4PoDiMwGt0CF6DieccN6g4WJolVJvf3FjMTTCR0Ia2DaCi6H9IaZNDO3liOAYumE/IQBkM12fvOdzgwce8dpmw9Ce25TM2MjhsZHD+Xw+WMZ5oLtnG9/p+oVAhTRiaP8uQW7PAAD/zkOOoRuibf6FC+jZWByGHmpETm0YeqiYz3gYM2BRGBoA+gdyw8V8Q5E0WMzXH0OXNNppfSkRKwM0xtbifieG1qhnTHspGJpS2qVkfbQbXZk6eqtRis8Y7xt0pc/DxcKTI6NdGcWGX1G74WXkAACn9QKE6LHzJvzpdmo3eCY6o2Rt4N6m3eAzVHQ/ARv7ButH1Vu7UVsHoaYPLKm0NFexBZ+fKp186tSzrtqNCCFTlWmMqJsMOjPKgWJhbXuqy7WHkIDtSh87WHzs4ND/+PaRPxUqB0+N01Pjmk36/Oj+wjWr04pSO2xJo50ZBaXPd2az4nOLlnBb2iKUPofzDpsQQIcTzsLs3bt337699VTFyaChnjjbOLUkfPDcFpdmDokHcTBoCQDYwqf1XRg0QIQxZhiXGauZo50MGgAkKRGJdMzrr+nGAq3mDFrEXlG5nZCYs5YQACrVF3UB52Et4eWpH/BawmgkFY2keC2hcMy2NW13YC1hTO5AAA0A6fj1LXK7Uwl97YqdcXnV9PyrwmXC6vj7V7W+18mgAcCrllBUQqflDVNubYGwBPRsgmGCsTb+wSB3gWDomU9SXg8CekbR8yLQs3hTXF5VdQtBLwI9vzxxzGBzydhVLZGOZUHP4iwdPeNEIgnddAHQi0g9E9IikdibnnquR88y1/KII6DnZDDhBgOILFPqGYSmwWVEz0HjzAG3heg5nHDCeeMHxdDFoSEfYuhj5KAWHUOi1DDmjGLoVDLREFUHwdBACDpAvK4uYD/hnt0PVC+de2r8VGzNVUEwdIN+QiUzNnI41787CIaeqUwpiuLv7oAFhbTWmmrzx9BZJZNVFEqpf+eh8OieaJtSig2Ti8DQ2Wy2p6eHb6Ye8BRJKBDSkU4Gx9ANdRzQPIbGMyGEBOkzhGAYWpwH+wcuTE7BkjF0w1NqFkODd98gY8yVL6N2w7VvsEQpB9NdilLSqPgWESJmLyNHPp931W7wKkLxJpVSqlJEzK7BZ56J1qjKv/ec2g0+Q4W8RqmPdmOBPqtqVsn4aDfc1/P57p4ep3Zj8OCfq+MnL16p2LQbu3p7IoTYLu1AsXBgqGDrISxpdE17ihB4qD9X0uhHOmvR7McOFiVCfvnqlds7F478lQPFUyXNKX3+T/uLD1ou6XGNdmUUp/QZn9hCIT82ehQAuPc5lD6H886bEECHE07d7N27d9++fY4mK3D8X3Dw5SArzLGCDFo8eARgXmDQQEicMcbhMiERrCU0zTJn0AAgSWnGTMOYICSKd8daQpPN2Bh0VF5tmlVRCe3KoKPySsOs8FpCHF5LyBk0CLWE04FqCa9Pxa+1MWgAWJ/unNZffan8j+JiQl57dfrj56rPikpo5L9r4x9wMmisJfzF1JNT+ivYQyjeerb6/SWi53XxD64LRp+bQs98RPQcZL8PesaJR1fbLByLRs9r2zqTsauikfY5Y8Jnf7PoGQAqy4GevWYpwg2z7o0f+wRHz0RqMczy0lPPhERgobAUYDHo2SQQ83VZNIWeTQs9+zcNmpaqyImeiWNn0Dizta2BlyNEz+GEE86bOIIY2hNDBxFD8wCsP4YeyOWmKtNBOgyRePo4iNERQRrxZf9+wmymE//j2KHHjz35+FPjpz55z+e8jBwAkO3aYusnVEsnlEzGvi0whsaMM6L8hgppxNAN7RnWTr/OQ/HRAUhDtN0Uhs7lctPT04ih0fbr02fYP5CbnJoOjqEzitIss/bBuCWh0hDPZBEY2iZ6LmnurYZLwdANRdLiKQXE0KincC7W+gbdwDQAlDSKPmjbOnotbIlpnHw+j9oNV/SMNzm/QzB67FpFCABe2g0U7zgz0V7aDY3SHb09QFx+VRO1G+K6SjVKqZd2A9dVSgEIrzSU5iqz53/DtRs4n7z3Xx0/+X3btwpqN2y5Y6pSACAAFyanuhw9hLv7Bx7qz5VojT4/Pa7dtL5dIkQMPgPAVw4Unzmh3dGlOKXPr9a7pEsaPVmiU/XPYSGfJ8BmKlNirDuUPofzjpwQQIcTjn0EBm0rGAxInImQhnbuIY4VCUB3LBr1DLoFQBIDzpxBc5kGWLWEplnhtYSuDFoisYjUphsTNgYdi66rzp0RldBReWW8ZdP07As2JXQidu307CvVubNyJD1vTIE3g0YlNADwEDRYSmhnLWFcXsXAfKn8j9P6QhQaGbSzljApr78+1XO2+j10YvBZH7/l3akdtlpCRM8MWLPo+YcTX3ei55TDQ+1yr2bQ84Xqj356+a9MMFa1vm+50LNzloiecbFFbpsT7N7iNJ96PjM9e0aSWiORxLKjZ8OYfuu4nnX9IiFyEPRsmtXmhRtNoOdlTT0jAg6InhsWEi4CPYep53DCCeftMYIYusephMYJIoYWMbRPNjlIhyEST8YgkUj44E4UdwQpHmzYT5jt6jx26PE9fQ9++eB/8sfQYj/hUz79hEpmbORww35CAMjlBjC5vJz9hMFk01CfsG4khm4aQ6uqin2GPjtBwNANXc8apc0y66bS0IvA0GKfIYDdhGCbxWFoABgqvF5paD7FQn77th5XrTPGcjOK4uqDRq+FDUxrlGaz2bwVIvYKPuNN2EDIbxr0zkQP5vOKonhpNzJK1taV16UontqNQn5Hb09GySqK4tRlgKDd4Ov5fD430D92tM6eDACo3bCto0Ldqd0YPPjnsXXXbbnzY7s9tBv1l6AWCnlX7UZJoxevVER3x2MHi7/3qe1/+mC/Tbvx7rVtsgT3715YPFmiovRZPOzAQO6oUOeIHZUE2J7cAAColAJjqqaF0udw3qkTAuhwwnEZ/NSko2AQrBWEyF4M2sfgwVd0YRsBwGAjBysmgag3g5atgHNEktKMzTkZNABwBg0AkUgHA2NeSMJKUgshLYY5LTJoWy1hRGo1zRn/WkLdKItR6HTrDSbTnbWEydjm16a+72TQtlrCeHR1PLo6Fl1pY9DgXUt4faqnrJ+xMeiUvOGDHX9Q1s9APXpeH7+lWfT8/o7fd6aek/L6Kbd6w0WjZx30G1Z8tjW6NshdmkLPcXlVdf61ZUHPPrMI9Pxa+Rkr9bxW/BZyneDoWZYSc/Ovzc6/Njt/YenoWSIx06wLQS9auCF+WME5HD0DGG8AeiZ2ffPihBt+LNuBnpeHKXtsY/XbzBA9hxNOOG/BQTF0qVTyYYuiGNrrOFwM7W/bAICGqBoT0664k1KKB+FUNDiG9nnEgBiaGznU0kmqaSrVvA64Z6BvpjwBzGyoxbAcyoH6CV0xtEo1MUnabOfh2OhRfkyVaoqHdBifcEWpeTZ8rggvSlEUjarbt3Vr3kF1nP6BXMB+QmiGWYM3hhYVDc6DE0Ka6jNEDO2/GYdjaFt62nUwUn1oZPShvtwyYmibGsVHu4HxYY1SGzAFy2sBAE4wrSgKfnt4aTf4Taqqcv6L0BYAZqanXasIqeryJUPtxkh9Xx++FPhpNzR65OioTUKCugxXGXR3T49KqTP43Jpqs2k38AWhu6fni/f9oZM+Hz/5fXyeh4t5/pS6ajcK+fy2nh4AsCWU79m+jRA4JFzUcDEPAM+c0GzS568cKP7re7bft7v//t0DDw8Xv/BQPwA8ur/w+bt7ufQZBwXTJY3ags/benqyioL0uXZ1mjZYHA6lz+G8UycE0OGE4z4YV7EwCo5rfhms9i1xjzM9bdQTZ+JYiQiEBZeiACZjC3CZkBZCoozVKW4lKeFk0IS0GsaETQkt1hJKJMbYXFRexZiBtYT8vpxBR6RWNHK4Mmiwagltz1u8ZYMcSUxUfibWEkYjbdFI+2tT3y9Xfy1udq0lXBG/aWM681L5H1+r/rhuc/z9rdHVP574y5S8/lUhDX19qscEw1ZLCADvTu1YH7+1rJ9ZCnoOeJcloudV8ZsBICGvmam3YNum2dTzRPUXVf3ijP7a8qLnaKSdh6Cnqi+em3xqEei5Pfm+eMvaeMtaAPAB0E2lnmfnX0MBNGNmvGXTm5t6Di7cENGzP31GF/ybmnq2CTeYx87g6BmP0BA9mwG37du39/jxfwp/ZQ8nnHDestPQyAEAGIUGAJ89GID1N3KIqLphYto/dStiaH8x9MjoGAD49xMihg7ST5jt2pIb6M8Xh7p7d/hj6LGRw5SqriBYVamSzUJdlV9QDC12CVJKs1l7OrVZDI1oGyx+5zX43oCiZBOJhI8pBc8KKweLhXxDDC32EzrJsiYYM3CaYtYihsZ0s81TbBs8ePA+Q8TQyAeDSDMe7B94sH8ARQpB9uNDLBeG1mhNjYJ9g17aDXyiLl6pOJPdCKZdE9PDhTyGmn20G86bEPK6aje4jhkAlPpvcq7dsL1lguYKH+3GkaNjyLIprf0ADubzVFVdZdBUVcdG7RRb1G7UPTSld95xq6t2Y05OHKqn4ajVtmk3wLJejI0edWo3MorykOPNgDu6lP/xxIhN+vzMCe3MpfL9u+3SZ5tLGgXTI/UXyKXPnD6rlHb3bNu6dWuYogjnHTwhgA4nHM/BfwC2br3TUTloyzhL3llprz24aNQfmTPoCAMdAEgty1wV7hUhJA4WiqodSEoAGKZZFrYBIbKzltDGoE02F4mkCERn58+LCDsWXceYWZ07wxk0AMRbNpnMqFRfFB8lFl0Ti66xKaHjLRviLesmphcYdFRumzcm17Z1zsxftDFosZYQ47oAEJdXX7/insr8OSeDvjr9cVsOGgDWxT+YkNf9cOLrtmBySt4AAK8HesYQdE0PTfQlomecVnmNLffNZxHoeaL6C4PNGmwWAJY39dwit83pkxw9r07ftgj03PB8mkXPs/OvMdNgpgFWhabPBETPkhQ32eyyoGdCZFsIuln0bJplxkwAiRA/TBwMPUsA5tLQs9fwpsGAqWc/G7WAnon30fBF1dy3b+++fXv37t27detW32OGE0444bzJE0gMrSiKouQamZp9xNAc/CGqJgQadhhyDO31cLiNAKS9w9cAMJDLYT+hqo2rpXGvbdhPyEikQT+hoowdHVEUpbt3x2BhyHtb4H5CC0N392wL1mTo2SVYd5KjR4N0HmYVJZcbUBTF/80DnIFc7ujoqKqqDTE0J8tLx9BL2QwWhiYAK9PJAJtrBw+IoYeL+UNHRnf35wJiZS569tl/oFgQo8dLwdDOZ75YyGtU9Qo+Y7oZWWdJo2LGGcG01x2HiwUf7cbo6GiuXpShZLMc8vpXEarWRx/AQ7vBbyoW8j7ajf46W4gKAKjdGBsbsx0KHx3Xs8qC8B1/4lx1HCrVPLUb9ZaSkqaOa/RofXYbAETrBZ8DxcL+ocKhI6MifUZ+XdKoTfr8r+/tlSX4+0MLp3dCoydKNCqRVyenOuuhtiwRfEnkL8uu0ud8vrBv375Q+hzOO3tCAB1OOA3m+PHjHgzatmLWrxDHCt9DrJWIo5YQV8QcNDLoirAYAYgyNicyaEJiABKvJZSkOGO6JKWdDDoS6ZjXX9ONMiExZs4BgCuDxlpCw5wRawlb5JWSFLsy/TOxlhAAdGPKtZZwavYlroSORtrm9Csrku812PxrU98X785rCQFAbMzbkM4YoLvWEgKATQm9Lv7B61M9v5w6LOo4UvIGV1eGbRaRegaAc9XvI3peE//AEtEzn1Z5zUw9g14Kek7Hr0vHr2uRO0T5iXOaFW7M6VemZl/g6Lnh/oboWY4kxW+eRaPnqLwiKq+QhHdN3E6+idSzaVZ1Y/JNTz0jeiaklZAogMQcHzuwdjaRerb+8/VAz8sicbbVwPpzaoboOUyLhBNOOG+jCS6GBgAf/hhQDI24yh96cgyND6c40r44GM71N3LUzi3TNTj88F27PuWPoYP0E+4Z6J+ZugKEtKY7msXQlNKsI4ebzWZnpqeVbLYhMraaDDWVaqoapHUQGvpAwAqeb+vp8cfQ+EVBDO18u0JV65ruloihvYwZrpv9r65vIDdRrgDA9m09DUXJzWJoZMTLi6FdHwIxdBBXNQDsHsjt7l945jVKUbtxyKGnAAsic9YptjVyMO2liiYAGUWxRcu5W2Pa4dZAtzIIH63g41NF6KrdAABK1XTSvdjQS7uhUYrxamfw2fXRUbsBAK46DmCmLfiM2g3X8sYIISi0Ea8rlUxw60U+X8Co8oFigRC4eKUivg2wv5gfLhb6+gdu71og4185UHz32raujCIGn0+UKABEJSIGn8c1eu/2bbJUU38U8/mBXI5SNZVM2PD3YL7Qmkx97OMfD3+VDecdPyGADiecxnP8+PF9+/Y6+LKTQYNvUSGxWI9N0MEc95JsDJpAlLEqXyQkAhBhzPBh0LVjSWnGTMOYELbVagkZmzWtu0ciKVleNTt/3llLOK9fsjForCXkDDoiJSNSMhG7tjzzfHVugfbaaglb5LZ5YxIAkrGr5EjKVQl9eeafoX5WxG9yKqET8trVre97tfrDgEpon1kEej5f/eGPJ/6yNbo6EV0bED1fqP6oIXrGaY2undZrnpOlo2dcj8kds0KxpDjNoufK7OlXr4zLkWQ0kl4W9GybJaJn//2LEG4AiUak9DKh5yhj+tLQs8/ORQg3YDnQM3Lh4OjZadJwJcv8wyKNY9T79u0LP6gYTjjhvH0HS0f8xdAYYQZfI0cQMbSIqn0c04qSnapMY0TXB4w2FENrVN3T99Cxw9/Z07fbH0P7iKFtSHrPQP/Y0SNU0/yNHBxDY8bZaxtY0m1KaWOF9OhRAGjYZAgLrYO0NZly3amqC35t9Gz4NE/iNNVPuGgMPdSota9ZDA0A5co0AQiiqH6zMLQteux8CAAIWJnITwmZe1dGaaDdcOsbHC4WvLQbO3t7MhmlbyCn1ZcK5vP5np4eLyMHpdQJf8GtilBVa9oQL+1GIZ/v7enpH8hhzSlfd2o3+BQL+ayiuGo3bI+ODYSo3Rg7esRJn6n6VPXSuT27H6hbP/jnqN0Qn0x0ZyuK4tRuaFSdqUyJ8Hec0jXtKULgIUdpIQHA91G4eeMrB4pfOVD8+ydHRPr88HDhMzt7bU2G+G2WrVd/oPQ5NzBgo8/5QuH48ePhb7Ph/DZMCKDDCSfQ7N27t55BgwBf+P/lxJk4Vvg4f+gkW+oZ9zCYFzOAyKCtWsIIgEFInDEmBpwJiRGSMM2yaVYJacVEM9YSOhk0A1MsOZRIiyyvctYSSlK8OndmTiCYqISenT+PSmg5kjDMihxJtCVuntPLIoMGj1pCHwYdk1dcrj4nbnZl0ACwuvV9rdHVv54arejnFo5sMWiuhHYNQaM9Y3Ho2ST6TSv+1er4+yuCO9trED3roDdEz3xm5l9dLvTsM4tDzyYzVqZvbY1taLi/KfQckZLLiJ4jJG5LQC8CPZvMiMrrIlLSZLM+m4OnngEAYP7NRs/41hSmnm06e3GCp56hSfTsY9LgO/GVMAh6DpsGwwknnHfCBDFygBVh9uePohja6+E4hvYXQ4PVYRgkMY0Y2vMRM12Ioe/a+anFYei6bYoydnQkiBg6q2RmyhNKpkul1B8Zj42NjY2OBoHLTSmkx0aPNtwJVqIcoIGqG9wwtK3pThwRQwfMIGcUpUTV4IFlfwyt0ZoAeiCXG8jlhgLQcGiEoTVqh8VvQBr6of7cxSsVaAZD7+7PZRQX+mzTbvApaSoA7OrtAW/tRkmjh0dG+xw35fN5VVVt2g3xJgDw0W6IIBu/UX20GxpVy5VpjPHyyLardgMANKq2pxKuX3GvIsS8pd2wfWShe1svMeaPHXocAAaHD37xwf8AAOr4ydi66+bkhO3pQlIPAF7SZ3FRpXT/UGF3/4D4FSlRuqotSQDw2dY0ignorxwoyhKcuVTe0rVweg8PF54e16C+yZBLn+trGykBEKXPADCYL5TGxxljoUEunN+SCQF0OOEEnXoGjYjZiy87Swhte7zKDPkQAOZg0DEAo55BtwBI9Qw6QkiCsTnGFhgcMmhdv8DYPF+MRDoAYF6/uLCNtEQdDNo0q62xa7CWcOG+9bWEESmJgehk/Jo5vVyeeV583rCWcE6/MifUEiZjV3Uk3uesJYzJKy7PPHe2XPfnBNYSXpj5EVdCr46//7WZn2AtoY1BA8D1qZ6EvO6XU4en9LMpeaMIoNHafLb6vaWgZ1y0PahtRPS8Kn5zEPR8sfozADDBaAo9v3D5SX/03CKvEEH/sqDneaPstb/51POrs/OvMma+RVLPHD3jovgmjThNoWfTrDI2xxhbOnomBE3xiJ7nmkTPIKSebS772mUBzDcj3IBGTNlZ4mq/IC5xDqbmCNFzOOGE884cO4auTzjiCB16DcTQ2WyWUuqfmG4ohrYlphti6AbFg5mu6sRr2Uzmrp2fGhw+6Lmtvp9QdMLWbQuMofcM9AEAVZ9qTSS8VCcAjfsJVcvj0XyTob2fkFLq1Jug7hk/nu8vNhExdD6f92n5A4vnAoCzJc91RkbHSLDNTaWhsZ1y6Rja2dRXW18ChgaAIKLnpjC0RlXXUkGN0otXKs6CO41SjVLXxDQyawJweGQUmS8n+1y74XRroDccAHK5nA3m+mg3qKpSSn20G1gxKo6XdqNYyG/f1tM3kMsoWUU4N0/tRj6vUqooiqt2I9t5hzP4/Ml7/5VTuzFcyBNCJqemRTWNq/UCAAbzha6MYvuK7C/md23vEcsV8Xv73WvbZAnE4DMAfGZXb4tEDo+MAgD3PnPps039gS8I4peju2dbtKUllD6H81s1IYAOJ5wmxmLQCEr4h8QhQMYZHOlpp3kDAAzrsIh1ZAbzAjwCAlGLQddUsBaDLnMzLCERSUoARAAWcLMkxSUpbRgTIoOWpCRjc/P6RVOgbFF5FWPGrBXvlaS4aVZ5LaF4VbyWEEPQuJiMXxORWp21hHIkMW9Migy6RW7rSLzPVkvYIq+IySuictvZslYVfNBxefWGdManltCphLYY9Cu4UisMBMME4/pUz1LQs/8sDj1frP7MhDkT5qr6xabQ88aOj/qnnrmC4y2VegaA6tyrk5WfMDDTiZsabg6OniWp1TRnlo6evaZZ9GwYlwEMSUr47wycepasVwATwGwSPfs4Nwzrxcc/egz1wg3/EdGz/zFD9BxOOOGEAyCIoZEtuvcTBhBDAwB+6L7gi6p9xND88/UBHdNokyAA/mJolHKopRMNxdDYT6hSzaf9j2Po7t4d/hh67OjI2NEjVH3K31/RBFxeMoZ2Dtc9B+knxM2KogQJOPcP5CanpqERWUbQhh2Si8DQQ/WbnUbp5cLQXrMIDP1g/0BXRgl4fAiMoUtaXTId3c0A4OqD3l/MlzTqqjBGI4cIQwFAo2o2m/XXbvT09OBPNzYQ8puc4gucmmGcUn/tBl8s5vOZjOKj3dCoOjk13T+Q06jKkavXo+N6Vsm4ajeOPfm4SJ9VbVwdPzUnJy6VKzbtxq7eHkIIonDNalNE64UtdwwA3T3bxBw3Dn4tnEnzf33P9vt299u0G5tWpu9UakYUfL9hXKNr21Nc+oyD+F6jqvheUSh9Due3dkIAHU44zQ3a+izPho1Bi6ln14yz6OsAj3sZ9SsygOlg0KYYLSSkhZA4Y9NiO5kkJRjTTXMhqUqILElp05yqryVMEhLV6xm0WEsokbhhzoJVS2hj0FhLiDloPrHoGg8GnZqY/kll9rRw97YVyffOzF/ktYQxecWsfjkdvz4Zv+aVegYN9bWECXktSjmwlnBKf8W1lnBKP3uu+n20bZhgrIt/cLnQ8+rW912o/khc4aLnxaHn9viN7c2j5yDXAgDLi57lSFoMQS8FPWPq2RC+J23TbOrZNGcMc2a50DMhLfy/F4ue01bq2as8MLhwY956A8kkIAduGgyInlmjur+ArmdoyqRhnWGInsMJJ5xwarN3717G2L59+7wYNDQjhobAHYYN09D+jmmwZAuWGJpmM10uh7KMHA37CbOZzqySoZR2b+v1J7wzU1cURenu3eHsJ1SphjFqi1b35fODATE0KqQbYuggTYYcQzc0cvCAcxAMDQDBA84cQweBvxxDByfFQEhHOskxtKa5BL1haRgaAqSVm8LQ45RmrP3LjqFx0AjRlVGcwWcOpvG0nXdEB7ENhmoaVVVVVdXp6Wkv7Qa/SVVr/JfHpZ3ii8F8vrunR3F85ALqtRu2m4aKBS/tBljflgDAddU+jw4AY6N2ND9YKKJ2I9vVyRfx5cJLu8HPh9Ne1G7MVKayDvirKBkA6MosnAwWPPKkee0yC/ktGcUpfX5kuGh7YwC/32ykHvE9fi2yWQ7iQ+lzOL+9EwLocMJpejCf4uHZ4Cs842zbI2acidu9eAMhJzhRB4OW///s/Xt0ZNdZ540/+5wq1UWXltttdxzHcULIZUje+cHAu4B07eO2zVgldSdmyHD5LYYhA0yygEWYgRm3VEe8UoJOldpOwgBJZlZYs1hMZhYwBIjtbqnUEOScXXIyv3kDGUgCuQ1knJudtlvdkkqXqjr798ejs3ufs8+tpGp3u3t/11mhe9dT51aldvGpR5/HLxBIyySkyPkuDyhrTc65yqA530UGTUie8z3DKJvmeLf7fE/ixVcZNN8Ri8igt3a+HBpLmM8d3e18W4wlBIBC/g51LGHeHCkNvWy3e0lm0ABw2/AbZSU0MmhUQj+//bk4JTQAtLv7bdqCQatjCf+v8bcDANo2rmnXszxjMCN6/tKlP1LRczF3+47kRZFzAPS8sfP331hfBYDx8psG2PWcN0c73SswCPSckH7Rc6d7qb37vzl4AHBjdD2PDs71jOh5/9+czJMGk9GzF0TPyQi4X/SczpT9spS9afSso6Nza2Zubu4973nP4oHE0II6gT9nDzKg6tQ2Z9kxnWrkAICHTj/sttaij5gBQ7utp2kFxwlOO/VGMoYW8wlLo+OJYug+MPR2uy3gsuuySEIH4g4TkjrJ0KJ0e2sTALJPHUy+29ionrHBGTNTsyPnE4Y6NDF96Zv3TyOIoRMusF8MDQAVSh9ddAS0TYiMoR+LH6641mKIIE8cDkPHuarFvEGVPqPqoULpiYoV6sMV2g3V+LxYdxDp4ndLchzHQe2G+pBAzJGjCJnrrjSbFqU0qK2I027UHYexJO3GzFV5hWtRmqDdKJXLADBr2ziBENddxkojY6TXCWs3zr73obf8iCrXRkE2Nlz7J88AYLI6EandYMzFIYcua+HL9GjDuX1smFIauuGnp6qLjfqvnplRpc/yFwOLDQcAPrXGQqQe8T1+GcB8h8+CU88PDWnps84tGw2gdXQOEmTQJ0/ep/yauSfxZfD7oHlMDZdWQsMMQ3rWPARaGpFAGZzvKAy6Jxg0ISYhJoDR613i/OpzDWOUc6/XWyckjw2VOJbQ4zshBp3L3e55O11pgGE+d6SQP76z9/UQgwaA9u4/yK3QObNcLrwqcizhbvfSpa3PyYvyWMJC7rY9n0QfG/nedudZlUGPl14XmkkIAK8cfTBSCT2ce1myr1nk8Og5y1MEer73tlNq13Mxf1QF0P2i593uOqJnj3fvGPuB4cIrOr3LyU/pV7jR6W0MED2bRrknfYFxYPQ8cOEGAFxf9AwAAj37Xc9G3PxACT0PZVBkQDb07MWjZxKs7Bc9G/5OVBu1B+Bp9Kyjo3OLBz9tIoZObWFOFkPP+kaOVAyNYugEs3CWjmkAsGjFrs0snH0sC4bG+YQJu8qCoREuryyfzzCfkK4sL1FamahWsTEzLgiXGWNOPYksY2WWSYYouu136mCWbujsDc7yfMLU4n5JscDQyVbog+28Qq0nlprTNfv2seFHG5nmAT6x1CQE7jgykoChQ/UHwNCL9UB9hdK4eYMYPPlIMB2p3cAs1p3FRh0AIhufHcfBb6TkdcaYyxgi5kjtBkQppCO1GwDAmDtVnWgxt0JppHZDpdIuY3hikdqNiPV6Y2LyVEi7AQALZ9+7uvY/TlTomeAdQ+2GaLjGtJiLwFelzwAchxy6vjfj0UbEDV+sO+Ojwxa15H8JP7nGZOmzHMuyQqR+qjphkP0vA/AbQZcxlD7rT7Y6t3I0gNbROWCiGLRgx6FBhSpfVrueQakhwd/ZNwGAS1pnLAsyaAgxaAAgpEBI2fM2ggy6CJBLZdAGGcrlbgcAeSyhYRQL+eN73edDYwnzuaNiLCEmZ5ZxLCEy6Jw52ultAsBo6bU5s3Rp63ORYwmvBMcSHhv53h7fC40lLOaOvXy0cnH7s6oSWmXQw7mXbSYC6K3utw6AngHgue3/dRj0nOUp/aLnjZ2/39j5+yvbX0H0XC68IvUp/aLn7d1vbu99g4M3wK5n0yx3vTYMCD0bpOB5u2pxf13P3lan+ywy4gGhZxP6R8+cb0voOb6yD/TcA9jz/7XJgp754LqevQxlHNHz/Pyc/oCuo6OjA/4Hznw+Xy6XD2/byCKGzjLDMEvHNIJjSulDpx9eWHw0tsyfT1g8+jJ5PqG79rQ8hHB/b5XKxOSpLGJoxNBOYzEOps/WZrY3r1BaSZ5PCEjoKGXoyR2EQhqkqYOZdc/WZLU6Wb2Ky1WDLcQ3OKsJYehG3QkhxdA59IuhAcCXsaQUZ9y5aCs+QekLG1sAkBFDIyOOxNBrLaa6Lw6AoZ9Yaj4ybQsMjUMFnzjfjGx8vn0sAKbXWlcnFqIFQtVuAAA2lZ9baqrvZ/xxVo0c4r2qIma1J9pxnBnbhnjtBlJpSq3Qeou5pyYnACBSBm1Rut1uq/SZua68jkM+Ubux88K3QtqNh976I3tk6GPnl+WdIOJXNSCNutNibHtrU6bPLmOl4REAHtJMo/Q5dMMR9Ndqds22GWPY/vy+s/V//pap+4Jd0sipW4yFGp9Hh8shPTfSZy191tHRAFpH51CJYdDgr/BEvpzAoDE9CBBnE4Bw6Mi7IpDnfI9LBmdCipxzz2sTUsB1QkxCyp7X9ryrPg1k0JJVFgDANMc5eB2pA9cgQ6Yx2u2tqwy657UFgzaMEgAUh+4OMWgAGC7e6/HexvaXcuaIsEIXh+7KmaX19mfVsYR58wi6OERGi98ROZYQALKPJYzMszufeXbnM9/a+cu+0PPFnb/5u0u/34MuAAwcPRdyt+90LsJB0bPHux7vjg9/1zVCzy9sfNrj3SPDb+r2tlLr+xJu9HrtQXU9G0bRC7hoDoaeO4ZxhJCUPuLsXc+EmJzv9o+eCwp6Jlz6h+JA6NmM+jWLq9cURM/JsBh3khE9k5gycSbeyZMWomf9AV1HR0dHDoqhU40cKIbGtsfImiyomlJqUZq9Yzq5k3e2Nr2ydM5de7o4fiyuFRqyzyesTW9vrAPnpZGxLBgaEu8GCHdH2nxC8Fu/VeFJ+NCZMXRfDc41297calNqpfZN99XgLIpbjLWYm4rCM2JoFHrg1R0MQycXA8CZmn14DC3Ir5p+MTTWI4Y+UaFPLDVVtI3NtiEw3WKsQq19nFoJWyDAp5wQZeQQ2o24UYT4gxx6SGg3Qg8xlyVoN1rMXW428e0qmC9qNyIp8JGRcouxkA/Edd1SjCckQbvxA5WT/36mBtIXBqjdiNSArEljD/3rrU9UJ1G7cfX+1BtrLYbSZ7l4se6stdjmVrtm24y5P1jZp8/vP9sIDSdETk2D6pK64zTqgVZ013Wr1SoAaOmzjg5oAK2jc/isrq7Oz89FjRxM7XGGqGfJNbhFM2iyj5AMAnmAXpBBDwEY8rBBQkzDKHO+F2LQhjHqeVsygzaMMiH5TmgsoTHKeW+386x84YX8cc690FjC4tDdHu9t7Xw1WLk/ljBnjkiVd42WXhs5lnC3e0mMJcREjiUs5Y7dVnqDGEsoUs7d+Ybb/r9iLOFIlIID0bNHuh7pvnL0wX7R83fc9sO3Fd9Qyh3b7n47+Sn9dj2jA/rA6LlceIWKnvPmmAz64XDo+Vq4nnu9Ngd+3YUbQfSMXc+54A/g1fQl3OB8l/Mu593Doedg5cHRc0IyomdP+sWLlHZmqSx5wmFvfn5OfzrX0dHRSYgwciRjaPB/vz6uJrsYOkvHdLvdRnFH7AxDWllZOreydC6jkQPF0HFHBB9qZ5lPCACZm6b7mE94YAztuowGu0T7xdDYNz0yXJ6sVhN6lvvF0BVKZ7LB4r66ocXV9YuhQz7rVlS7N0gYui9jBmLo5PmEmANgaAA4k6jdiJg32HDWWizENzFIOYUgosVc0cscp90AfxQhKGA6QbvhMtaoO3HaDQKAbfjyQ3HajUbdWaw7M8q1YNt1pI4DACK1Gwtn3/ux88uCPld8+ozaDfn9j8jbAKiFd14H4NubVwJzCOsNl7VC2o0WY6enqgYhyz5/Zy77wROV952tDxlkfWMrNJxwrcXwC78Z/4iy9Fm6gWx+fl5Ln3V0MBpA6+gMIHNzc1EMOuQ2VYkzCQKaUA3xMRAyaFFmAuQ4dLhk9ohj0ADA+VVBh2GUAXoygyYkBwC93rpMq5FBd30GTYwhj+9eHUvohccS7ux93TRKHb8beih31DAKWztfDY0lHMod6/Y2u5LiI2eOoBI6NJYwbx7xuBdi0OpYwmL+2Hb3Io4l/LtLvx+yQr9y9EGPdP/3ZjPkgH525zP/e7OJ6PlY8f86GHoWJ9COB9AHEG5c3vniVy+dB4BBoWdMPjcmHNCDQs85cziyCfpgYwYNUgCAGww9AwAQkpPdNZj+0bPHuZeGdPtAzwB8EOg5hIPFpMGM6Dkjy4YsbdRa96yjo6OTMVnE0ACwsrJSs+0Fx0mQS8SJoRm7OnBP7phO4K1IwQRCZS6jlUqoZl/lnFkM7baedhqLcSrnjGJo8JumGWPZmqajMbS8f7wn1LJQIZ2KoXGS4UR1EvbvbQRIzY6hsXK52aSUtpg7cN0zYujkJmsIYmh18iFjAc5+AAy9sdUm2cYqAsCZmj1ds3E+YXYMjX3QWeplDJ2l2zoUVbshssbYWotVKvTcUlMl7KenqhA0crRaDPttkSNHajfEKEIabgROGkVIKc2o3cARfwnaDQKwsdWmFg0wX0W7IdYdx7nw5J/I2g0AQO3Gty9vyl3qLcaOjg4TQiIbn0WDtu3LNyaqk6p2Y6HewEsItTOfnqpa4St133+2MWQQdTihaZBQE7csfcYg7s/n8/rzrY6OiAbQOjqDicSg5ZGDkNjjDD4DSmDQns+gu8Fewpz/V5lBe5zLcHkIIM95O6SEBuh53oZ88qZ5G+e7IQZtmuPd7vO93qZBhhBtJzNoeYdDuaP53Hh79x9kBp0zy4X8HRvbX5LHEkYy6KHc2FBuLGeOfH39z2UdR8JYwpePVv7PxsfjlNDDuZeBNGPw9tIbD4mek3Ng9Nz1Oi87ct9Qbny3u55cnxE9i+TNscF2PZtGGEAfDD2LrmdPGmuppi/0DADd3uVDoufIHAw9E5InJE+IGTs8sJ+uZ4AeAB9013M3ftKgXKZKnONGCCKkTmfZ2BWiP5rr6Ojo9BUhhk5tYQaABMex3OacMI4PO6azGDn2xdDx0DC7GBoArBNvnpg6vVBfTN5bFgyNLdhZmqYzdkPjPUEMnayQFpWl4ZFkMXRI95yMoQHgALrnOJ4rZgYiWQaA0TTXhyhWSXGLuSpn7xdD12xbYOhTk9UEXQb4jLgvDA04LTCz6BkPAWnSj5BX+tGG02Isct7gow3nraeqFRqr3Yg0cqB2I6QYFg9Vq1XRE80YE23OcdoNdGKwqPe5rN0IPRSp3Wgx98hImSg9yHLbtXpo4J6segeAhbPvLR59mdBuiOAXBpEN14bSoL3g1EvDI5RWVPoMnNsz06F25sVGPXSldcdhjEUOJ7xPuvmMMVSXhF4RfC0e1NJnHZ1gNIDW0RlYohi06HGOpNIkuBKqkScQGgAm7LMnsZIP2WARXcljCQkxAUx1LCGAIcYSElLyvB3DGA0xaHksISFDns+gc7nbdzvPykrofO5IIX8cAEJjCYtDd7d3/0FWQpvGsGkMi7GEIqOl13q8c2nrc/KiGEu4ETOWsJQ7hrpk8McSRiqhby+9cav7LXnGYDmXLpG4uPM3qei5lDu23Qm0XR8SPY8U7wWAIXN8L2jBlrOx8/ffWF/Njp4BoL37tU7vyo0j3BiU61mN6HoGgMGh5xwcDj0nFvcr3OAAuXh98/6VXTP0DIMbSNjTXc86Ojo6h8zc3FwWI0c7s20DxdCuG5aoYmRUnbwrSqnTWEwAx9iVzIlRHD+WgKFnpx/ZWb9IuFcaHU/F0JGqDbmBOjutRgxNaUXA5cgbAgCztr3SbDLXTZ1kiJUAMFmtZtQ9T1arA9c9Q1RbMSqbQ+ewsdUGgH5JcWrD8sEwNKV0rcUyipizY+gTFavfeYPYPQ0xGHqNMQHK1xh761QVAJ4IWoYxCKafOB/xEPLQSCNHizHGWLPZjNNuiJ5o8VMsa5cjRxHatk0tS25kTtBu1B2nQmkkBT41WZUNHsxl1LLi2q73D12bma3NuKwl2p9Ru/HIdE2lz2stdnmzLZ8nzj8MaTcYY67LGHO3N6/I9NllrDQyBpzP1qZDd9sgBH/i5Mus152KMnJwsVFXb36j7oQWHcdZW1vTWjkdHTUaQOvoDDJzc3Orq6sKg4Z4Bs2DK3KNIc34wv2YQfUqAJo34KoiQGHQJkCPkGIUgx4SDHr/kMYo516vty6V7TNozve4t+/3MMhQLnd7z2uHxhLmzPFO94UQgx4ufqc8ljBnlnvelhhLKN86HEv43JWn97pX8uYRdBbjWMLtzvMhBo1jCS9t/912cCzhXVEMupy781jpTcdKb8re8nxx52960E3tei5KDuh+0fPlnS+q6Dk5Aj3fMfYD2dHzt698yuPd0tDLUovhuqJnwyj1pM56uB7Cjdj6bOgZ9ulzHHo25A7og6Ln5P9qH8D1nFwZkjgnjBDU6FlHR0fnOkQ2cgguTBVaats2GjmS2fF2thmGqWJoANjevAKEJINjMZ8w0siBTdDgzydkjE1MnY4zckAf8wmzuztmtjevAPeQ38Xu0LJWVlYQQ6caOQBgudnsV/cciaGZf+Z9YeiZmn15sw0AR0bKyZV4DhnF0CBh6FOTEy0WVl2HImPo1D5rzHSf8wBTMbRoVe5X9AxpGBqk7ubIxmc0cjyx1DzbcKaDAwmFdiNk5MCHKKXtdjusb5a0G6FjxWmXIejEYO7VjvVI7QYAMObim7ZCLVW7scbckMGjxVzmupFt1wuOw9xP4FRAlzGrcpU+o3ZDps9rLXbHkRFQgsgb/2VTHuQry0uBI9YbE5OnVpbOIX12GovTM3aLsfHRYYOQ0B4mqxOEAH5dJLJYd0yDhG6+4zjqK+I4Tj6fX11d1dJnHR01GkDr6Aw4+P8J+D2DosfZUPgy8Qt4TA3xGbQ8llBl0AAAXJqTRiBHIB/FoHloLCEhZc/bAOiIMWuGUQTI9Xrr8lhC0xw3jGFP4tcGGcorDNo0CoZR7HltmUGDMpbQNIa7vbYYSygrocVYQgAQzmIcSxjJoIeL9wJASMdx12glaizh8XawVTkyMnq+rfiGayTcQPTc9Tpx6HkodySk4Aih5yxnJdDzbSPfUxwafNczAOx2nhtg17NJisLCcXj0THxvTCh9oWfOdzzvMgAnZCgLeva8jWvZ9TxA9Iz/MiSMBBSVWSTOoNGzjo6OzvVNSAzNGFPpMHLSLGJoi9JkliqLoRMw9GxtZmX5PGu1EsBxf2LoM//eqTdSMbSs2gj9dn/ouKnzCcVVuIwNaj7hAXTPgv0lnCdi6Aq1Tk1W0c+bEMTQ/YqhM2JoxHmpJwz+BZIMug/GWIXSc0vNQWFouVVZrj8khl5ruRVKxbzBSPp8tlE/M1NTH0INcaR2Ax+KPIeQdkMEv5+I1C7LPdH7K/4XBnHajbrjTFarWCN/vyW0G0vNMPtGlXyo7Xpfx8G9leUl+bcK3LWni0dftkeG1MbnHz41+ch07c2UykQetRuhtmX8tsaK0W5sb6zL/xosNpzTU9VacOhi3XFGhsuWZc3atuPsfzeA6N80iHyH8UJwCKS8WC6XtfRZRychGkDr6Aw+J0+e5JyfPHmf1MJMfL4s02S1x1mtUQcVmgBcYtBYQ3hgUKFBIM/5Hud7AAbOIcSxhCqD5pwH+6AjGLRhlDnf6/hjCTH53O2c93Y7z4onet5OIX+cc09VQouxhNgEDQCRDBqV0Ju7/xC6pbcNv7HHO+pYwrHid1za/jtVCR0aS1jO3RkaURjKxZ2/+T8bH+8LPV/a+btLO39XyB1td751APQ8Urw3rut5KDe+5wPoftFze/drkeg5Z452ehuRTzlg1zPvAcANItwYeNezQM+GMUpIsmpZRs+lZPQMYAwIPcvs+ADo2fS/A0utTJU4c2mHCWWeRs86Ojo61zpCDJ1Qk0UMDQAyS42rQbUxJMs99pXKM05j8UXD0HKPs8tah2+adlkLAV8qXE7G0K571XTRL4ZWK9WZdeCT5Qq1stgwpL7paiWtYbkvDE0pzXJpGFSOJGBoxlxxsYPF0HH1B8PQb52qthg726hD1LxBAFDB9FqL4aUt1p1Wi0VqN/Ch88tNAAhRZvz6J3IUoeM41P9hl6P2ROPbMlm7Ua87SKUZY+Ktomo3RP3ocNmiNFK7EfIyO/UGADz0lh+J02587Pzyv5+pPS0dV9VugI/IAcAO0ueJySlVu+GyFgHYDLZs42WGusUR/d8X5Xe2LEtm8bg4Pz+vP+vq6CREA2gdnWuV1dXVkyfvAwDJ+GxKf4X4HmcIEmdQGDQ+qyP92Yxk0AA9kJujfQaN9BAACDENowwA8lxBwygaxmivty7TagAgJN8NMujQWEJk0GIsYU8aK4cMOjSWsJC/o1x4VeRYwpw5Io8lBIDhwj3qWEIAGCu+pt15LuNYQjVC9Dxeel1f6LnHOz3eKeRuK+aPpj4lI3qWczD0jG5otes5Z450FQB9YPQ8UnrdUP725OJ+0XOP73R6lwaFngkZ8vxvUA6BnrN3PaegZ7/r2SOQz4CeO5m7nnsHQs+Hr5TLEsIRPc/Pz+mP4zo6OjovTlAHt7a2dmAxNFopBEtNRtWztq2KoVkQ2/WFocV8QqHgCJdVTlw493iW+YT2zLRVqTj1pIOC0jStFjDGLEqz9zjvi7Ata6JaTSD40OfUwYzAGgBmavb55SZ2pyZjaL9vmraYm0qW+8LQfZ0wSBg6C+A+PIbGVuXk+n4x9JkZe63FnjjfTNBuqA+hCAIAzi01Ve3G+OgwEIK97fJDOIoQFCQNPgkFgGTthrzOGIvUbgDAZHUC/F5j+ZuASO0GANQdp1F3ZhSMvuA4juOgdiP0UA/MkHYDAH741CQAfOz8Mjaqr7UYpbRRd46MlC3lPPF7i82ttkyEF+qN0sgYrVRC9Hli6jSldDnYso2t3/KdcRlrMXetFTZuO47jOE6z2cRjYX+3lj7r6GSMBtA6Otcwq6ur8/PzwYlhsgAapCZEL74GfMocGktIIECcTYAch05QCZ0HMEMMmpA851cZNOz7CrY9b0NayYXGEqJYwDTHu93ne1LPsmmOGMYwMmiDFHveLgDEMeji0N09b0tm0DmzXC68Sh1LmDdHtnafSR1LOJS7bbd76Y6R7+vxzjc3Av+vRWgs4bHSm0IwOjRjsJhLaeaFIHoeK75mrPia1KccAD1v7nwVAA6GnotDd10L4UYkejaNcq/XVosP1vVMIG+Qwg3T9Syj55z8w+IX94ueOcAQgMnD3y1JldDl+yMBSdp/nYmPnr1DAGUS/KcpO3r2MpQBgHfypIXoWX8c19HR0XkxExJDx5X1JYbOMsOwntgx7U/2o8ngGLuS3bWnFxYfPfx8QgC4sPSEVTmRSquzzifMDJexQ5xaVup8wuxTB2WqCwAJ9gwky4ihUz0bANAXWU4uZu5VAfQBMHT2+YSHwdBnG/UTlaSmb+gfQwujdGgdtRuRYBoATk9Vp2dqcdqN6ZotYG6LMYE7Uf6QMIowtL7gOKUYTzSKjCO1GyPDZZVK4zsqUrsxVZ0AABxfSSXzBmo3tjevBLQb+1/5tD52flneyWON+h1HRk5UaAhJI/JWzxMROS7id0UAsFBvMMaE9Nk/Yqs0Og4AIXHHvvRZuTOmQUIKEdFyrqXPOjoHiwbQOjrXNnNzc/Pz84l8mUiDCtUaIzioUGXQMpg2AHIAXsxYQhGTkCLn7eBYQmyOvjqWMMSgCRnivCPGEsoMGscS7nae7UoDDPO5I4X88Z29r4fGEiKDFmMJASBnloeL94YYdM4czZkjObN0aetzOJAQExpLWMjdttt9AQDGiq/J5458c6O1k2EsYQg9Q4Zc2vm7/33pYyp6Hiu+Zj04TVFEzBjsCz1/6/InPL5XHnp5lrPqCz3nzBEYaNezaZS6wR75g6Fnj/cK+btz5qjsGVfTF3oGAM/bHEjXMyGm/HN3YPScVHkVPfMMcgzP/5WIVD9GVlLcJ3qGYBmPquzNz8/pThAdHR2d6xiBoRNMzdnF0KmdvwJDl8vlOPMyZBND71dOP+K21hKMHJA2n9BlLYueAIDZmTM7V14gwJNpdR/zCTPD5VnbxvmEpXLZcZyE0XyIoROmDopQalFqtRhL1T1nnE/YYgz6b3AWxaGzbbGrE+1EcXYMLc8nxNNoOIFJfco1HgRDVyjFbujkYugHQ6te6TXG8BDPX9lSwfRbp6oVStc3tuK0G5c32xJ93ve3JGg3xChC13Vl1LvgA2tVBj0xMeEylqzdEIvMZQBwajKiVxq1GxV/vcX2TwDBN43yMk9MnupxErpjjzXqjy7WUbsRuJMtZvm/LiAfVEbkjLn4Lw9Kn1eWzsn/EC3UF53G4srSOQCQJy5OVqsofZZvS6lcppSqfmeQWs4dx7EsS0ufdXT6igbQOjrXPHNzc/Pzc4kMmsd0PUeu9ILDDEPKDgMgH2LQOIdQGksIACYhw5z3fAad47xHSCHEoAHAMEY593oSWY5j0EP5uwgZ8nhA5VEq3BsaS2gaJdModXsBBg0Aw8V7Pd7b8GFuzhzp9jaLQ3cVh+5cb382xKDlsYSF3G0o5Rgrvmak+OpvBBk0+GMJ253n2p3nDoOeXzH+UPauZ0TPOGOwL/R8bPT/LhfuTq0/QNczANw4wo0Qek4uPljXMwBcb+HGAdBzKinmUcBXLRPan9T/ymdXc2BSqbeeNKijo6NzAwUHk+Tz+SxDBRGnWlFqgowCCsuyVppNl7USrMpZjRxofJ5+ZGHx0YOJoVmrZVWuEqjZmTMXzj/JWAr7lucTTkxOAYJsKwIcy3A51cix0my6jDHmJuPXjFMHGXOXms2NrTbNoHvOiKExCWQ5rhgyTBEEBUNnLG44DmMstYO7XwzdYgy7ocX8wOQcQMrxaMN566lqhdI4I8dai6lgXdZuhB5ijCVrNyJ7ovELElW7sW9ktiz1513WbgRPwCUAS1G90o26I68zxizLitNuLNQbT7mtJ843zwQv/7FGHQC+fXlTptLYEI1W8dBBGXNljzPy8dLImCp9xq+dEEm7rCUmLtbrzkqzKd8ZvC0QvMnq7cWfd8dxtPRZR6evaACto/NiRGLQMjuGbMQZlBWZQSNj6gabo/MAoDBoCDJoIKSIDFr0eBJSIKTseRshJTRAjvM9z9u6ujtznIPX6T4vn1w+d7vn7XS6l+XFQv54iEEbRsk0Spx7WztfDVYGxhIig0Yl9Hr7syEltBhLKJqgAaCQu+2Okf/7+e3PR44lbHefOwx6jisr5I7u+PchhJ6zHCUSPedzYzJzl3MA9Lyz981Lm3/FOS/k7xwgejbNcq/XHiB6NkjB8wJN0P2i5563dS1czwBmP+h5Nx49B6wXfaLnrlQZ1yIdalI+/JjB7JUaPevo6OjcuJmbmxNGjlQxtMtYMqpGDJ3Q+WtRutJcZqyV0EfcL4Z+6PTDD51+OPaIWecTnriw9MTs9JksYujtjXVaqZRGkuRgAi5nEUNblM4cYupgZGq2vdRsrjH3yEg5mdLGYWjRWhs6h+xkuWbbaF3AYsZYQqO3uLrURm+46simrRY7PVVtpWFfGUOfTZvBCAAnKH1hYwsADoahQ4/KXulHG06LxfqgzzbqZ2ZqqoRa1W6I4HcMydoNuTnXtm2h3YiTQSN7lX9C47Qb/jcibCmqVxoANoK02qJ0wXFU7QYATExOdTl5Yql5gtKzDQc7ndda7I4jIwCgziF8dLFeoTTyoCGPM2Ouy1qqdmNi6jQA4KLLWvhurzsOIbAdlGnsO7K3NsGXO4vbq5qgGWP6V/10dPqNBtA6Oi9S5ubmVlf/IopB8ygqLa8QpevZ8A2wIC16QQZtAgCHDgAQMAA4gRyBPOc7XJoiSEiRc+55bQATRbeEmISUOd9TGTQAcH+wGwAYRpmQfCc4lpCQIc/b3u08K197IX+cc29n7+vy4lD+dtMobu18NTSWcCh3DBl03p+blzNHbhv5nt3upcixhFd8H/T+HnK33THyfZFjCcX/piYjehZH3O0+Pyj0jMmbo51eGEAfGD17vDdW/q5C/o6e9BVCTH0fXc+9XrvntQfY9UxIQVg4DoaeOe9kR8+ElDN2PQP0CClkQM8dnxHHdT3jzyk2Pu/2iZ4H2aQMADi5NG2Hqf3ReFCNnnV0dHRu9GQUQ1NKLUqz2DYgWQxN6Upz2bZtp76YiqFTxdBW5cTO+kWrcqI4fixBDJ15PmEfGNqemQaALD3OWeYTiv7iQ2JoGfLiPpeazcUMDc7+1EEL9R3JxYIsZzEyi2IASC2m1NrcagNAFgzNGEN0vthwsmNoAnB0dDgSQ68xJsPfMzX7YBg6VN9i7ETFWmMM5w0iYw09F+tf2Ng6U7NbwdNYrDtAiKzdEDk1OdFiLFm7EXqKE6PdADQyA6Dd2HWvfv0Qqd0A31MBAKEvKlC7Ab5/WYQx12UMuKc2PpdGxn6wYj2iND7/8KnJR6ZrKn1+eo3hSyOkGeioUQ+K33xsb6yHtBsTU6dDcwgZYyPDZULCXH5iYgI4X2kuu4yJK0XhScgEPTEx8eCDD3LOtfRZR6ffaACto/PiBT/6K12KAkOLFRJk0CRqxfA9sOC3VZpRDJrw/QmEWGkQyAP0ggx6yCfawv5sGkYEgyYk1+ute5L2Fxl0V2LQBikQUiAwhGMJRaU8lnAod3Sv+zz4DLq9+w/qWML27je2974l373R0ms93lHHEg4X7rmy8xW0cIhEjiUs5Y6F7Bxq+kLPmN3upfXtLw0KPUemvfu1b1/5VHb0vLP3zRB6BoCcWe72YgF0X+h5r/P8Xud5j/cA4LoLN2T0HKTPOVkmAwH0PERIgZBEOYYk3IicQyhVCvScBRODj55zh0DPcfMDD2CFjhR6ZLdCc/zlbo2edXR0dF4SySKGBoAsbc5xYmgZ3wgMPTF5Ks7IAQCztZntzStAiHA0u6xlVU6Ey6YfuXDu8Sxi6J31i4wxl7XcVoJq40TG+YQWpRl7nJMxtKDwiIwr1JqsVpNlFAJDY2UysF5qrtRsOwuGnqnZlzfbPoauVuIblgGgZtsZxdAAQC1KKc0+chAxdEIxY/ttxaKDOyOGnq7Z6xtbCRg6FIGhMxo2TlD6/JUwtj7bcN56qnpmphan3cADQRCCL9Yd1G5ENj4fGSlXqKW2SydoNxhj1LIitRulcplKymPX/yYjTruBpotIKt2oOzM1W12fqlatKOmzU2+EWsLXWuxpxtZa7NuXN2X6vNZiP3xqkhB4YqkJAC3/JBGFR84hFAJo6YiLrNXa3liX6bPTWASAEJf3RdV01r56Dqr0WSw++OCD+nOvjs7BogG0js6LGvzcf/LkfcoQQi+4YgRFrjxInCHIoAWNMgE4wNUmZYlBix/2OAad53xPpmyGUQboed6GtLc8ITkxllCUmeZ4t/u8rITOmaOmMaIy6Jw5hgxaLA7lby8V7mnv/oM6ltA0hjvSPgGgOHSXOpZwuHAPAKxvf/HKzlfkYnUsYTF/bDseQB8APV/Z+crX1i/kzOGh3PjA0XPeHO10rwj0fNvI92RHzx7vyeg5sf65g6Fnj/fyuSOGUexJL7GavtAz57vd3uVBoGeA/eGBXX/PIfSc1Pjcp+tZRs9JRBugB4A/dIdBz2rlYeYHHmaH+13Pq6uriTvU0dHR0bnhkiCGRnQFihg6cj9ZxdCUbm9tApAEMTQE5xPG1WQUQwPAhXOPA4DL1h6aeqvL4ml1xvmEmXucsZJa1kS1mjyfEFuGK9TKMnUQyeBktYqVqjRDVPaLoQGglWam7ms+IfhfYGTH0Bl9I6Bg6ORikDC0jJVbzA3NvhM5U7OnazbOJ8yCoR+ZsQWGXmsxAHj+ylacduPJpeaZqHmDi416nHZjse6cX27O1OwQcI8bReg4TrlctiiN1G44Tlh5zFwXe4pV7Qb4VBpH/zGXiS8qhHYj0stcodRW6HOXk9AkRnF7P3Z+WS7GhugKpYLUC2kGKIgcnSGWZYXug5A+hxZd1lKlz47j2LWaoM+OUwcAFe4j8dfSZx2dw0QDaB2dFztRDBr834UP8WWQGDTESKJDDBobqEMMOhcaS0hwUGGYQQPnbZlBi7GE/l9zsD+WMMCg5bGExBjCwYYGKeRzx3Y7z8pKaMMoFvLHsf1ZYGjTKI2UXhc5lrDb2xRjCTHIoENjCfPmkeHCPdudiyqDjhxLGMqB0XOP79059ubhwj173fXUp/Tb9QwA6+3PC/ScWiyj50L+jkj0bBrDogka0TPnvYOh53zuCAAYpOhJXyfI6bPreWO383UgeUKGDo+e5QwEPRNiBn/uDoaeseuZxDQdY7KjZ5KNFPMges6o5khh2Vq4oaOjo3MTJIsYeta2t9ttSLZtBMXQzHUtK4Luzdq1jGJo5E3pgwezYOilJ2Znziw0zqZi6Lj5hC5rUf+377NjaHHfZHwfSY1R4owQMFX3LLQVCWUgYegsno0KpbVsZDkLhmYus6QvMDJi6ATfiMw9pXPex9Djo8OLGbqbp2u2PJ9wrRWxTxE0bPSLoZ843zxRodixGwraol/YCODXFnMrFZqs3QAAbFSXPd2ImCFmFKHjOJFvM9RuhJTHGMZYZINziEoz5lKLMubGaTdGh8sc4PzySosx4X12GSuNjHU5CUF5nNB4okIjtRsqqUcUHsm70c7MGKOVCgC4rFUaHQdf+iyyUF8EQkCSO4MkfZZ7nzEhuO84ztramv70q6NzyGgAraNzfRJk0JF8OcSgeVQN+Aw6JJImAHtB8GQC9IIMOgfgcR5oXyWkyPku57vSyj6D5rxLyL7TwDBGOfd6vXWpbJ9Bc29PaHwNUijk7/a8bZVBG0axJ2k3AKBUeEW3txUaS2gaw5xzMZYQUxy6KzSWcCg31uldvm34jT2+9+3N/1fegzyW8LbiGy5tB8TQh0fPWZ7Sv3Dj6xc3/qdpDpeGXjYo9IxBC4eMnofytx8MPSfkAOiZg4ddz/KXImr6RM89nAc42K5n2DehHwA94w9vHIDut+s5oz9a/LsRWSm+9+oDPc/Pz+kP3zo6Ojo3R2QxNPZUuq5rKQArzrYhR3RMu4y5bjxfziSGrliVExkHD1qVEw+dflgVQ7utNatSAWF8TsPQ2cXQ2XucZ217pdlkrptFDL3UbGacOrjcbDLGsvBiHA13arLaSKS0gv8eHkOHRhoeHkOzqBmJmAq1Lm+2gZAsGFqeT9hiLBnKw4EwtBrUbohmXjlrLbbYqCdrN9SHhNk5kj4DQLvdtiyLBhlrSLshP+QyFqndiJRBNxxnqlqN025gE3dLUmEs1BsTk6dUIcmjDQe7xUP0WWg3ZFJ/trE/1lI9KCFX7cyu61q0gtJndQ5haXQcCEGdjlgX0md5txPVSZexkFN7YmIin8/r3/nT0Tl8NIDW0bluWV1dnZ+fU/qXQeHLoUTWhKgWEueuVIaYzFMYNHC+4+OnPOc9Qoo+ufPLSAFgCBn01QMYRYBcr7cujyU0zXEebBQFgHzuWIhBAwD2QW/vfk1eLBVegWMJxUrOLOfMsmmUQgw6Z46Mll4bM5Zw+Nub/6+shI4cSzhY9DxcuGcziM4BYHPnqwdDzx544yP/n+LQ8ZCBRE129Izp9to9b+vGQc+d7kWBnpOL++165nwHgACYA0LP/vBA3uF8+6DoOS4HE26kdlJnsUKLL67SDy3Qs6bPOjo6OjdZEEPn8/lyucwYm6hGmA1Cbc5xu5q1bYtSxhhynMiarBg62+BBND4DQMp8QjQ+0xMPnXrLQuNscpmMoVmrpRJ58HucmesmKEogeN8gcTpf9vmEzGUztaxeZhR9EIAjI+VIDC3cDofB0AmVoGDo5OIQhk4uBiESIWR8dDjjfEIAWGuxLFg5O4Zea7khTTNi1kjtxtm602IM3Rqhhxp1p8Xc0EONuiPeQnHaDfB7ouXvkCK1G+BTaeZGwP04GTRjDOK1G+q1LNQbT7ktVUiC/eBPLDXl2/VYo37HkRGV1OON2gwelDF3sjpBSKAHHJ3vABA5h3Bl+fxsbUb8NkO09Jmx0vAIBH9TQUufdXQGGw2gdXSuZ+bm5iQGvT8nEACiGDRXVtQ+6G5wUCEyaHl4Wh4AQgyagCExaID9PmgeZNAmIWV0cQitcySDNoyyYQx3uhc96en53DHOvd3Os6HLJ2Roe/drISW0aRSvtD8vjyUs5O8oF161sf2lnb1vikXBoC9tfS5vHhFGjuHCPaWhl397839GjiWEF6XrGdGzx/cOjJ5xsRsPoPtFz7udb+92vm0YBc75ANGzaRR6fAf6R8/d3gYHzzDKIfRMyFCoCfoA6Jlzj3OPkKHgm18t7qPrGQB89Dx0vdHzdbBCa/Sso6Ojc9Nnbm6Ocz4/Pw8AqW3OydTVR671VAxNqaXOJ5QnEGYfPJipbObMzpUXXLZWHDuaYOSQ5xMmtELjlWbpcRZNqalsNwuGRhlCX15mFH2sMTdk5Ggp/cUHw9CjaRprkDB0qvNaPg3GGDLZ5HrE0FnmE7YYq1D6xFLzjCTlSN55FgzdYuxEZZ/YrjEmMOsJhfC+1VdXhzQgLeaiduP88opqCKlWqxCv3YjsiY7TbizEPEXVbmAQ+FJKl5orofWp6gQPnjBy6onJqS4nISFJqB+8xRiauB9r1B9djBBkv3WqSiAcnEMYeb0Qo93Y3ryCRJ4xZlHqQ/llmT4vOPWJ6qRt29SyxO3S0mcdnYFHA2gdnescn0Gn8mUSRaU95Ym9IIPOBYFUD9kZD0iiDQJ5zndkJkXIEOc8KHo2DWM0hN4Mo2gYoyEGDQAe3w0x6Jw5SmBIHUtIyND27jNxYwlNYxhJdM4slwuv2utuyAwaAEZLr82Zpa3dZzq9qx3WQ7mx8fKbIscSjhVf0+489+Kg53Lh7gOjZ0zOHFEZ9MHQM9YP5Y72vHZyfV9dz4ZR9LztA6BnDp5pDKN5XA4hQ57/XjoMelb3HCzuT7jBOb4/c4NAz8T3Mr9k0LMW3uno6OjcOpmbm1tdXW0cQgyNxFnQxonq5IJTjztcJjF0NuNzqGxh8VGLnoisvLD0xIXzT2YRQ+9cecGqVJJVGxnF0Mx1Z2wbce1UtZoFQ1eoNVmtJncBZ8fQfc0nlDF0Fli8sdUGgNHhMmNMtQzLsSyr3W4TAhkxNADY2c4ZAOT5hKnd0CeuAYYG324cqd04W3eOjg6fqNAKtULt0o26c2qyGqndaNSdFmPJ2g2lF5glaDcAYLvdnrVtx3EEa47TbiDwBQWXo3bjhHLCLea6rPWDFUvVbshjGNck+kxIWJCNN6pSoRVqyV+QYLd1O4jU/bmLlRB9npg6DYTMSuMQXdZyGQPOt7c25V9rWHDqjDG8J6IrXEufdXSuRTSA1tG5/pmbm5ufn1fGhYHCl3lwRVBpXCG+FrYXRNWmRKbECuHQkQ9HIA/Ag33QQwCG5wXGEhpGmfNtGSITkjOMUc/bFLTaMMoAYJrjne7Fbm9DVObMUdMYEQzaMIqet5PPHSnkj2/vPrPXef7q+RmlUuGebm8LEaT/9PJw8d697kbkWEIAkHUcQ7mx24bfqI4lBIBC7jZIy273Ul/oOW8e2dz9hwGiZ0zOHJFv4CHR81DuaHJ9/8KNy9u7XwWAA6DnZOfG4NCzKb97QULPALnM6Bm7ntUmjMApZ+56Fsb2QwJlkrkytE9M+kBCjZ51dHR0bs2gkePd73kPYui4soxi6O12GwgpDY/EYWjVyMEYEx3QV8v6xNBua81laynG5wzzCd1WK2OPc8b5hIhrK9SaqlaTCSzaMyrUCrFaVOKG9onAOnWfIQzNEqkrYmgCkKXBGZusIXFepYht24ihU2QjzKWU4mkghk6WWYM0nzAOQ7eYi+gTMygMvdZiJyhF7cYLG1uR9FkmsHIitRvyQ5TSZO1GKAnaDQBQqTS+uJEyaJzyBwDUCoDgRt1RTxhZ+RPnmyp9huAYRvwu4Y4jI4SAqt0426hPz9SmlTmEKH0OXSlzXQCwZ67S54X6Yml0nFIapM8MAIDz0LzBieokECJ26zJmWZaWPuvoXKNoAK2jc0ME+02iZgl6wY5mdcUItjSieYMrDJoHy+IYNMgCBGTQnLdDFA+ghzoOvyxnGKOc7wY7pnEs4baMUA1SyOeOdbrrne5lgxR73i74Ywm73pbCoF/R7W2FbtRw8V5UQsuLxaG7SkMv29p9JqSEVscSFnJHQ2qOUK7sfOXKzlfWt7+YvetZ9F8PED2HMkD0bBolud8cs9d5fnP7i/2iZ869Qv5ugxTkVnc1faFnAOB8b3Bdzwb4wpkQek6mz0H0bPq7inQu9yXckKcCJlcOtutZrgyhZ6KWafSso6Ojo4MY+oEHH0ywbWQXQ680m9nF0C5rJfPluMGDcplVOWFV3pzJ+Dxz5qFTb0maT5gZLmefT4hwucXcVLaLYJcxd2S4nEX3DBl4scDQa/6gv+Tdbm61CUCqkQMAEJWm3igMdvVmmU8IPg034mXWchIwdKvFVMHFQDD07WPDABDyToBk5BAEtsVcPIcE7QaOIgSAvkYRTkxMWJQmaDdk+uwyxlw2MlwGgEjthjzlTwS1G5c326ETPjU5QfybI1873pYQZV5rsbUWOzNTU+nzWoutb2whfV5sOGgDHxkuW5alUngAWFlZCbQz1xdZq4XSZ2mxMTF5ygpKnxeceml4RO0T19JnHZ1rFw2gdXRulOAHfYUmGz60Qv4VSZwjBxWGGLQ6qNAEyHHoyEpoABOgw7nc4DxESJHztqSENpG1KWMJRzn3er11ACAkz3kngUF73rbHdzx+VSetMmgAKBVeMZS7fSs436+Qv8M0Spc2/yqkp8iZo7vd9eSxhIXcbbvdF5TbBeCj5x7f6/G924bfmBE9b+0+g9w2Z47mc2OpT+kXPXd6m5c2/2qAXc+GUepJfm2BnkuFe/tFz9j1TEjB8/Yii/tFzz1vy/M2OfdS0TPs0+f+hBsHRc+x59s/eubZKiEDUO5jfmBmNYdGzzo6Ojo6gWCHxNraWnKbsyyGjhzZJzHcdDG0RenC4qMZBw8mi6F31i+6rJVqfN658kLkfEKXrYnLyY6hhaJEZveu0rYMAEvNlaVms8XcLPaMpWYTWa06OE4OAuvUfYIvuEDAl6XBOVUMzVxmWVb2GwXKfMLQnpkbvmlIwxFDpxo5UruhQwlh6ORiCGJoAFBxKgCcrTtvmaqeqASMHGstRilN1m4s1p3pmj1Ts0NWk+RRhIwxlUrL2o3QQ/W6U6vZkdoNGfhi033dcUaHy6p2A1k5pRa1qNxdjjaSSMrcYuE+ccT0BOBckOCLLmz5ulzXxV/OwCtyGcPBgyh9XlleCiLpBmMtALCD9Nmp10N94tghvrq6qj8J6+hco2gAraNzAwUZ9MmT9yl8mUcRZ3Ul5IPmQfMGMuhA1zNKohUGDTKDBjAJKXLeQwZNiAnQJaQQxaD3xxISMiSs0KY5zqHX6V6UrzSfO0ZgSFZ5AEAhf9zjve3dr4VuS8/b2tr5avJYQoShY+XXxTPo/+kz6HATtIyehwv3ZETPz115GjlvqXBXqXBX3hzt+IMQI9N/1/OzO3vf4pyPlb/rGgk3ZPScej4qek7IAdBzp/ss5x3DOAKBd2NEON/xvMtZ0DOAx/negNCzLGHv+bL1ftGz4e9KbabuT83cZ2Uceub+vy0aPevo6OjoRCdk5EgVQ7uMJaNqFENPVCcTDrq9se6uPZ3Kly+cezzZyAEAF849fuHc4wuNxVTj84XzT7psLblM7nFO8JOA6Pv23R1x1LhfiXOFWoyxjJMMMw4SXG6uAKRLmVPnE8ojDQeCoXHcolqPGDqjGFrF0OpgQDkCQx8dHT6b1mqN9ScqNI4+r7VYgnbj8mZbpc/YEy0eEnc1QbuBPdHNZjP0NkvQbiw4DqV0c6ut0ud63ZGBL757E7Qbi3Vnqdms2TZzmXBbx9lIIkcLIqavVOh02CjN8L0RQvDVanXW7+Z2XdeiFZe1VOkzACzUGwAEv9aSrn1f+izvdsFxTp48yTk/efKkcoI6OjqDiQbQOjo3VuIZNMYLrkSOJQytyAwa/4vfDaKuvGDQBHIAPQI52GfQ4rkBBr2/L1IgpOx5GzJHRgbteVuyysMwykByIQaNEHO386y86I8l/JrQRJhm2TTKplFs7/6DzKBDYwmFLnms/DqP9y5tfU7e7XDhnvHym769+T+v7HxFboI+DHo+Ovq9iJ5Tn3IA9Ly++b883h0tv0EosBPSF3o2jdJed5Do2TCG5HfFYdBzlq5nHz1HDDAMVu5xvoU/KYPueu5l62WGKPScUIlJVTPL/dGRIFtUZul65gBEo2cdHR0dndQIDJ0MXi1KLUqziKGpZcWJobE/emXp3MrSuYWzj2UfPCiXyX/2y/59MobOLoZG2k4tK8FPAkEIyxgbCDKmFqWUZgfWyZXCAY1IFyBFygwZMLScAXZDqxFi6OwYGq0RGSUbL2xsAUAWDL2maD3WGDs6um/kCPHuNcZajOH5hPaDrcSRPdHJ2g0AwNF8crt0pHYDAFzXLZXLzHXVlnzUbrQVgwdjLFK70ag7BGDDl0e3mHuiYgnlSMhGIo8WrARHDq612LmlpkyfW4yNjw5Hyq+Z64bYMdJnVfpcGhkDIKjdcBmzKHUZC0mfxT3U0mcdnRchGkDr6NyIWV1dnZ+fi3JoQHAFgjUkyrwBPjITNSZANwim8wAg90ETyBEwggwaCClyzjnvCSU0ISYhZc73QgzaMEZR4ystloHkdjtfl33BpjHmeTvbu1+Vn+4z6GeQQZtGqee1h/K3lwr3tHf/YbfzbVEpxhKKPmhMqXBXzhy+tPW5PakleSg3dufYm8VYQjFj8MDoOfRoLjfSkUwjmMOg50L+GACYRlnG7qH03fXcfWFn7+sAMMCuZ+GAHhx6zslt9Zg+0fMeQM8fM+glFmdHz1zasgDlbmIllyoj1czqDvvtj04Vbnjz83Pz83MaPevo6OjoZAx2CCaIoV3GaJA5xu0qmxi6srJ0zq7NZMTQD51++KHTD8cdUWBoND7HlskY+tRbqBWGdOFLyDCf0LZtSmn2HueEWYLMZRVq9Tt1MGM3NHo2svDfA2NoJ831IWPo5BmJ4jSyY2hKaYXSmZp9tuFk6W4+U7OzY2gR7OdNMHLgOYQewlZitcW4xRjehzjthnBluK4r+nzjtBsLjjNRrWJ9aK5gpGfZdd1qtYoykNDZHhkpE0UefbbhvPVUtUJp5GhBpMzyHEih3ZCR9GLdOT1VrSiN6kL6HFq0aGV784oqfbZrNZk+Lzj1iepkSPqMTeIPaOmzjs6LEg2gdXRu0MzNzUUx6Ei+HGLQEM+gif+/ZvAX+WHfvAEdANMn0QaBPOc76ljCIJU2DSPMoAnJAUCvty6PJTSMsmmOd7oXQww6nzu223k2xKAL+ePbu8+gEto0yj1v2zRKpcI93d6WzKABYLh4r8d7G9tfKg29bHt3n0SXCncVC8fX25/dC2oxUO6MXc84Y/Dw6Hn/nM1RGUAfHj3v3x+zHNkEfQD0vLXzZc69UuHe1JOBPoUbADDArmd0vIi/9o+eOwCckMKgu56zYGKQ0POg1Mw8sT9a7oDuYyChQM/607aOjo6OTr/JLoZO7hGOE0OjzvVqGa2sLJ2jlKYOHtxZv2hVThTHjy0sPmpVTiSWvbk4djR1PqFVqSRj9Iwdvi5jFQkZT1WT3B3JswRbkpWi36mD6tFVMYggy/1iaOTFVjyvF67wcrmcBUMjtc/ip86OoRljFWph9zEhJCNWFhg6rnVa1npgP6+qnhAPnV8OTykESbuhthjjHxK0GyoyTtBuYPvwrG3LUnJVuyEOUa1WQRmEiKx8RpFHM8YIAVU5crbuEID1jS1kyjgHUjREh7Qbi3Wn5d8lWQNSjrqoBcdxGVtZXgos1huMtba3NuWRgy5jqvQZm8S19FlH50WLBtA6Ojduohg0Jo5BG5IZQO56NnxqLAaXxTFoEtJGE8gD9BQGbXrehuiDBmxwhp7nbUhlJUJKnO/KDBrHEnZ7l1GXgfYGHEvY6a53upelHV4dS2j6c/NMo1QqvEJl0DiWcHvvW/Ji3hwdLb9uc/erqhJa/G9qsqDnUAaFnuNyGPSMXc+GUQzZt+UcwPUMADeAcEOg51IQPRuhn6ADoWfUPScoL6Af9Az9zA/k/lWkzA/MvMOeRs86Ojo6OodMnBiaST2YkK1HOISh4444W5ve3ljnxEC+HFs2/ciFc4+7rTXcUspYK1m1AQDtPlUbyd3QiIwr1EpFxtlnCfZVmfHoB8DQ2AKTSpZt226325ANQwNARj81ZMPQsqV6pmZf3mz3haHFfEIZQ6+xffExElVQ1BPgGzkIIeeXVxp1R+a5CdoN5LyqhgKC2g2xiI3S2OAcqd0ApX0YAOqOE6ndcBzHdV0Us4TOao25G4o8eqo6UaE0pBzZv3CAEGU+23DONurTM7XQ+umpKhAiZCniTKrVaogdiysK35nJKZQ+B6+lbtu2Kn3O5/Na+qyj82JGA2gdnRs6EoMW4Fj0OMt8WV0xgitimCFIi6YyqNAEMAF6ctOlyqBx/5y3ZQYtxhLK528Yo5EM2uPb3d6GsDcgg/a87WgG3X1e3mep8ArOva2dr8qLOJZwe+8bchty3hyNHEuYN4/sJQ4MhAOh55w5OnD0nJMUHLudb2/tfPUw6BljkGLP21XrDzRmsMehZ6RxZ+gbPfcGgZ7V4gOj54F3PZPMlRn90VnRs9Y96+jo6OgMKrIYOkObc4oYer9jengk4YiztemVpXPu2tPJRo7Z6Uesyonk+YQZxdAAYNt2s9l0M6g2/BGLYU02cwPD9DIi40h7BpMaV5Mr4yKOPjpcVncV2m0fGNqiyHbL5XKy6xkkDJ0qhgbJTz0yXE4VQ/cr5RAYOqMYGucTqhgaFRMJ2g3VYgHx2g3w9cozNVvlwrJ2Qw7eyQTtxqwyV3BkuExIuL0a2405h+XmCmOuUGG0mIvajaVmgGLXHWd0uMwBhFgjcOEKZW4xVqnQ9Y0teX2x7oyPDssgHicQOr5LJMSOJ6rVlWbTolT8wsRCvVEaGaPUCjU+429XhOA1Sp/1R2IdnRc5hPOEfi4dHZ0bIk899dT9998vEWQBl2UxNP6qPvEL5BWZTEWucNRA+0HWbOI0Qn/vXQBAdMj5HgAnxOR8l5AhQgpXy/gu53uGMQoAnG/jHzxvB6BrmuPyRXleG3jX47uF/N1isdvb4LBXyAfobad7udtbHym9Tl7c6zy/132+XHhVzrz67feV9ucBoDT08hAy3t79Zre3ddvwG/GvyKPjmqC3dp/Z2n1G3UlCtne/ub33jZw5nDNHM6Lnnb1vDeWPZWl53mj/XSF/x27n2/ncUdMomUYp9Sl73Rc63Rdy5nik6Bkpv/wQ3mHTGMto2wAADj3Y73wHz2sDkLj255635XmbhBRSuTMAcL7D+S4OvUyrxHdpx3c9x5UJEXnXh87J6Bl89KySX/F7BvKK+gMVGc+334hfUIg7jVBlwg5F0tuo5+fn9YdsHR0dHZ1rl3e/+93z8/P45+129PgK13UjLa6hmolq1aIVe2Y65OIIlLGW01gEzpE1hx7FFunZ6Ufc1pr4c5yUAwD8MjI7c8aiV8uKY0fb0rXg+RMA2w5jwfAJBOe/TUxMTNu2SnsZcxuOAwAzUY9GVjLGNpSm1IPts+44jbpDKa2lVeJu645DqVVTuKfYm0CZyN9T7xJIbwm12HEczsOK4cnqBABkOWFxzickpnlkpHx5M/rutZiLvoszM/YJxUyiZo2xs42rX7qcqIStx5izdYcQIvNlcQ6nJicSGp9RcDFVnZDvjNBuhO4Vmpoh6kcPtRuhn7gFx3FdlzGmTjXEQ9R8vQZjruM42Lgdqd3AdxGaneVbJ0YLysUtxlDuHFpfrDuLjfr55aZofG4xd7HuAIAVVDaDr7fGxQXHAe7N1mYW6g2n3lhpLsu/gbHg1J16Hb/9EncGfzb1B2MdnesS3QGto/MSCDaYKMgpocdZXgHliZ6yQgA60uK+oCM0lhAAON+BfQtHF8AgpMR5l0tOZ0IKhJSxD1qMkjOMIkCu11tXxxKGrjRnjhIY2u08Ky8iKt3e/RqOJcSIsYShGX1Hht/U6V0WMmhM5FhCNQfoet7e/eYLG5/2ePfI8JtSBRRwEOHGRQDweG+4+J1DuaOp9Dmu6zkuh+h6LiN9TsiBhRvBrvzI4qxdz8H2ZDND4/PeNet6HmylSIqaQ3c96+jo6Oi8CEExNP75MGJolzG7VrNt22mcnZg67bJW9K78+YRZBg9alROp/ugL5x63Km9+6NRbksTQlrWyslKz7YU01UbIPeJGtS1DP53LQuIMAAfom45Mi7nLzWZfng3IZsPIKCSBxAZ5N9g2jsnekS3O2QA4MlJGuKzOtRNBMTTOJ+yrG7rFWCR9RiNHiD7jOaRqN2au8t+rWu1I7Qb4horIhug47QZzXcuyIqcauu7+uwJX6o4zU7NRu7EkrYtHOcDlzbZ8IWuMidGCcjGOFqSUVoKN0ot1BwgJ+a8b9X2leIg+400Qi8x1LVoR0ucQfWaM+V3SV2czaumzjs51jAbQOjovjSCDPnnyvqDHOUSTBYMOrYAikg6ZN5BBd4M9nvkYBr0VHEJYUBi0KRj01QMYRUKKKoM2jOHdztflsYTIoLd3vyp7ig2jSMjQ9u4zMoPGsYS7neeEErqQv2Nn77nh4qs93r3S/qJ8AsigcSyhquDoFz1v735TRs/FoTsBIGcOd3ubcU85AHreaP8d5172rueM6Nk0Ch7fGSB6JiQfNLRcK9cz7Ds3tvoRbhD/C5XDo2fi/3BdX/QsqznifodJo2cdHR0dnRc7J0+e5Jyvrq6GxNChZBJDU7rSXM6Cobc31imlITG021qT+51npx/ZWb/ottaK48eSxdA76xeBczGfUJ3RBxJGTxCPQBCtAkAWZIwTApMqLUopxVmC2acODlD3LGwYaiWT9MrQjxe73+K+TlicM2Lo5Eo4EIau0Gj6fLZRj9RutBhL1m6oeuUE7QYi43a7TSXMClHaDQxSaZcxVbsxMTGB2o3QlyWnJquo3ZDXGXNRuyEbM05QitqNyNGCay221GwCgNTmzMZHh0Fh9I2602Is5BJZcJxSuUyDSNplzKk3VOnzglMHQlZWVizLchmjlgVa+qyjcwNEA2gdnZdM/D5oCHY9I1aTiTMEV0Bh0EIkHWLQJkA3uJgHX77hPzNHIM/5DoApUDIhBc69oOjZNIxRAFOGyITkDGO011sPKaEJyXe6F0MMOp87ttt5VjzdIEUAKOSPb+8+s9e5qoSOG0tYHLrTNEpX2l+UldClwl2j5dettz/b6V3u9PZl0wdDzx7vyujZP+1oAH1g9Ixdz4ZRkrG7mn67nnveruftDLDrWQbQA0LPptoE3Sd63pW6npOTveuZ+9vhgTLJXJl9n1fLNHrW0dHR0blewc+rDzz44MHE0Mx1Lb/vFTE0pdbE1OmF+mLcEbOIoQHgwrnHL5x7PFkMDcH5hAmXKSzGqfMJbduuUFrP0OOMEwJTkTHOEkSJc5ZKAIislHXSMtVNbXCu2XZG/nsYDB1puxY5AIZebjZbjGURQ/eFoVvKo6jdCPUFY05NTlQoDXX7gj+KkEBAOYJMX2g3Ik3N4Dc4Mx+zgtBuBKf2gUSlQ2eFPdSqX6XuOIyxSO3GVDVgtW4xt0IpYvdzS011tCAhBBE282c2YkO0yuhPTU4Q5bufyCvCnztV+lwaHgFC5C5pANDSZx2dGyEaQOvovMTCOT958r5sfDmhhvsrXQVne8GuahMAOFxtWxZjCeWzIiQPQDwvNJbQ5HxbZdDyWEJC8px3THO827vclWAxjiXsdNdDYwlLhXu73pbMoCFmLCEy6I0gg86bo0dHv3e3uw6HQ8/FoTtl9CwSYtCHRM+p9QcVbvQIGTKMlF7jF024EdX1bMhvpD7RcwegG+x6jmsTPoBwA65r17NaSYJlnkbPOjo6Ojo3Qubm5jjn+Xy+FD+SLgQc43Y1a9dWmsustZbFyLFw9rFUI8fs9CNZ5hNalTczxpKxacb5hABwfnllurbf45xQJsNlFaoylwlwudRcyTLJEDLPPIR+PBsq/5VlEaFkfKHlYtxVKgrvC0PXHQclEhnnE2bB0Gs+TsXEaTfAR8wtxlK1GyLMZYwxSNRuCJrsuq5FKb4VAUDcQxFkuNvttkWpjHcRcC9H6TXqviI8tM6YG8LrjLEWYwRgfWNLviE4WlCgbTHScLHutFos1AaOQw6xmEl3e8EXx4fmEDqOY1Eq0+cFpz5RnQyNW3QZcxzngQcf1B+PdXSuezSA1tF56WV1dXV+fi4bX06oAf+3+HtRLdUyszMBCA9Iog0CBYCu7NNABs25zKBz2Moq6zgiGTQAmOa4x7dVBu15253u5XzuSLe3juuF/PGut7W9+zX5ngzlbzeNYrfX3u08JxaLQ3cOF1+90f5iSAk9Vn4dAAwWPe/fKWO429uCgaJn0yh5Sgf0gdHzUP4u0xwxSMHz9uKK+0XP+FLeAMKNjo+Jh66B6znLVED8AckClHnmyoxdz978/Nz8/Jz+bK2jo6Ojc+MExdDJRo4sYujsRg7E0DhUMI0vp4ihAQBJVj2xeze7GLpCrcub7RPUSu1cRrisSpxbLKBF7lchHaqMFIxAomdD3a3gvxDv/sYIDF0ul510skwppYRkUk731b6Nt2KwGBqToN0QDmX1nsdpN3C4nzokECTthmpwnqhWqeJNTpBBo3Zjc6sdajafrE4Q4CGvBWPuVHWCA5xfDuwHAfr0TE3Vbiw26qo5+vRUFQg5v7wSkj6fmqwihWfMRZ2I4OmRcwgtSu0gfUbps1yM7zQtfdbRuUGiAbSOzksyc3NzaQw6YUUdVNgLlpkAJNjjrDJojBdi0IQUOG+jEpoQE6BHSAHA8LwNMZMQAAxjlHOv11sHAEKGcCemOc6h1+lelA+Qzx3j3AuNJSzkjxMyFMmgAQARMCZnDg8XXx0xlnDo5ZAh2dGzSLe3OdiuZzOo4Dgkek47+b7Rc7f7bc67hBRSz6Qv9AzgDQ49E+l9e2D0bPi7Uvup5d8YyAipSWIZZEPP6AO5ip71Z2sdHR0dnRstaOR493vek1EM7cYDvuwYGv83mS/vG58BQv7o8N78htxqtZqATRMwtMuYDNpmavb55SZL60c+JFzOUhlXhsnu2cCWVSGLSN4tzr4DgGQMjf3U6DkhJB2FQ4b27ZBy5MAY+mz96s7PNpwzMzYAvHWqGqndaDEXnRKSgGL/HCK1GxikzwAQaWqGyLmCjAFAgnZDrDuOg93o5XI5UrsxMlzGzmLHqc9I0winqtUTyuBEpM8AoNJnQshGEG03HKfFmDp9EQG9oPDMZdSyFqJ4uoDp4eGE1UkhfZav/YEHH9TSZx2dGycaQOvovFQTz6BBYmSCQcsrhjTJEPyuZx7cFQJo2bxhAuQ4dCQltEHABODyBEIAIziW0OQ8jkEXAXK93ro8v84wykByIQaNYwkBQLZ55HNHCBna3P6iDGeH8rebRnlr5+939p6Tnh7NoJNzAPS8s/fcbuc5zr0bTbiRBT0DwMHQ87XoegboDLTr2fCnbmZHzz0FPV89bPDPMnpOaVKWKhMAdHY1BwcAjZ51dHR0dG78ZBdDA4Dj1Ceqk3EkOlUM7bKWVanMzpy5cP5Jt5Uiht43PrfW1DK3tSamus3a9na7zVy3HG8UgZj5hMx1Q32vSDOna3YWMXRGZCxPHcxYyRibTKvsy7OML1+WBmdh0I77TsKVbhp2Afc1chAyWETgoBiaEHJ0dFhg6LMN5+josApVwe/qVQUUEK/dAAB8+VDeLQe1G5GjCCcmJixK47QbKpVO1m7YtZrstQAfiKuDEwU4lhdxtCAhJNIorWo3BKCXF5nrojAkJH2WYbrLmEUpSp8jObWWPuvo3GjRAFpH5yUcn0H3FOIMwRUSZNDEXwnBa66sEAiaNwByAJ7PoAkHj0AOgHC+GxB0+AyaEBxsCIQUCCl73oYMkZFBc95RGfRu5+uhsYSmMSaPJQSAfO4IjiWUGbRplEyj3O1tygwaAIaLr/Z490r7i/jXUuGu7b1vRN7Vg6Hny1uf5bw3Unpdzwt/XlTTL3o2jdJg0TMxhuSvDbq9jd3O1w+HnnOytVnkQMINj0BB6bVXi7MLNwRQzoKexc9FMlAG6WcqubIvSN2HFVrrnnV0dHR0XlpBMfTa2lqcGBo9tivNZduuIYaO29WsXdve2mSttdLoeHwr9IkLS0/MzkwvLD6WanxOFUMDwMrKykqzmWzkgMzzCfvF0IiMmZs0EA8V0pUMlo8Wc5E/HkD3rNYwd18ALa49mdRjkCz3NZ+wXwwtinGgX9wF9oWhZ2r25c02YugWYy0FqmKEdkNFzAnajdHhcmVfguyGTM2u66qjCLGRWT3JBBm0yxillqrdqDsOAb69tSnoM1bWHYcDhAYnoq8ZwbEM1nG0YOTcQryxqnZD7cLGgYqhLu8QTMd/K1TpM/icen5+Xn9I1tG50aIBtI7OSzso11N6nFXibCjEOXJQIfcRGNbjrrpBgpaXGDTuSGXQQEiBc08my4SYhJQ53wsxaMMY5bzjSdzWMMqmOd7pXvQCvdVgkMJu59nQWMJC/vhu59vyWELTKJUKr1AZNI4lvBIcSyhne/ebL2x8+sDoeSh/e2r9gbuec+b4ALueDTKE91ag51zujsN0PROSA+ktAYdAzwRyacUdzrf7cT1HNjKHItAz70fNfGBIHVJ59OWP1uhZR0dHR+clnNXV1XQx9H6bMy0Njyw49bhdrTSXV5rLaUaOA2Jot7WmTtVDEpoqhgZpPqHLGIv3iggMjZ3LSRjaohVKOUAqXBZTByMnGQb2SS3RL5xd96z2TYdoKWLovshyqDhypOEBMPRVbp4I7iGIoRv1lNZp8DE0KGQWFO2GWMdzSNZuqMA6ASVjI3Oz2YSgrCNSXgF+X7A6V5Axd2S4TICHGp8BYHS4zAHUxmfha8brqlT2RwuutVjoEtA2g5cszyfEHnC1eHRfABIhfQ7dAfzJUruk19bWtPRZR+fGjAbQOjov+eBvNUbxZXlFjFCTFbRxkuhecMUMMmgAQDHCVY8HgRyBvMKg8wC5EIM2jDCDJiRHSE4eS4jPNc3xbu+yGEuYM0c9vivGEl49P6OIYwmRQQ/lb9/rPg8ApcIrOO9t7fy9fK+KQ3cW8sc22l/s9DZy5qgg0QI9Hxl+0yHRs2mUe72IJuiDoudecegew0hxXED/wg0AGAh6VjMg9GyoTdD9o2cuOWdiT6Ef9Az9zw/sS82RskONnnV0dHR0boJkFkPXVprLjLFUI4cshnZZy6InlLITF5aeSBVDy/MJE85fYOhqtYpwMKEMfCKZ0For5hNOVavJcLkvhXTkJEM12C+cUfeMGDqL4CKSLEcmDkMnF/d1wqIPOvmc8b4RgCMj5VQM3ZI6f0XiunqxvsVYpHYDb6ZsTMam8mTtBgC02+2M2g2k0pZywnXHmaxWVe0GfvGjzlRUO7tbzK1Q6/RUlRASYu5ojlbvhugBjyoOnGGc9BlN1mqXdD6fX11d1dJnHZ0bMxpA6+jcDMHP8SdP3pfIl2UGTaTGTIhh0ETamwnQU8cShp5IIO9ref1DkjwAeF5b9jMYRhmg53lyG3IeIB/JoD2+3ZUalg1SUBk0ABTyxz3eU8cSGqS4tfP36ljC7d2vd3sb3e5mCD1DhiR3PZtGqRu0cBwGPefMMbxqj+/E1feLnnu9zb3ONwHANMcHip5zA+16JvJ75hDoWR28Gbg+386RHSiTzJXJ+yRB9Jyi5tDoWUdHR0fnJksmMXTQyJFFDO00IsTQmNmZMztXXgBCiuPHUsXQABCnCtk/qGVtt9uWZaVaj3F+XSPN8CDgcnLn8oEV0nKlPJEPk133rPZNRzYsw0HJcqpCGvrH0ABQyzCnEYMmk4wYWk6CdmOqOsEYi9NugNIT3WIuJk67IVNpcf/jeqWRSm+326EDoRlD1m749XWnXlfpc2RnNwCcnoqgzLhzYZpmLqtQS7g7IouRp1P/5NUJirhYKpddxrT0WUfnJRcNoHV0bpIEGTSRRqhBFF/OwqBlZocM2lMZNA9KogkKOiQGjXCN8wCDFmMJ5UswjFHOvV5vXV40zXEOPRxLaJACiiPyuWOce7udZ+VKHEu4vfs10ygLK/RQ/vZ87mgkg86Zw9t73xggelZzePSMMYyC3DMucjD0zMHL5e4wjOHgyxROv13PAF3Ou9dbuNFT0HNcPF8hnR09m2nN1BnRM8/sj9boWUdHR0fnJo8QQ09MTMSRx77E0ACw0Djrsni+PHPmwvknk40c/kGbqeR01rZXmk3mupFlrrvfJIvUuEKtU5PVBKaJZeeXmypcRn4Xqjwwho4UIvc1dVDum47TK2P6xdC2bVNKswwzlDF0lpGDeHX9Yui4rw0adUfw2TjtBviIObQoHmpEjSLEc8Ori9NuyFTaohSxbJx2A/wRkfIhJqsTBPhKczlQz1hpeAQIsSilQWPGkZFyJGVmLKzdAADUbixLd4Mxt8Vc2d0hFxtk/wxR7gwSNA/RZ8dxVppN+ela+qyj81KJBtA6OjdVFAYNiXw5NLowJJJWtdEqgzYAvCCDBoVBGwBASJHztjz4Dhl0r3eJ8y4hOYAOwP5Ywl5vXWajOJaw071ISMHz9oUeOXOUwJA6lpCQoZ7XliUYplEqFe7Z2vl7dSxhzhweOHo2zXKv1x4Ueo7L4dDzNRFuAORT/5vSF3oG8PpEzzJ9DoXIuz0oeh5UpfxrCkllGj3r6Ojo6NwiQSOHyxhukTUZxdAWpSvL5xcWzz409dY4DJ1VDJ2NnGYXQ6M4GJtAUzF0CC63osboYSW6O6YUNbMcMckw1fIhY+hUqouEkTHWV4NzMlnGfl4xzDAjhiYEEsQgQsN9AAydOp8wQbuBiHm52aQWDb18QruhIt2papUxpmo38Fao2g2XMcSykdoNuYNYzBWcrFYtStXGZzHTz2VXv/CI9DWD37ZMKQ2ZNBC4q6MF1dGLWKx2c4tW7tDliD5u4RLR0mcdnZdQNIDW0bnZsrq6Oj8/F8OXQVoJ8S+VQWMBVxg0R1gsreSiGDTngRGCJiFFznshBk1IGfugOd8fYZfAoHveFfmM4xh0IX98r/t8aCzhSOl16lhCuS06Lv12Pfd67Z7XHjh6Nsh+E/Sg0DMheVnPjbkerueoYuj6NLkv9Jy7Zl3PctT5gYOF1PvoeXX1L/QnaR0dHR2dWycnT57knK+urjYWzybYNrKKoZeXbHsmC4aOFEO7rTXhAUC+SS0rQRUC/WBo7HHOIoaW5xPGlYHPtU9QK8t8wo2tNgAwxrLYkwGSqO5+pUVxalzqhYPkxU4gy667j9pxmCEApO5WFBMCau82U9i9jKGztE6L+YTyS9ZirEKtZO0GAdgMmo4hXrsBPtKdqdmhE0btBgSHDWImJiYsSrdjZNChDmJKKR5ipbms0mfGGFJs0bkPMb5mFMUQAEqtSpA+N+pOTelxxjb5pWYAKGOx6hhRW7nlSYyAGN1Xjmjps47OSygaQOvo3ISZm5ubn5/PwKB5TNezzKCJwqARXiMdRje0AZDj0OXQhavPzAEQzncJMUVxFIM2CSl7QWmyYRQNY1Rl0KY53vOueNLTc+ZoPndst/NsaCyhYRTFWEIRdSxhzhxOYND9oue9zvOb21/0eM8wiqZRSq/vp+vZMIqd3iC7ngnJy7e3f/S8FULPhJjq2EDoHz1zwNd3KFF2AX2iZxho1zPPXJl9n/uV8/Nz8/Nzc3Nz+pO0jo6Ojs4tGEkMPRnX5pwshhZ/RQxNLfrQqbcsNM7GHVEWQyfMJ5y1bWy9LJXLqRjasqxqteo4DmMBb4YIwuUsYmgxn5AxxmKAOybjfEJMrdaHZwMgguqKMJdRy8rO36F/spxR3yGKs1wa+BiaAKSCe4jB0KgzTtBuCA4rDCpx2g0AwK8Zlpor1ArTZ5y5FymDVnulQ7hWDmMMtRuhaYQT1UkgJGT8SPA1T1WrSJkZc8XZItreVHqcR4Yjfvmy7jgGCXdz43cSoVZu7OOWkTRzXQAolcsPPPigbtfQ0Xkphevo6NykmZ+f9zXQpr+R4Ar4OEyuMfwyM/gHAyAnbfhE5IlD/kYATAIFsYn2VUKGxQaQBzANY1TeAExCSqZ5m9gMY5SQnGEM53J3iA0ACBkyjbFC/m6x5XPHDFLImeOlwr24AUCpcK9hFIdyt4+UXidvQ7nb0QF9ZPhNhfydhfydR4bfFNoK+TsBQH1u3DaUux0AxAnkzPF87uhw8TvjtnzuKADkzCPFoXuybDnzCF74UP6uLJtpjAJA6NapGwCgDBoACCkYxpHUjZACIQWAPCFF+TX1X1n1hc6H3hJxm/9WMaW3k/zWCm3i3ZtL2/CNKt7JCRvxK1PLMlYm79MIrhMAmJ+fv97/bOjo6Ojo6NwQwa5GZM3bW5txG6I0i1KxAgDbm1dCm12bAYAL55/cufJC3Hbh/JNWpWJVTlw497hVObHSbG632+q20mziEeMKxIZYcLpmX95sJ2znl5sVSiuUnl9uJpQBADalJpeJHVJKl5rNja22ulFKl5vNza32crNJKRV/TdgSKqlyK/AWIWVOTtPfbbPZFIsAkL04dc/LzWatZtdqdvIF1mp2wh0LbUvNJnYoz9Rs9VEUQ4duFO58pmYnPEU8JF8jcmf1AvHdhb5s+f6L9ch3o/yTgptdq6n1tm1XYi4Qu7PF1eF14Q1Rb3KtZgMAvhbi3i41m+B/CaFeUei9pC4K2q4/NuvovOSiO6B1dG7azM3Nzc/PKT3ORFoh/qLseo4bXcgV+7MJ0AUg0noewAv1QRPIA4BseyBkCMDwvNBYQpPzbVmmQUjOMEY535X7ownJm8awx3e6vasDDA1SyOeOed626IM2jKLn7RTyxz3e2979mnxbhvK3G6QYGksocuCu51Lh3nzuSHp9n67nbu/Kzt4znHtD+btSi6FP1zMh+b66njnf4dzj3CMkxYzB+R7ne/i+6rPrWd4tiWqp7gHs9S/cSBUu9/wjpu4Tf3YG3Emtdc86Ojo6OjpysBX63e95T7KRQxVDW7Sils3WZvoSQ7uttdgjZh6pN2vbFqUZVRvJ8wlbzK1Qiu6OLE3T2ecTZpw62Nd8wiyeDbkydDPjRhr2O8zw6nzCeN22CLqeM4qhKbVmbJtSml27AQBT1SrEaDcaUYblBO2GkEHbto3SZFxH7UakDBqfYivaDadeV+uZ66q+ZogeLciYy6aqEQrsuuMQpccZu6dD3dyiZTvUl42/ahCyi2D7s/7YrKPzUgzhPB84Q04AAJKISURBVPl3nHV0dF7aeeqpp+6///6g9Jn7UwoxhiTrkEmZ5xebwRUZESKVNoOLPQCO3NkvQqVvXjYFc74H0CGkTIgJAKjmQI2DYYzKl+B5OwBd0xwHAM9rAxDTGO55WwSMnBmo7PY2OOwV8seRRCMR7nQvc743lL9d1mL0vO3t3Wdy5jAADBdfDQA7e8/tdp4byt2ehTsDwF7n+b3u8zlzXOXOnrfT7V0pDt0dqO++0Om+kDOPZOHOANDtXen2LpvGqLBt7HW+mYChe73NnrdhGMOp3BkAPK/teVsAOULMLOgZADj3YP/Lg+TKq99eZHY9mzE4WwBc8ddezIzBUDz/HS4quT+fUK0USQXKcpIlzjw7y9Yzu3V0dHR0dJLz1FNPvfvd7/Z6vZXmclyNy5izr+zgK8tLSWX1BnCYnTlj0RNxZQ9NvRUIgSiJQWBvrutzPTtk4MVMTEw8ubzSYi6S5ZmaHWnkEDk1OdFi7PxyM1SGezi/vCL/NcsOW8w9NVmllM7YtoCGo8NlFGvIYcytO07kJL3ISgCo2Tal1shwGeUkkVlwHNd14+6PHHEzIe22Q4Y7Lwfhpjjh5GJxdTOJxVPViVBBnP4YH6rHazcqyj0fHS4jZ1e1G67rViWA67pu3XHwdk1MTITUyZgFxyFed3bmzENTb7VnbWl8Xx0ImVX27ziOy9hG8B0Sd3Wo11huNkOG6LrjyKMFy+XyxlYbHR2hl0wIRmZtu1Tefy/haaiXMzExobUbOjov3egOaB2dmzzYPxLT48yVlWQehyvd4BNzPhkUMQGIPJaQ7EPDXqgPmpAi5/t90ISYAD1CCgCG522ImYQgjSWUT8U0hjl4ne5FefHqWEIeGEtIyND27jM9b1t6eqlUuIdz3u1tDbzr2TCK8rEO0/V8eNdzKEHXc/J8v3DXcxp9xhe3h13PyfQ5vus5Mgfoeg7x39DkQPB/IsT3LilTATNX9tFJjdOW9GdoHR0dHR2d5AgxtGhzViNaoV3WmpicSp5PmCqGdlstHDyYxficMJ8QTyO78bmvHue+FNJT1WrKLMHsUwelbuhUdfKsbfc1n9CyLMZY9gZnx+/tTQhjTHRDTyaOc4TgfMIs3dAY5LPLUaMI646DUxDVBuHR4bJKnzGu67Yl3QTGcZyq0j4MAAuOow7uw52UymWkzwDgtlpIn13GSsMjKn0WtuWMV4ejBUPt3nXHmaxWZfoMAJTSqeqEQSCkmcaXT0w+xNNTpc/iWjR91tF5SUcDaB2dmz/IuU6evE9h0CEqF8mgibJi+JPf5HiJDNoA8AgKOiQG7Y8l3PXHEpqcI4MeimTQ3e63Ccl73ub+k41hIPlO92JoLCGBIc/bCTHoQv749u4z8lhC0yiVCq8AgBtTuKGiZ0KGvMDdOwx6xq7nnGxBkdMvevaFGxyAZEDP+MpmQc/eQdFzRqCcbNKIq1R/c0h8wZPl6PvCjdXV1aQL0tHR0dHR0ZEyNze3urq69vTTCUYOAJidOTM7fcZxGhOTU7E1tZntzSucGMWxo0nzCW17pdlkrpuq2shSlkW1ATFwOXKYYcYdgjSfcHS4jDA0rjLL1EGMANbgqxLi0td8QgCwfWadSpazuD5cd/96BbNOJeyQAUMzxgR1jdNu4Pw9QiIcGnHaDXyNKKVqD7jjOCqVxqsWDFeuR4w7O3Nmnz6zNR/v1ieqk3iTQ/WO4wh3tnyq6tUx5o4MlxljKlVnzG02myHDBnpCVJ4OimEj0iKC16J/a1BH56UeDaB1dG6VrK6uBhk0xHc9h2wDPCiSJj6DDuFsDtCRnmUC5OQ+aNh3MnhcQsM+gxb+jS4AEGISUva8DVkJbRhFwxhV+6ANo6wy6HzumOftCCU0Pr2QP971tmQGDQA4PzA1/aJnwygOvOvZIAXu7QPoQ6NnAABCciAJuzF9oWfYb3z2/K5nMwrO+pVX0TNk63pGOJ4FPXsZ0DPxi7NLnPuF1FnRs/70rKOjo6Ojc4BkFkOfuLD0hFU5URoZW6g34vaGYmi3tRYSQwtUB5m9w3FlFQX1IgvOKIaeqdmnJqtYGUeNZ2r25c12i7lHRsqpOzy/3Kw7DmMsGS6jEDmL7pla+7AyY89yKobGNtjsFmnwx9llOQc8jXa7TUh6ozdkwNDYxRzpLUHtBnYrO44zIxVMVScAYCMKWE9Vq5TSkFTEdV2UQUeaSahlhRguIMb9xCd2rryA9BkA3FaLUrrg1Blj2+22Sp8B9n3N4tsOpOFE8VZjjzPOP5TXJ6sTJKrHWe3aFlc0q8B0vMwQkl5bW9Ofn3V0boJoAK2jcwtldXXVH0soQny+LBJi0MTfQgzalJ5IfMEuCTJoAyDnY0cT4SO2x3K+I3dM+wxaFnSYhJQ531PHEgJAz9uSFody5m2d7sXQWEKDFOSxhBDPoJPTL3rudC9v734VOM+oe34RhRupruduv+iZ863Mwg0ZPSfTZ1m4kTylwJP4bxY3dOpUQLHb5EoiVWaE1L35+bnV1VX90VlHR0dHR+eQERh6ojo5UZ2UH2KMWZX9IYSzM2cunH+SuSzVyGHbMynzCQ+HoUPpV6BRoVaLMRbf9A39uDsq1KKUDmrqIHP3O1trtr2Q2bORscF51ra3M5NlgXpDxfKMPrkYMXQqYYcghkZmjV3kydoNnL9nZ9ZuoB8Zzcsy2I3TbuCIQsaYqt2YmJggXvfC0hOBdbbm1OtASIhio9oCpFGHrutSiyINV6XP2OMs5h9SH1WPDJcje5yZ61rBlmpxRSHDhstYpPQ5n8/r3xrU0blJwnV0dG6xzM/P+wTZlPiyWJHXDZ8VCr6mlhn+lvObVVEMPSRtCOxMAgXccLeEFAkZFhtAHgAMY1TeAExCSqZ5m9gIKQGAYYzkc8fljZAh0xgr5O/GzTTGTGPMIIWcOV4q3CtvOXPcNMojpdeNlF5XKtwj/hzasDlafXrcljPHAQDPwTTGcuaR4tA9CVvOPAIApjE6lL8ry2YaowBgGMO53B2pm2EMAwAhBcM4krAB5AgZNowjhOCLkpdfkbgN9idMXn1BpVcWgn+V3y1DaRu+2cR7CaF2LmozYt6QkRvxK1OLSbZ9kr4q5+fn5+fnr/fPvY6Ojo6Ozk2Y+fl5ALBrte2tze2tTYvSC+ef3LnygrxdOP+kValYtLKyfH5780rctrJ8HnxsbVG63W5HbojYbNuOK5DLpmv25c12wnZ+uVmhtELp+eVmQhnWAEByWZYdVihdbjY3t9rLvmxhc6udvIlKfKK8UUqbzWbbDwocLEpXms3k+yPfybYUAFArV5pNhJjyseIiJBJYnPysZvylRW61mg0+IK7V7LgC9aI2ttozNRsAlprNja22vC01mwAwU7Pxr/IJY5exetp46/BWq7d0duZM6EcA+6DVN23kS0D9hO4Jvg1EMd66uEvG/dj+VwjymatvD4Gt1UX9EVpH52aK7oDW0bnlMjc3J/VBI0cTXc+i4VTYn7nf4Bw3qJD7m1gxALrBsnzIN00gRyDP+U5oLCEAeF5bFhMbRhmg53kb0t6AkBLnO3IfNADkzNs8viP3QQNAPneMc2+382xwEccSfq3nbZtGqeeFJ3cfrOuZc6+QvztnIiYeknu3Qzlg1zPvwf4NSYrntT2vnbHrmRCT813Pu8y5R0ixn67nQkzX89X/rBy06zl5eCBIXc999TInJ7XrWa7sQ80xPz+HSTsBHR0dHR0dnb6jiqFVpzMaOVLF0BalKIZ+6NRb1DlsItiWy1y3VC4ni6Ft216sO0dGyqnG51SPc4uxc0vNc0uDnE8oGnsHOHUQG5wzdkNHNjhbUaaRvizSoT70hEq5OItvBCRHttoaDEHthryOI/ggXrsxI+0NW7axkRmitBuRMmjwtRsXzj8ptBv7642zbmsNgr4LrI/cD/Y1LzdXkkcLYpncEC2fYblctiwLRwuK9mdxRar0GcG0vOg4jv7dQR2dmywaQOvo3IrxGTQSN6GvhSjXsyfx5TgGDUFKiG2h3eBYwjyAx4OCDgJ5gF5oLCEAcB5g0IQUAAwxltAwipxvG8Yo571u75J8XTnzNg5ep3sRAAxjCGcb4ljC3c6zMhHO547kzNHt3Wd63ra8h8OjZ//aCrKWWuTA6Dln3m4YJULynHfiigV65rybip5hX/e8C8AJGR4EepaKocthf7DkQdEzJgSgxaTBA2g0SObK1H3G7QrDBXrmWleno6Ojo6NzjSOLoROGE2YXQ1u0kjpRcGVlZaXZTFZtMNddajaXms21NOMzepwBII1W03NLzemZTO6OjPMJKbX6nTo4MlwWlZGCCxlDJ88nBIBZf+TgoCzScjFqIpDYZinOiKFB0SJDvHbDcRy0KidoNyT67FJKUVKhGi1CMmjGmPimRGg3LHpCfspDU2/lQOyZaRnvxtFtBMeUUlW7Ua876mjBet1B6XNoJ+pQRDxzK8qwIU5DXIuQPp88eRJ0dHRuomgAraNziwYbRgA8ifEZEnHGEL8VWk4kgyYAPUUS7QUZNAHgwbGEKoM2AAxCipy3uQRwQwx6v9QoApjd3iUZYZvGMJA8MmiBgCMZNCqht3efAYC9zvODQs9X908Knnf1Eg6JnvfvA0QD6BB6zqB73vG7nodTz6Qv9AwAPnoeyoCee/HoOZTDoGeM2kx9APRsRv1EhCo9jZ51dHR0dHRe5CCGXl1ddVsttQlaJIsYGgAGaHym1FpqrtRsezGNGsfNJ2wxVx5mKDA0zieM2xvEzCds+d5eOdmnDmILcJZKMUiwVC4nY2iZLANAXxg6oRKLASCjcjo7hg75uOuOMzJcJgRsBTEjjZ1R2qUZc7EneqkZbnBmjLmuG6K9ECWDxoGNC45TKpetypvVxufi2FFKK7O16cC640xUqzTK1+w4jkWp2qONYD00WpAxFmmmBgB5KCKuREqfS+WykD6jKhq09FlH56aOBtA6Ordu8JN6UKBBfKuGF78CUQwaAHgag0bATYIMGgg2R3NZWGH6YwkDDJqQsudteN4OITnRDU1IQWXQhlHudC8apCAWc+ZoPndst/NsaCxhqXCvYRT3us8PED2LE0YCPhD0HJfDoGe/67kXX3yArmeereu557/xUv8zxA+NngdeGScG6Wn0rKOjo6Ojcx1z8uRJznmuUCqOHY3D0CEjR+x8Qh9HTlSrCaATy6hlTVSrIczqSqhXYOhkatzPfEK6vrFVqdDkpmlQ5hPSKMcFZJ46iBGVkMaLUQ0MGQYJIrKklpUM9EUxYuhyuZxAlhHRChSeXCzv2Y73jbDgPYzTboDPXi1KqRW456jdiOyJbjiObdshSQXEazeQGkdqNxYaZ1eWziF9dhqL+ETUbkTSbQBAI4o4WxwtqIJ1x6f5ttLjDIroAwAIwHa7La8jBA8hacdxSuXyAw8+qD9I6+jcrNEAWkfnlg4y6JMn71OIMyh8GdIYND6xF1w0fTAtr+QUBp0DAM53CBmCfU1HJIM2CSlzvoe81V/MGcZot3dJVkITMpQzb/P4rqyENkghnzvmedsygwaAQv64YRQHiJ5FPG/nxkbPCcUHE24M+d86xCWEnlPhL+5qUECZBDUag4TUGj3r6Ojo6OjcIMHf82t98n88NPVWl61F1ggMPTF5KiSGdlnrapllbbfb1LKS23iFzji5jFILLcBZxNACQzfqTqUSTY2na/a5pYim6YQdMsYS4HJ2DE2pVbNti9IsQgzbtjOKoS1KRV95qr4DXx0AKCf6uDGRyumEPa+srBACyYLsBO1GHI1F7cZSs6lqLkaHy9hWLK8nyKAZY1blzTtXXghpNxYaZzmQ7Y11i1bk9UgFcxw4RulzXI/zSrMpU3jRna0aNlzGQmeO0mcZSbuu6zLmMqalzzo6N3c0gNbRudUTxaBB4cvE1w6oNT0fJvL4dmkO0PHxH67kOHSlIXVXGbR8boQUOeeeNCSQENMwyqEGW0JypnlbaCwhIUOGMdLzrmRh0AkDAzH9oudub6PnXeHAB4ueCclxvjdo9GzK3xAcDj2D/3Kr8fpEz6LrOXJvod1CNqAMUmXy/MA+ILVGzzo6Ojo6Ojda9sXQv/7r9cfel4yhd668kC6Gtu2VZjNVDB0qi+s1rtl2FjG08Di34lUh0KcYeqZmU0pTZwlmnDrIXEYlIUZyc3GW+YSub5TOru8AnyxHcnDHcUL8NLtyGvz2bcTQV7XX7v7wvWTthqCxohFe1m6omotG3VluNtVdRcqg96f8VSqhxmeXrRXHjnIgIe2Gy1px2o0QOHbjRwvKqFq8UrgT5roh6TOKQUCZKhnnngYALX3W0bnpowG0jo4OAEAGBs2jup7jtNEqgw5Jog1/LGGAQZOrUNtfJEMAhsygAcAwypxve95GcHE0xKANkidkyOM7MoMGgHzuGOfebufZ2Nsh5QDoebfzdQ5ePnc8OF8xOn11PXPe5bwz6K5nA0c+Hho9J6QnfVGRHT1nHwmYCpS94HsvuTJ1n1ij0bOOjo6Ojs4NHcTQD/zQDz106i3ZxdBWFDjOaHyWyxJ6jfsSQ1cobbXY+OhwAonOiKFxGt5Sc4VDSm8vxEwdDO5t39ub3XGRBUOL9NWz3O98wn4xtGgJxy1ZuyHae8X3EAnajanqBAHAUZChtuI4XYbjOFblhNr4/NCpt9gz02Hpc30RryJiOqLSiUwpnaxORI4WlFE1868rsqt6wZ9DaCtImgbnEGJ/9wMPPsh5cseJjo7OzRANoHV0dPazuro6Pz+X5tkQKyHijDUy44tk0KG9hRk0gAFgcr4jo1ufQW8gJ5WLoxh0r9u7JJ7I+V7OvI2Dh2MJRUJjCQ2jqDZBHwY9m0b6cL8+hRvbnrfN95FrbrDCDQBvoOiZSK9yD2AvM1CORM+RwwM9qeM+I3pOpuRyZeo+Of4/tBo96+jo6Ojo3PiZm5sTYuhUI4fjNFzGMg4ejDsitqxSSqeqVWx6jUx2DH1uqXluqbnYcE5PVVMxdKVCT01WIxUfLeai4bdm2xtbbQ4wwKmD2XmxjKFFg7Prj6FTd5vK/eXdXiMMLcTQjDHLsvrVbjTqTpx2g0ZR6Uiwi0dhn3hqZ/0iAFiVq4aNhcZZt7W2vbGu0mfWalFKbUWOAUonsssYXl0kqg71ODPGyuWyFQTKIBk2LMsSHegCSasmaC191tG5daIBtI6OztXMzc3FMGgIwmUSxaBDoNBQ7M/I9brBxTwA8H3vs1zZCzFoQoqctyUGbQLkfDB9FWEbRhHAFGMJkUGbxjCQfKd70ZOM0jKDNkix5119aFDomZAhL6oJ+mDomUOPkCIhBQgg+3D6dT0DdAD4QLuexUuP6Dl36K5nLlXKQDl1t6FKkrkyrqw3Pz83Pz+/urqqf0lQR0dHR0fnJRQUQ6caOWZnzliVExkHDyYIIlzGKtTa2GpXqDWa2GuMGJpSK54aM5B6nFMx9HTNXt/YAs5T5xPWbHumz6mDciWTPAwi2R0X2T0bGdvP5eJZHxYnVMKBmDVAunZDBJEuAKD7W35IaDcEfWYuQ2iLYFeVQZfLZdLrXDj3ePAQaw9NvZUDWVk6F1xvlUbHAYBWKvLLJPavgmPHcdSG62hzNGPq9cbpqmUkHTqc7ufQ0bm1wnV0dHSCmZ+f95my6W9I7uQVQfRMaVNXUB6d8zfDXzEBhqTNBDAI5AkUCBQAgEABNR2EDEtbEfblzqOEDPl/KAOAYYya5m1iI6QEADnzNsMYMYyRfO54Pnc8Z94GAPncsUL+brHlc8fwH8OcOV4q3JszxwHANMbkmoTNNMYAQBwitBnGiGmMDuXvEptpjAKAQco58/bUzSBlg5QJKRBSMIwjuIX+Km+EFABAuWnRG6J/AFPc8ITNf3FDr1rcJt4tubTN8N8SZvwm3jAk6g0W95S4SshcGT6HkydPzs/PX++fTh0dHR0dHZ1DBb9FtiqVC+ef3LnyQmibnTkzO/3IzvrF2elHAMC27e12O25baTYtSi1KV5rN0EMWpUvN5sZWe2OrvdRsUkqptBK3zdRsAJiu2Zc322IDgPWNLXk7t9QEgAqloXW1rEJphdLzy02xq8jjijNcbjY3t9oJ27JUCQCpN4dS2mw222lB6Jl8t1PveVxllt2KehRuxKXZbFJK1ZOPPARe1EzNjnyhazU7dG/xxgKAesdwV/jOxA0A8O0KAPbM9PbGurzZM9Ni3aIVsUPcj3rr8BKs4KXFvShYGXmxoWIAiLz/tm3rD9U6OrdgdAe0jo5OOFIfdGrXMwTbpUFZwZquJDfARlcv2AdtAhAOHfm5BAUdgbGEJiHDnPe41MhMiElI2fM2ZIeGYRQNY7Tbu+R5m1LlUM68rdO9GBpLWMjfbZBCt7d+4wg3ACDY9SwLN3KKiqTvrudr6Xrey2DGAKmXmadVij1DP2LoQVWiSYbPz8/pHg0dHR0dHZ2bIFnF0NOPXDj3OPvEUxmNzwll2OM8Y9sNx5lK7DWOnE9YUcQUiJ4rFTo+OrwY3+OcfT6hOMO+5hNGGjNE+mouRmOJmzbmETJbUESyDzPMbrIWkefyhR5a8KcyRmo3iLIuzqEd7BQGX7tx4dzj+KUIALitNatSQe3GytK5SO2GWHdZC3co/NSBXmbXLUmjBeWDqtIMAJiYmGCuS4NnGGfYAIBI6XM+n9cfqnV0bsFoAK2joxMR/C3FIHEGn0F70l8TJNHyihGcQAgxDDrnM+h9qTTi0SCDBkKKYmiev2IaxijnezKDJiRnGKOE5EIqj3zueORYQgAYOHo2SN7juwdAz93e81Hoef+6ZAXHgNCzoX6RcCD0LIQbCYNEQui5X41GQmUWoEz6hNSenjSoo6Ojo6Nz8yVODO2yNauyP9vNqpy4cO7x2TP/zln49RcNQ2cXQ0/X7HNLzVaLZRFDI4YGgAT8TfuZT1izbZexjPYMxNCpVDf7fEJxz5MtKMhJ+xpmKIrL5bJaLFtHQnP55CAZx/3IQe1GrWarVHpkuMwYU+UeExMTqN0Qb8v9q2u1ULth0Uqgfuo0AIh1l7WQ7EeCcrQw4yWIeYkgzScMSTNwiiAAyN89LERxbUTSFqVa+qyjoyOiAbSOjk50sD1EIs4oK0AQGUeciY+PIapdugfgSapoE4BDwP5sAOQ4dAE87h9CYtBXaTUhRa7MSjaMciSD5nyv523JlTnzNpVBG6QgG6Ij02/Xs8c7nO8dAD0bxpHBjhlM63omXHpND4ee/X1Epy/0LDBx8lzsvoByHzhbo2cdHR0dHZ2bO5nE0D6GziiGnqhWFxzHZSzk/MUg5K1Qa6paTRVD12z71GQ14fyzi6ErlE7P2ACQfFzIPJ+QuQxtFZB56iAkNhejK1meT5hltwh5S5GwODjVMPswQ/AxtNq7LSitQLQq0kVKG0K6AFB3nBZzN7faKn2u1x3h3xBBWfN9J35QND7vH2Lx0YdOP2zPTKuNz6XRcVqphNYZY5GgfCHqEhI8zmqPs9w9HSoGX74R2oP+hUIdnVs5GkDr6OjE5uTJk5zzkyfvC4LjjF3PoDBo04ePIbOHbN4wAPKheYYEcgQMhUEPAZieJ48lBMMoA/Q8L0CWCclxvtvtXZIXc+ZtHLxO96JUVvC8iIGBmL6FG95Wp/sscI+QPCEpmgvoEz0D5G4k4UaWMYMgTRrsCz0PvDJuDmGgUqNnHR0dHR2dWyTYcvHuX/91xNAA8NDph9Uyq3JiZ/2ideIHk3t+Z217pdlkrguJvcao2mgxN9nIQak1U7NbjGVUbSRj6BZz0S7NAZLnIkKG+YSM7dNV27Yz8uKETuQQq5UxdKo6A3ebfT5hdgwdqRBhjGE3cQjRQgylBQDGXNRuLDfDT6k7Doui0mjAkLUb+4dYfHRh8VEAUOmz01hUdRxOYxF9zapJI3QJ+MVAtVqNnE8IUo+zy5hlWXL3tKgU/FrdQz6f55zrId46OrdyNIDW0dFJyerqamYGDcEVQ5F4GAoBxJVucG95AI9LogkcUcj5juzTwK5qzgMMmpACgOF5G5yLp+cJ5Ankur1L8tNNYxhIvtO9mNz4fGD0jF3PBPLSmUTkAF3PABwgP1j0DMAHip7lrxAEej4wUCZKE/S1gtQaPevo6Ojo6NyCEWJot9UKuQ7kZBRDo9E4i2oj1cjRYu755eb55ayqjUqFnp6qRtLqVosh5J2p2eeXmywD/hZi6ORu6L7almdtO6MYWvRNZzE4q2TZlXQZ6m4zYuiQyZox5jhOpHZDNVG4jFWoVXecqWpV1W4w5o4Ml8Gn0swNyD1Ir7OzfjH0VlxYfBQI2bnyQvjQ9UUAwHmD8vrE1GmXtdReZtGjHdoPAVB7nENA2XVdi1LsnlalzxPVqtgz3n/sktbSZx0dHdAAWkdHJ0tWV1fn5+eU5mWIYtAcwuYNTykL2Z8NAFNh0LivgKCDQAGgF2TQeUKKGRg0GEYpkkEbRhkZtGEM8SCJPiR6Tq0/sHAj9Z9uzvc438ve9bz/fwfZ9Uz88X2HRM/SaYYrSeZ9ypWRHdAaPevo6Ojo6Ojsi6GNXP6h0w+7rRQjR7IYGgBwWN9AMHSFWueXV2Zq6aqN6Zq9vrEFAGlN09b55ZXpml1Pm4sYwtBinSl4N4Sh43YI/c8n7Ev0IchylhmJfWFovN447QYobb/MdVvMjdNuTAapNHaUo3aD9Dqhxme3tVYcPwaEzM6ccdmaAM0ua5VGxyGqIbo0Ok4pDSHpuB5tlMaIaxSLMlD2j8hwVqFaLO9ZcOqJanV+fl5/wNbR0QEA4Do6OjrZMj8/DwA+L8aN+G4NeSVUo5aBv5KTNlw3AYZ8EoqbQSBPoCA21HQQMkzIMAAQMkxIEcAkZMgwRsVGSBkACCkZxigh+Zx5e8683TTGAMAwRvK542LLmbcBAD5UyN9dyN8dWZawGcYIABikjEeRN9MYE0cXm7F/bgXDOJK6EVIAAHHJ0vUOqxtAHiCPt06+aZFb8DUC/87Hbab/yuYybMR/lc20LUslUbbUfcZVGsFFAgDz8/PX+2dLR0dHR0dH5wbK6urqyZMnkTXvrF+M2y6cexwAUHEgbyvNJqV0c6uNW61mA8BMzd7YaidsM1FlAHB5sy1v55ebFUqx33l9YytuO7cULqtQen65Gdqb2CGldKnZTD7DpWYTAGo1e3OrDQDt+DSbTQCwbTt0Z9Rtpdm0fJVHwg5xn5RSi9KVZjN1t2gfzliM55B6tlgWeSD1uSvSvQpttZotvz1ww50AwOz0I6G3GcLo2ZkzO1de2LnywoXzT1q0sr2xbs9MA4A9M729sS5vuL6yfH578woAyKcad54WpaFLs21bvXsrMS+rumesxF8suN4/zTo6OjdKdAe0jo5O1szNzc3PzytKDQDoBRdJVNczSCuiC7UXbJfOKc3RJgDhAUk0EBR08B25jJAi5z25hZkQk5Ay53ucdznv+It50xjjfFceS0jIUD533OM7cA26ngnJi6PDwMYMmsG7hMX7Xc8AHoFccuMzh65kOBEoNtyBLq6yf9czZOtQ9vwTyPIfI6F/SSj2JOtLXCX3K3vz83O6KUNHR0dHR0cnFF8MvVB/728kd0NHiqFDEwhrtr251W4xd3S4nCyG3shQhs3LFWrFqTb8srAYusVYJWouIu7wRNpcRACg1BLzCWlaf3FfbcsWpWg9Tq3MKPoAANufOpiq78jo+nAZo8Gmb6HdUBuKJ6pVAFC1G9hFrsqgAQC1G6r02W09vXPlhdmZM/un0WrRSmWhvshare2NdbX3GQjZ3rxiUeoyhnA/YVogepztKOlzZEN0aCdxe8bGZ/wiR71SHR2dWzMaQOvo6PSRubm5+fm5oNk5zvUM2QYVhuC16TNoItHJnMKgcwDA+Y6MYgkpcs5DDNowykFlRzSDBgDsg/b4zo0m3Mjmej4MesYYimcZAHr+C9TXmEEzZm9yJb6aGSE19882tTi1cp8+nzx5H6JnTZ91dHR0dHR0IuOLof/pQ6cfxslvkVHF0Mx1qRXms8vNleVmM1m1AQBLzZUlqawSw3lnavblzXarxcZHh1PF0IihAaAVf9yZPucTMsay2DOy8+LtzSvAvXK5nAVYp+6Wua5FaV8W6YQZifI+8c9x4BUA0I+MHnB5HbUblFqRMmirckLVbjx0+mEg5MLSE4F1tuY0FgFgZelccL1VGh0HQmZrM6HzUacFivNEeo5i64TrEsWpe8Y96A4PHR0dNRpA6+jo9Je5ubnV1b8IEmfZ9YzkkSQyaCKtGAC9YJkJwINg2gDIBckp+Ji1F7Q/D3HOPS/w2cgwyoQM9bwr8qJpjAH3ur1LwcqRVNoL/aNnQvLXAD2bqMPOjp7hqu4Zgug5MgI98/7Rc3KleK3ViZRqsQDKCTgbMk8a3D/0/Pzc6uqq/liso6Ojo6Ojk5q5ubnV1dXWp/5/2cXQcbui1OpXDN1iLIEan19eOb/cTBVDVyidnrEB4NRktRHfNA2Z5xMyl4n+4mS4nJEXo1Z4tjazvXml7ixk7JvG3R6eLIeKU68rDumKkX3Y0y0/VHccxtzlZjNSBm3Rijpv8KHTD1u0Ihqf99cbZ91Wy56ZVhufJ6ZO27UZmT479QYAqNMC8VbgeWa5LlHsSgg+YQ6hps86OjrRub4GEJ3rlVe96lXqm2F6evp6n5fOSyarq6sAEHQ9G751F9Ik0aEawwfWskQYMWJIQ0wUtXEeAAgpKh5kk5Cy5IMeAoBIFzP6N4QMWv5rX67nyA1dzwBmFt1zlOs5dhOi5yyuZ1/3DJJiO1LxbEp/MLLpnvFlipQykxgV+MHE0JC5MmmfWveso6Ojo6Ojc7D0JYZWJb+qCBjSxNBohQaA6Zqtupv7EkOjEvryZhtbqiNl0NnF0JTSZrMpq5kppckG5wSJ80qzadHK9uYVsa0sn7doRT5KQiItzCC5j0MS577E0HIx7hPlyHHWaXEaFqXLzSa+1pTSOBk02pwtWpHfVNgKfeH8kyh9FpuA0ar0OXQDcbNoJdLXHHm7Iq8rVCws2JHKbNu2tfRZ5zrmy1/+MgB85jOfOWRNluzu7i4sLHzXd33Xu971rkPu6paK7oC+RfOnf/qnn/rUpz71qU/de++9P/dzP4d//oVf+IXrfV46L5ngx4uTJ62g2Vn9JyWuDxqUBmqulBkAe8HFPIAn90Hj3jjfkT0bhAwRkue8LTVH45BD0u09LxuZDaNEINfpPotPJ2Qo5OsQOahwo2sYo4Qk9xrj+e9kFG4AAOd7AB0AnrHrmQNqScQgwcgQpes5tZc5teuZS8X4WmTZbWQvM1GaoDN2PYPQPXPOdTuGjo6Ojo6OzsESEkPHlWErq0UrI4kui4xiaCTUBODISDmheRk9zjM1O04M3WIuCqCxabpRd05NTiT0VuMOp2t2Pc0Zgs3Itm2Xy+XsEufktmWL0pXlpdnadJZuaJxeCMEGZytKXSJONbVxO64Y9RShxmEAWHAcx3HURuO644wMlyO1G5PVCcJ7IY0GACwsPgqE7Fx5waLBnujGWQDACYTy+sTUaSBkZXkpUFxvlEbGXNZSTRqR54lRG6JDxY7jUMsqlcvUstQu6Xw+r6XPOrdIZmZm6vV6tVr90R/90et9Li+laAB9i+a7v/u7v//7v//7v//7S6XSK17xCvzzPffcc73PS+elFJ9B36eAYxJj3lBrQtroEIMGAALQVRg0cOgEiwroo5DWcCxhG5XQhJgAPUIKhJR73pUQgzaNsW7v0rVBz9jUnJM9IXIEeubcy4ieOd8C8AgU0ouzome/fP9/B4Ke5eI+MHFipYqzNXrW0dHR0dHReVEjxNDF8WNJYujazMry+Rb7xGQivU0WQ7fYvku6ZttLzeYac1Op8eXNNhAyPjocwtCtFhNKYkGrM2JodT4hY8wKjuPrd+ogAJR83bPLWORIQxlDJ6Nt6Mc3fWAMjUdR0S0aKrbbbfmeuIwxl9XrTqx2o3JCaDRc1rIqJxYWHy2OHwNCVO1GcewoAITX64ul0XFKaVj6XG849YZdq4UovBiZGBotWCqXLUpVVK0WAwDaolXp8wMPPqg/bOvcIul2ux/84Aff+973vu9976tUKulP0PGjAbSOjs6hEsWgIaqdGRTiTKLKuBgqKJk6utIirhBpLKEB4BHIxzDoXmgsITJoz9uWFvOmMdbzNnvelmGMiOGEg0DP+weFQNc2gIKes00a3EfPftezF1vcH3ruAez5L03GkYBZ0DP0MzxwUJA6UKnRs46Ojo6Ojs61SIIY2m2tYY+q4KcNZyEBQ/clhq7Z9mIaNUaPc6vF0sTQ+xj61GT11GSstxr8+YQsrVkbADKKocFvW0ZezFw31NUrB28jzifM3mHtMpadLKdapC3LopYVOccvsh1YZHOrTWkA4NYdp153VpbOyRJnpM8Li4/OzpxR6fNC46xYX2ictWemAWChvug0FleWz6v0mbHW9tamJY3BTBgt6DiORSmV0blvslaLXcZwaKG8qKXPOrdavva1r+3u7r75zW++3ify0osG0Do6OofN6urq/PxccLgcJqHrmUiVKqru+TXc1/t68QyacPAAgKCgg+/IZYJBEzIkuqENY9TjuyqD5nzX8zZhcOhZPhPO9xn0INBzfPEB0XPOf4HiZv0J9JxxJqF4BQcFlKEvnK3Rs46Ojo6Ojs41TcjIETuf0MfQk9XqZDVlPiEN9hozxkL4UmDoZGos4LKYT9hirBLclai8vNmuUCtZ8QG+uwONHJENy/vX209/MfJilzGn3nDjWTn48wmBe1l6lgHA7qcbGgBK5XIyhmbS/D1MnM5in0pTWlOoNGo3UPosr7utNbf1tGx53t9V46zL1iLW64tAyPbmFfmUXMYmJqcAyEpzGQAcp44G57jRgqLHGSRjCRZHGjYi78Da2pr+yK0z2HDOP/zhDz/wwAO333778ePH3/KWt3z84x9Xy/7wD/9wcnLyZS972Stf+cof/dEf7bfmJ3/yJ//JP/knofovfOELhmH8+Z//ecLpTU5OvvrVrwaA7/7u7yaE/PzP/7x46CMf+chDDz10xx133HPPPadPn/6zP/sz+YmvfvWr3/e+9/3mb/7m937v9zL/n7uPfexjp0+fvvvuu48ePUop/chHPuJ5sU1mN0E0gNbR0RlA5ubmggwaorqeEUciyiTBllv1iV2fPicw6ByHjsxMkc9yviNXElLknIcMG4ZRDjFoADCNMULynrc5UPSM52ACdAeNng35vh0OPe+fZhSADqHnvoByHM5WK7PsMxPO1uhZR0dHR0dH50WLwNAPnX44SQxNKQ6FyyKGJgCjiWWUWhtbbZpGjWUMDQDpTdMZFB9o5GCMJbPdEIaOKwOJFzv1xYnJqVQMnVEMTSnN6JsGgFnb3s7mDxGJM1QglaaUqo3PI8NlWbuBcVmrNDpuVSoXlp4Irq89NPVWAAivt1oofVYbnycmT1Fqzdq10Pkw1w1R8lCPs+sLVSKRuujytmOkzyl3Skenn+zu7t5///2/9mu/9sADD3zkIx/54Ac/iDB3dnZW1Hie97a3ve1f/st/+frXv/5DH/rQY489dvvtt09NTTUajew173jHO/7qr/7q05/+tHz0D33oQ69//esffPDBhDP8jd/4jf/yX/4LAPzRH/3Rpz71qUceeQQAut3uW97ylne+853f8z3f8zu/8zuPPfbYHXfcMTExgY+K/N7v/d5jjz32z/7ZP3vDG97AOf/Jn/zJH/uxH3vNa17zm7/5m7/927/9hje84R3veMfb3va2nZ2d6GPfBHnRxx7q3Fh5wxveMD8/f73PQucmyfz8vE8JiU+NkRgaAKa/iUeJtC7q5TLwa3L+hs8dkrYcNlMTKIgN8SshRUKGxQaQBzANY1TecFxhzrxd3gAgtBK5GaQMAIQMhfYZuSEuB8gD5OWzittQdQ1gytcV2vBGiesFMIN3Jm4z/Vckp2yGsm5EvTSRG/FfL3kREitTd0ukLW5vV/c5Pz+v/zXT0dHR0dHRuV6Zn5/H/xfbopXtzSuR28ryeYtWKKXLzebmVjtuW242sct4qdnc2GrHbUvNJqW0Qun55eblzXbcdn65iSc2XbMTyrCykrbD6Zpdq9l4hmjSSE6z2QTfuREZANje2tze2lxpLluU2rWZuLun3sZmsxm5Q/mvSE5t295ut5O3lWbTotSidKXZDD0EAPiHhL3Ztk0pbbfbode3VrMBYGXp3PbGuryhTAMALpx/cufKC2LDfufZmTPyolhX749dm7EoXWku423EDQAsStXzDJ0/XjKuxxXj3RC3ZaXZxA/e1/sHTucmzLve9a7Xvva1zz77rLzIGCuVSv/9v/93/Gu9Xh8eHv7MZz4j13zyk58sFosAgOtZal7/+te/853vFI9ubGyMjY194AMfSD3Jz3zmMwDw5S9/WazMz8+PjY397d/+rVz20Y9+FADOnz+Pf33Vq1515513Xrx4Ef/62GOPlcvlv/zLv5SfsrKyUiwWbdtOPYeXaDSAvtWjAbTOYON/8pbxosqgI3llHIOORKIhqKqy2nwUgwYAIKSsMmjTGMsOoPtCz36ncx7AHBR6lgC0MSD0jBu+CjmpLfrA6Fk8ZCgvcXb0HNptHM4mGj3r6Ojo6Ojo3AhZXV09efIkAKwsn8/CTxMwNBJezCEx9PnlJqV0Y6uNUDuZVqdi6Ip02ohWs2BohLMqL24iAJXIqV2rRWLW7Bg6BKDFCUSS5SwYWqa0kfR5JQjZafAW2TPTIfSM9NmilZWlcxatyAB6duaMVamEkLSgz+p3Gxat2LWafAOv3sMooBy6CXjmCcXir/hEvAP6g7fOtcje3l6xWPyTP/kT9aF3vetdP/iDP8g59zzvyJEjjz76qFqDjvjPfOYzWWo45+9973tHR0c3NzfxoQ996ENjY2NXrlxJPc8QgO71eqOjo7/xG7+hVv7wD//wD/3QD+GfX/WqV73rXe/CP3ueNz4+3mg01Kd8/etf/8pXvpJ6Di/RaAWHjo7OIIMjWXz3gtA9G1HzBknwqZHKDtNXQISe2AkuEgCPBwb9GQTynO+FzBuEFDlvcy4LOgoApOdd4bzjr+TFn0PJKNwQ4XwX/6klZCjoD4ks7s/1DNAD4IcQbqgRYyG72SYNZtFocL/Sk6QrqbuN1D2HDCH7+5yfn8Mk7lNHR0dHR0dH55oHjRyrq6uNs48lCCUyiqEBYKm5UgmKodVkn0+41FxZajZTy1C1UaHWqclqshganSGcp8srss8nnLVr21ubACTVyCFuY91ZEPMJXdeNVFTbtl3rRwytnq3QbqgyZZQsC0kFY4xSizF3ZLhMeC+k3QCAianTAID02WUti57AdaHdECvg6zg4EHtmWr60hXqjNDIWpd2oO/W6RWmk9HllZUXWhuB9Uw3R6OhAQbZ/GsxlTEufda5dPv/5z+/s7PzIj/wIUfJbv/VbX/jCFwDgy1/+8uXLl//pP/2n6tOr1Sr+IUsNAPz0T//07u7uH/zBH+BfP/CBD7z97W8fHR3t97S/+MUvbmxs3H///epD999//1/91V+Jv77iFa/AP3zpS19aX1+P1BO9/OUv/47v+I5+z+GlEg2gdXR0Bhz85O1bgzFE4ssicVTaU9zBapkB0A2OPTQAgIMMjg0CeYCexKD31Ryct3Eg4f7JkQIh5Z53BZXQBPJiYKDIAdCz520ger6WYwYTJMuYjOgZ4+0fYTDoWS7uY35gYiWXKrnWPevo6Ojo6OjcgNkXQ7/n1ycmTy3UG3FlyWJo5u6PDazZ9sZWGzKIoZeaKzSKGjNpAmF2Wj1Tsy9vtgEgdT5hzbZrGeByJNhljEXy4lm7llEMjRgauFcul7OQ5YNg6GoVz2FWmSu44Diu6wrRB4ZSWnecyWrVnpkO0eeF+mJpdJxWKrjuspZVqQDAQuNsceyoRU+ocwgfOvUWSiuztWnWaonphQv1hlNv2LWaSp8ZY7ZtU4kyu65bKpfV819wHJexOOmzvIikTEufda5p7rjjDgD4r//1v34qKktLSwDAOQeAyEl9+FDGGgA4duzYj/zIj/zO7/wOAKyurv7t3/7tL/7iLx7gtHO5XGjPIvl8vte72oVmGEboD7dabtHL1tHRuabBj90nT94XM5YwlFAvsxHseiZ+62svWGbCfhewiAlAeLA5OsigDc57qMLgvBdk0CYhEWMJ4VDoeTiInk21CfoQ6HlQXc8YT5r6SNIq8fZmQc8wOPQMUjO1njSoo6Ojo6Ojc6Pn5MmTnPP8UKE0MpaAoWdrMyvL51vsE5PVCSbhYMZcal0lszXbXmo2W8ydCpaFgrR6jblHRsoCLreCu4JEWh2KOp+wxVhowh7ucLm5cjAMbVkRABqQLDeXs88n3N68UncWqtVqaDBg5An0haFRphyit2KUn9wmjGGMtdgntjfWVfrsNBZXls6F1xtnFxpnL5x/UqXPC42zEfX1BmOt7a1NmT67jE1UJ4GQlZUV5rqWj/VFg3ZkjzP4cyBFceQcQpex+fl5/dlb55rm5S9/+cte9rJnn332+5X85V/+5Te/+U0AeO1rXzs+Pn7hwgX16eInMUsN5h3veMf/+B//46//+q8/8IEPTExMvO51rzvAab/mNa8ZGxt76qmn1IdardZ3f/d3q+vf+Z3fedttt0We4e7u7tbW1gFO46WRF136oXNjRTugda5pTp48qQh/ZQWwPLEwclChqfxBdRabvgb6qumYQF6d1xeaAQhgqh5nABMVz/26nlH3DABxYwaVo2d1PSeOGcQb0q/rOeTUhuArEidozm5wlsXQcAiFdGgD0Mo5HR0dHR0dnZdaUAxt0UpfYug49fOS74bOLoauJBbP1GzoZz4hpTRhfKKwV/cxn1BRGKtb9vmEFq1YlRNx8wnVE6BRk/pCm6xCDo3yi9yhRSuR0mdVBm3RilWpqPMGUfocqgcAfJOkSp9BGpmonrwwVsuVyXMIV1dXr/ePkc4tkQ9/+MMjIyN//dd/LS/+4R/+oWEYrVYL/7q4uFgulz/96U/LNX/5l39ZLpfB9ztnqeGce5732te+9uGHHzZNU0wLTI06hPDXf/3Xx8fHv/jFL8plH//4xw3D+OhHP4p/fdWrXvXe975XPIpDCENn+PnPf/7YsWO/8Au/kPFMXnLRAPpWjwbQOtc6iQxa/CFuUGGIeIo/ywiV+HRSENhcPIMGBQqbMRx5YOg5BKAHhJ4FazYHhJ6TAfQB0LMpnfwh0TPR6FlHR0dHR0fnJZ3sGBoA0EqRzJcBYKZmJ9QIDA0AhxxjKLbpmg0AtZqdzKCzzyfEGmx2TsXQWeYTWrSys37xwrnHs2PouNGCYpMp7Xb8QEVh4VhZOieD45WlcwCg0mdcV+nzhfNPRtbjzuPoszxaEE/YimLr8sWK4Yr4h8hibOTX0XnR8va3v71YLP67f/fvnnzyySeeeOJf/at/lc/nf/M3f1MU9Hq9n/iJn8jn87/8y7/8x3/8x0888cSv/uqvDg0NoUAD4XKWGsyjjz4KAK95zWt6vV7GM1QBdLfbPX36dLlcnpmZefzxxz/2sY/90i/9Ui6X+/mf/3lREwLQnuf9i3/xL/L5/Lve9a4//uM//pM/+ZNf+ZVfGR0dvf/++8VcxJsvWsGho6NzbbO6ujo/P5fm4lDNGxClYsCVXtB9bCoqZAMgx6EjjyWUBBfyBMIhAMPz1LGEJiHlwwk3wiHEBOj0KdxApfW1E26YSrHq3xByjCzDA1WNBokSVWdXSGvhho6Ojo6Ojs7NEDTUPfDgD2UUQwNAsvE5uxgaAAY1xhAAkCxHeqsDZZnnE87uzyesT1QnUzwbGeYTuqwFAFblxIVzj//amX9XrVazDEhEFB5Z6Uo6C5Cm84VEH47jsE88heBbXl+oL05MnY6UQeMowkjpc2Q9AKw0l1XpMxCy3W6L88FLUD3OALDgOMx1xRxFlzFqWejoUIsnJia09Fnnxc/v/u7v/rf/9t8++9nP/uzP/uw73/nO5557bm1t7V3vepcoMAzj93//9//oj/7oS1/60i//8i//3M/93Je+9KXf//3fn56e/oEf+AHscc5Sg3nb294GAL/4i794GC+zaZpPPvnkhz/84U9/+tPvfOc73/GOd3zhC1/46Ec/+qEPfSjuKYSQj3zkI3/8x3/85S9/+Zd/+Zd/5md+5lOf+tRv//Zv//mf//nw8PCBz+RGz3UG4Do6OrdG5ufno5ptMWLFiGqzVTUOol061M9LogwVZrChGJ+bV3qTgZCy3NGc2v6cpetZEW5A5q5n02/0jmx8DvR6+/fkwF3PquniIB3Kia3TuutZR0dHR0dHR2c/8/PzAJDQCr2yfN6i1Mqs2kgowwLRkpyxaTquG7riG0Jwh1T6a7KRI7JluOl34Ao1BF51ajc0GjnUdvKV5fNW5cTO+kV5m51+BDL0YksCDSp3E4s24TjtRrvdppTOTj+ChwMAWbsRp+PAk7cqlZB2I64eAEK3ZaW5DFGN24jL5UsQ66FivNtqMV6p/hyucyvkAx/4wPDw8KVLl673idwS0R3QOjo6L0bm5ub8PmjRDys6asUKiWqORrKstktzZZ4hh+AEQoA8gCf3QfvPFWMJAQAIGSKkyHlbHkuYkOxdzxAcM+h3eccXQ1c629TuYNEJzg/X9RxZ3EeHcp+VJGPXsx51oqOjo6Ojo3NTZm5ubnV1tXH2seTZetjuuug4CYMHsXl5xrYbiWUAULPt5QxjDLPPJ6zZds22644zmbbD/ucTpnRD9zefcPqRnfWL7BNPlctlJ7FrO3I+oWgTdhyn2WzawTZhx3HK5fJ9J34QMbfbWsPudZe1sMEZPRtyJqZOAyEry0vyosvWHpp6KwcSqndZqzQ6DoTgbkUWnPpEdVIdLYgDA+WGaFyMbIgGAGpZarHjOKurq/pzuM6tkA996EM/9VM/NT4+Li+S+Fyn07xJQjhXfzlaR0dH55rk3e9+9/z8vM+UMYikQ1ASKa0RrIHgE3FdfmLXJ7whDUUPgBPIAwDiXQI5Dh0AM4iPe5x3CDEJKXDe43zXMMoQDOe7nO8B5FO5MwBwvgd4FN+2IY4eURyg5FmEGxCkzwn/LfSUG5WQyJfjMJUh4J5ePD8/BwD6I6+Ojo6Ojo7OTZ+nnnrq3e9+t9fr2rUZ2fPgMubUF7HFFf86UZ2cqdk1BSDKYcydqlYppajdwNQdhwDIT2TMRXvGjG1TakXsyC9rOA4HmKnZFb/s1OSErTxL7LCWuENRaVkWYlzEwSoVBQDXdR3HoZSGjBMRlYw5Th2A27UZl7WI10MWHFHZWltYfJQTw7btkEAj7gTEJ2zqn7Mcx3Ecx5G1G25rbeHsY7RScRqLkRoNp7Fo12ZmazMAsFBvEO7NzpxZaJxdaJxNri+NjG1vbe6vO3XG2MrKily8f8csi7mu/BAC5ZVmU75k13UnqlUAQGG0XLy2tqa1Gzq3SP7iL/7iwQcf/OxnP/vGN75RXt/a2op7ys3sx7j20R3QN22ee+65n/7pn77rrrvuuuuun/qpn3r22WcTiv/8z//81KlTd9111ytf+cof//Eff/rpp7M/qqOTPdjuEeyDBh+eZpRE82AZV55oAnSDiyYAQZ8ygRzSW4LN0VIfNIBJSBHRMyGmrIqGQ3Q9p7qegz3aZjb6zH3ubMRIlvf37N+xvrqeU7/XFaruLLsF6cuDhOL9U52fn8Nk2K2Ojo6Ojo6Ozks7cWJol7WoxKMtSre3Ng3gqcbnja12hVpyWYu51KKhMmxJPoAYusWYipjFDuuOkyyGxkrOoVwuu64b0ivLwWZkIKQ0PJLc4Cx3Qzv1RkjBHKj0xdD1hV9PFUOLbmjsgI6kz6TX2Vm/KB9xYfFRAGCt1srSuUiavLJ8HukzADDGrEoF6XNkPWu1tjevzNZmXMbEjZqoTgIhIfose5zl27XgOIADCYM9zhPVqvBvYFzX1dJnnZs4f/Znf3b//fePj4/fc889P/ZjP/aVr3wFAMbGxj760Y+G6DMAfPKTn/yxH/ux7/zO7/xH/+gf/czP/Mz/+l//a9gPvCh8LPkQDz/8cKgv+/d+7/cGfg7XIhpA35zZ29t74IEHvvCFL/zH//gfP/jBD37uc5/7oR/6oU6nE1n8n/7Tf5qYmDh69Oh/+A//4f3vf38ul3vggQc++tGPZnlUR6ff4OfskyetNOIsrwhxcOSgQi6RU+77hXtBgowMeld+LoEcgMf5jnx6hBQ5557XBjBxMmH/6HkvDj2T/bOV6q86NzKi5z0JPSdEoOeMdo7sGg1xA7PvNrV4Hz1zPWlQR0dHR0dH59bL3Nwc53zt6U+WRsaQHjLGLCtMZmft2kpzeS3NoVGz7aVsqo3NrTbJNsZQYGgaw4vBh8sAMDJcTjgu+PMJHcdhjKVNHbS32+0s8wkRQ1uUPnT6YaTAsZV9YmgACNFn13XL5TLpdSJbrWmlsrJ0LmzMqC8CIdubV0LAfaFxlgPZ3liX6/f1HYqmY8Gpl4ZH4kYLrjSbs7YtmD4CZVAazEUxtSzqU2lE0g88+KD+KK5zU+ajH/1otVp9+ctf/p//839+//vf/8ILL/zjf/yPP//5z3/f930fDiGUc935WOohPve5z83MzHxKyqlTpwZ4Atcw180+rXMt8wd/8AfDw8MvvPAC/vUb3/hGLpf70z/9U7Xy0qVLR44cmZ2dlRfPnDkzPj6+sbGR/Og1O32dWyInT570YTHEDKwTK4ZUEzeokPhYVgzcwxp1ZJ+hTvwjpBg1MxDPLfuYwfz+3pIGDIJ0XFDOMG7D4shJg6GrNmJuUfbhgUbiOMED7BaSK/WEEx0dHR0dHR0dzvnq6urJkyctWkEcmTyCL+N8QgCo1ewsQwKT97ax1Z6p2al7ww13mDqfEAAsZehf5JZxPiEAIPxFyhyaRqhuSJAppcljCeUVhNFi5GBoVyBNIMQNnc52bUadMwkA9sx05LzBUL0wtKg3yrZtebQg3igxLzGhWNx2LF5dXb3eb38dnWuSvb29u++++x3veIdY8TzvgQceePDBB9Xi687HUg/RbrcNw3iJ/sBqAH1zZm5u7k1vepO88qpXvers2bNq5ZNPPpnL5S5fviwvPv/88wDw5JNPJj96Lc5c55aKz6BBoZwhHgo+X04oI1GINo5BmwqDhigGbQ4QPQsAPTj0jBteu6DPh0HPYoN+ilMrQ6+dRs86Ojo6Ojo6OrERDoRk2IqG6JmanUyNEbBSSpNZcBYMPVOzazW7VrOzwGWxw7jK5WbTojQIlw+FoVeayxatCOzbL4a2bTsVQNu2bVVOxO0BWXMqTUagDADibEP1K8vnQ/UWrag0eaXZVCkz3h/1ZqrFWGPbtv5ArnNz55Of/CQAfPnLX5YXf//3f79YLHa73VDxdedjqYf49Kc/DQDf/OY3B3K4FzlawXFz5t577/3yl7/8rW99C//69a9//Wtf+5qqtgGAZ5555s477xwbG5MXjx49euTIkWeffTb50Wt3/jq3SFZXV3HinCJ2UO3PXLE/g+LiUCXRJgAH6ATLTICePPSPQI5AnvMdWQmdccwgCjcAPAK5VN2zdFBBlhMihBu5RIUF8UXY3cx2jozCjb6Kkyt5qFILN3R0dHR0dHR0InPy5EnO+fz8/ER1csGpx5VlEUMz5lJKl5srlFojaaoN9Dg3HCdV8YG658k0xYcQQ09WJ+LKwLct27btOM5CokJaqqwn3BkAsGhlZemcXZtZOPvYQ6cfdltrCcWz049cOPc4+8RTqpGDMYYWDqHduHDu8dDTcbDh9sY6HvfquiRxDtTXG4wx7IAOrkdoOlzGSiNjLmupJo2JatW2bXWEI7WslZUVVfosF7uu6zLmOE4+n9cfyHVu7uTz+R/+4R++55575MVisbizs7OxsREqPjwf45x/+MMffuCBB26//fbjx4+/5S1v+fjHPx55Ymtra4SQL3zhC9lPAAA+97nPHTly5Pjx4//n//yfZ555po8bcQNEA+ibMz/+4z/+yle+cmJi4g//8A8/+tGPTk1Nfd/3fd99992nVl65cmV0dFRdP3LkyObmZvKjgz9vnVsvc3Nz8/PzUXC5Jy0KBp06qBCfGCojQQaNPcLy6D8AMAjkAXrBsYSBOYRyDoCeOewCQAbuDJnRM8bbP0ImRpxxeCAZHHoOV2r0rKOjo6Ojo6OTGl8M/XSy/ji7GHq52WTMzUKNKbUi5xOKeYYhuJwFQ6v4m7mMSpB0f+ogQMbxgOp8QtdltBIwLyOGppQ+dPrhh04/nLTPGDG067qUUsdxqtXq7PQjIemz21orjh/jxAjND4yTOLuMTUxOAcDK8pJTb2C/M9aXRseBEBVVT0yeUucfosd5u92W6bPruqVy2WUsUvocKp6oVgFAS591boV87/d+75/+6Z8ODQXay5588slXv/rV4+PjoeJD8rHd3d3777//137t1x544IGPfOQjH/zgB++5557Tp0/Pzs5mPNvUQ3zuc58jhLz+9a+/9957X/nKV951110vlQmEoAH0zZpyufxv/s2/+eu//uuf+Imf+NEf/dG/+Zu/+cVf/MWRkZHIYkKIumgYRpZHdXQOH59BJ7czE58vRzLoVFRNAPb8RSzIAwAPNkcrDNqMZNAHRc8D7HrGiK7niB9SpbKv4YF4PweFnrF7XaNnHR0dHR0dHZ3+srq6+u73vKexeDYBQ6OSYtauLSY2L2enxkirs4wxFDtM6K0Gf+AhAMjHZcy1lJGGs7aNrdCpGFqdT8gYC43+26+sTW9vrFNKi+PHDjCf0HEc9omnLpx7PESfFxYffej0w/bMtKDPTmPRnpleqC9OTJ2mlEbS5Kj1xYmp03ZtJqpRuiWsI2IdRwsirL9a7DgT1WqoMqEYAPTHcp1bNn/xF3/xu7/7u//P//P/RD56GD72yCOPfOMb3/ibv/mb2dnZqampf/7P//mHPvShP/uzP3v/+9//R3/0RxlPL/kQn//857e2tt75znd+9atf/drXvvZv/+2/fec73/m+970v486vbzRGvDnz27/927/yK7/yW7/1W9/61re+9a1vPfbYYz/7sz/7oQ996Hqfl45OdObm5ubn56K6nmVyymPMGxBk0DyGQZsAXX8RO3xNABJk0EAgD+BxvoPP4jwAoDnf43zrcOiZBE9M5GDoOZUR8yB6zgiUsxDt7F3P+7pn/RlXR0dHR0dHR6ffnDx5si8MLTcvM5dRasllGTF0pJGDsfDeRCUAJCs+ILO7QzZypGJoYeSYqE4mlAHAbG16Zemcu/Z0qpFDxtCMsftO/OCFc49blRNyzcLio+7a09sb66HeZ6exyFqtleXzKk126g153WUti1biNB0Tk1NADDRpuGy/VXzBcUrlMrWsuB5nuVc6oTifz3Mu//qpjs4tlE9/+tNve9vb3v72t7/97W8f7J47nc6HP/zhs2fP3nnnnfJ6pVL51//6X//Gb/zGQI4yPz+/urr6q7/6q6985SvvvvvuRx555L3vfe+v/dqvffOb3xzI/q9pNIC+CdNut2dnZ9/znvf80i/90vHjx48fP/6rv/qr09PTs7Ozu7u7ar3nReAwsZj8qI7OoDI3N7e6uhrVzgwSNY5j0Kr9GRm0jI+Jz6B7/qPgM+hdeYdIln0GvR8JPRcO1/VsBM8TBoGe43ixuCf9iqETAHR2j4cH4M3Pz+nGZx0dHR0dHR2dQwYx9AMPPtiXGFpIM0IRqo3JKNVGqExgaKo0LIvUbFvtcU7YYd1xWLxXBBQMnaXSZcxpLLqsFVvZjxjaqpyYnX4E/1ded1trD51+mBMDRw4GHmL///buPzzq+sAX/WcIKCT8ErcKKLZee1Z3bbfnoa29WieGQJsgWpbWX4/2VHt6vbbP6untwbJKaBOQiXRblevZngqu9dYfXdvH6j7VlXArhs4Q1p6uv65H2u7Ru2up9uFcRcAYkJDM/eNrxmFmMjMJGYYkr9czfySf7yff+cwsstM3n7w/2+Lx+OZNT+RsQ17bfmsIIafcuT5+fsGajrXtt06ZOj1ef0EmOE4lk/Xx+NpEIpFIbO7oyAmUs/c4Z0fViUQipyE66uhQ+sx49swzzyxatKixsfHuu+8ebM6w87EdO3YcOHDg85//fCzPnXfeGXU979q1KzN4/vnnhxDOOuus6NtJkyaVs4D58+d/+tOH/XvYdddd19fX19VV7C+0Y4QAegz6zW9+s2/fvqVLD2u5Wrp06VtvvfXyyy/nTJ4+ffqePXvyb7Jv376ZM2cWvzpSC4ZI9MH68F3PORl0Jk4Nh2fQme3SISvezXRJZ0+bmBW2RmpCmJgOvfkZdLSSkYues5fRP7C2Edn1HMsLtTOvcXhnEubfMAy1xyOKniOlJgMAUFq0Y6P8YuhUKpVKDjptqMXQqVRqRPY4ZzZNry371MEptbUlZ4YQ4vF404UXrW1fV2zmUGLoHFHtRjwez9n4vLZ93ZRpM+vj5+dsZI6OEAwh5G+IjtLqghul848WTCQSIYT9PT05Rwvm7HHORNX5pc9RR4dfSWQ8e/bZZz/zmc80NjY+9NBDNTWF/6f6keRjH/jAB0IIDzzwwNOFPPHEEyGEGTNmPDSgra0thHDbbbdF3z744IMlF/DCCy9s2rQp59KkSZPmzJnz6quvlv9WVIsAegyaNWtWCKGnpyd78J133gkh/Mmf/EnO5FNPPfWNN9546623sgd37969d+/euXPnFr9akdUzvkUZdEPDBYV6NvIPKszZLp3//0XyzzMM0a7nvPtPTIfe7GMJY2FiLEyIjjQcueg583QVKtwIlTk8MAy1x0P0DABQCUNq5AghbCuaLw/hOMH6eDwej8WGsMd5cfOgO5dTqWQ8Ho/27ZYTLu/v6QlFzydMJpNR/ru/e1+IxaZMm3nkMXRyW1d280ZUu7H5icfz0+fErevy66ffO0KwULlzov3WwUqf848WjPY15zdpFNjjnEpFUXV+6XNXV1dnZ6cP54xbzz333KJFixYsWPCTn/wks9c435HkY3Pnzp09e/auXbs+lefZZ5+NKjImT558+YBFixaFEJYsWRJ9e9lll5VcwPPPP/+FL3zhwIHDfld77969O3fuPPvss4/4Taq4EpEKIYRDB/7vai+hXBMnfzaEcPrpp3/wgx/8u7/7u7/927/NXLrnnnv+3b/7dyeffHIIobu7+1e/+tV55503ZcqUxsbG2tra2267be3atZnJd95557Rp084777wQQvGrMOIaGhoaGhoWLFiwdesvs7LOwUo2+g+vjHgvMs77wb6B3DkSdXH0RkcRDkw7LoTedDiUlTVPCO/vhh5U+r1aj5oQjis+M4QQQl8IfQN7sUvqH+hQLnl6YWzg/SlnciZNLjIz815lblvW6YU2VgAAVFr0gXnr1q2rV69OJNqjrLmgzZs3J5PJpubmlStbVh4eYmbE4/WbOupTqWR7IhFCYmVLS37XcyqZqq+vb2lpicfjicGn5dxwal1tkecNIbRknTrY0tKSvcM3x6qWlmQ8nhgIXovNXHlzffz8RPutTRde1HLzTQVPJozUx8+vjz++tn3dZy9auuqmFfltG5mRaONzfu1GpsQ56tnIGr81lUrt796XN//WEGL18Xj2qpKpVKL91nj9BfnBcSKRqI/HByt9zhkMIQxW+tzZ2TnYmwBD8n/UnF7tJZRrfd+/Rl88//zzUfPGQw89NHFi7v8MH8F8bM2aNf/5P//nz3zmMx/96EczE376059ef/31xevsM4ov4ODBg8uXL29ra1u37v1/YPv2t789e/bsnF6OY5Md0GPTD3/4w40bN37pS1964okn/vEf//Gqq6568MEH77rrrujqK6+8smjRotdffz2EUFdXd9999333u9/98pe//A//8A//8A//8NWvfnXNmjW33HJLXV1d8atVfYmMcYPvgy7YvJEzmH8CYSaYzp4WwuEnEIboBMKsfdBZzR4FDGXXcwihL4TegV3PJQ1113Om0rp0L/PA1yO8mVrXMwDA0ZQphp5SNzW/GDqZSkWlw9EO4lisxDmBxYuhoz3LIasWo5yqjcGKoaM4O/NtS0vLypaWtaVOHSxyPmEikWjJ2lBcH49v3vREy8qbE7eua7rwoiLF0CGEVStv2v/2nmTX9skz/2Ttur/Jubp23d9Mnvkn+bUbydS2KdNmZkqcU6lUlCknU6mmxReGEHLKnQfqOGKrWlYedv/2W5sWL8kufX5vPJFIJZMtedl9dulz9uT8qFrpM4QQduzYsWjRonnz5t14440vvPDCM1mi0zhHMB+79tprL7nkknPOOeeb3/zm448//thjj/3H//gfv/jFL95xxx1lBsTFn+KEE06455577rjjji9+8YuPP/74z3/+80svvXTDhg133333tGnTKvo2jggB9NjU2Nj4z//8z3v27PnKV77y5S9/+a233vrVr37V2NhYcPKyZcs2bdrU09PzjW9849prr/3Xf/3Xn/3sZ//pP/2ncq5C5XR2dra1tRZKjYscVJgzLRw+LTuYjg08eg+fOSmEkH4/mI6lCwXQQ4+e+wZOUMyvE8kxvMKNIscGZk+OlFOjUX6iLXoGAKiasouhWzZ3dBRv5AgDxwlGm5eLTMuOoYdRDJ2Js3NuONQYukR3x1Bi6M1PPL75iceTXdszjRzJbV3JbV1r1/1NwdqNpgsvKlij0bR4ScFy56bFS1pWrozS58y/DUR1HPlHC64daNLIzqDzS58z49G0+OEN0UqfIYSQSqXefPPNF1544dxzz/3E4Q4ePJg//wjzsXvvvffBBx/87//9v3/lK1+57rrr/uf//J9dXV0FA7SPfOQjTz755Lx584a0gKVLl27btm3v3r1XX331dddd19vb++tf//rCCy8cmTerwmJR5E8Ro66CA8aS1atXt7WtPjxljuU1b2QuZUqfa7Im50zLPrEwSqX78rqY+0JIx8KkaDd0dgtHVuFGydw5DKTD2WcnRg4V2gedOUSxnH8azGnGSBf9waHVaBxeaVJspg+1AADHiKiRo7+vr6VlZX08vjbRHmKxVXlbaJPJZCKRSIdQpEMjhDDQyPHetKl1tTmHDGUkEolkMln8bjk3bC9aoxGtsD4vac2XqUJOJZMtK2+qPzzUPmxm+62J9luj6ufi90ymtiVuXRfS6eS2rpabb8qJnsNA7UbLypuzn27K1OktK29OpVI542Gg3DlTkxI1NW/e9MTa9ltDbELOa4z6UjLlzplmkuiVbu7oyH7TojcqiqSzO0yi0ufW1taGhobiLxaGajRWcHCMEECX1rf359VeQrlqZnyu2kuAkTeQQceyktx0VpSckcmU+wbS4f6BWDY/g45S7GhaulCm3BdCXyxMSofeWDg+vBc9R44kes5czV5Vf9HJOQZLk/sKLWwY0XPJRFv0DABwjNq6deuCBQsyGWhOV0NGyWLoSCY1LnKrMJCEhlKhduaGqVRqsDg7I1Eoci3ovXB20z8WCaDfmxkdAFgoVs6buS61bVt+Wt104UX5G5zDQACdP960+MJ4vD67diOZSjU1Lw4h5BwhGAodLTiltnZ/T0+0Ibr45EwA3dTU1LhwoQ/qVMiq48+o9hLKtfbdV6q9BA6jggM41rW2tg50cWQy6ILNG5mR7Ki6yOmF2T0eNVl1FpGaECZGXRzpcGjo6XMmwC3412xmhf0DKykyOaP8UuYhTS44M3b4m5aZ2a9wAwDgmNXQ0JBOpxsXLixSxxGGXgydSqUSg08bUjH0po7NIYTa2trip3K1tLT09PSUbOQIIdTH4/XxeKJ9XdPiC4u/6lUrb9686R9T27aVbOQIIcTPP+z0wrXt66ZMm1mwXmPK1On18fMLjuekzyGERKI9DJI+R0cL5oxHpc8F0+fs7o7ohU+prZU+A8cmATQwCkTddofvFC6SQafzSqLzjyXMUTCDnnB4UUY5tRt9IRwsL00OQ4ye+wfWMNjM7FD7SKLn/BuGTPTc1tbqEy0AwDEu+vA8oaameHpbZjF0vD4ej8fT6VBmO3PxYuioALqnpyf/LMF8ZRZDhxA2d2xqaWkpGUOXWQyd2rYtOlQwsrZ9XeLWdZs3/WN+ypxov7U+Ho/n1W4k2m/d3LEp98jBRHsylRosZc4/WjCEULD0OYSwv6cnszc8emeUPgPHMgF0Gfr7R80Dxq7omO8QQt525pAXLscOnzZYVB0bOO4voyaEdHj/BMJoWs3ApeIy0fPE8v5q7R9i9BzKuG16KNFzyUQ7ZBLtTPTsEy0AwKgQfXhevWbNrevWFUlvo9R4VUvLrYNvXk4lU/F4fXScYMnUOLphtLe6SKgdQsicJVjODaMYuuCpg8lUKsp/6+PxKIZuWrzkCGPoZOr9AHpt+7oQi+3v3lew3Hn/O90hhMPT6ltDiO1/pztnflPz4hDLPTm8yNGCOXUcIYRkMjmltjbkbYhuam6Odr77rE6l1cRio+VR7beKXALoMhzsHTUPGNOiz1UNDRcM0ryRPZIu1LyRMy2EEBuoy8ieFjs8gy5pSNFzf1bqXXxy+vDouWSgHN2z/Oi5+AIyu8j7RM8AAKNUJoZuam4umN5GMjH04ubm/M3LqVQyXh8PAwUa5cTQUYFGwUaOVDKV2bqb2TQd3bDIC4lmhhCm1NbmvJBUMllf/37UWx+P73+nOx6vb1q8ZG37rcXuGY9v3vREPB5vuvCipgsvyp+QTG2bMm1miMVyNj4nU6mmxReGEMscLZgZnzJ1egix/I3PU+qmDpYyZzdpZMbDQLVI9mD2+YQZTU1NbW1tAzt1oLKm1MRGy6PabxW5BNDAKNPZ2VlGBh0G2p+LTIsNDPYV2hzdOzAYy7tzxvCi55qBpyhyBmx/Vkhdfo1GSeUn2ukQgrpnAIAxINrGMWnSpPz0NtuQiqGjGLpIMXQY2OOcE0NHFRw5zxvNrK2tLX7DKNcOoUQZSAhhVcvKzR2bUqltU6ZOL1kMvb97XzwenzJt5tr2dWFg+/Pa9nVNF16Uf7Tg2vZbmxYvyS53TqZS9fF4NN6ycmV++pxob49S5mQymcmU85s0wuB7nKOG6JyoOpqs9BkYFQTQwOjT2dk5cCxhRiZczjREh0E2R4esZDk90P6cXxIdFXT0D+ynznEk0XNGwQA6EygP40zC4on2EG4regYAGGOiYuiurq6hFkOnUql4vD5nWhRDj1QxdDSzzHC5paUluxg6yn8L3DAe39yxaXPHpmGcT5hMbUtt27a/e19++pxKbcsud06mUvXx8/PH35ufaA+xWCZlTqZS8fr6ZDI52NGC2Xuck6n3topHUfXmzZuzo+postJnYLSIpdNFAgtCCKHvjz+p9hLKVTPn8movAY6e1atXt7WtPjxOzRQrZ3dc9Gd9HbJGMgF0bGAwlhcQ9w0cTpgJeftC6CvvjMEwsAU7VmhywVWlB5lc8GdD3sy+Qvugh3TbtE+xAABj29atW1evXt3f19fS0pKdaeZIJpOJRCIdQiqV6n6nZ7BpqVQySpaL3y2EkNkxHQXNxZ+3nBtGM1Op1OaOTQUz6PdnplKJRHsI6ZaVN5ec2bR4Sf7G5xBC0+ILszc+vz+/eXH+xuf3xg9vzIhy52Qqld+k8d4e54FzCKOX1tLSUrB2Y20i0dXVpXaDo++7U/+02kso1ze7/6XaS+AwdkCXFuvtHS2Par9VcFS1trYW2gc9oVAXRyi0wTkaSWcNZg7xi8QG0uf0wKUj3/WcffPsyUM9PDAUmplT6zGk29r1DAAwLkTF0I0LF5ZTDB1FwGU2cpQshu7o6Ail9jjnFEMXn9nS0lIfjzc1L25qXjzYtJB3PmHxmfXx8/M3Pk+ZOj0/fV6baC+YPr83nhcchxCSqVR+6XMUTGfS58zMwUqfJ02aJH2mKqre7KwDevQSQAOjWFYGnQleY4X6KPIz6Fihbo3MHufsaTVZZxWOSPScuXN6KBlxODx6HmxyemCm6BkAgEG1trZmiqGLhbzxeDwej8VC/nGC2covho7H42WGy5kYusgNU6lU/L1TB+NT6qauTbQXeerM+YRTpk4vcj5hMrUt+9u17bcm2m8drNw5hJA/niqUMq9NJJKpVE7p89pEYkptbf75hIlEoj4e39/Tkz0eTVb6DIxGAmhgdGttbe3sfGqQDLr4QYWZDDp/Wt/h2XRN2RUW5UTPmcmZm5czucwG5zCkzdSiZwCA8Swqhr513brB4uCoibilpSX/OMF8JYuhU6lUfX19zh7nIsuLZoYQagdJyZPJZH19PLx/6mCqqXlxibrngfMJSxZDh4HS5/3vdBcodw5h/zvdOfObmheHWCynrzk6LTD7BMKBmyQSiUTBDdHJVCpnQ3Q0ubOz00d3YDQSQJeh79CoecC4FP0W4eH1FCGr2Tkj56DCkNWDUTKDLl6XP9TouW/g2Uv+ZtCQ9jKny57Z39bW2tn5lM+vAADjXPRZevWaNQVj6FQyGY/Hw+HHCRaPoVe2tAzWyJEcuFv2DWtra4tvmm5paenp6Sm9afq9no2ViUR78Rg608iRfz5hdKhgeK8M+sIQYps7Nh32ElKpqO4jv/R5St3U/L3MmaMFWwqVPudsiI6i6nhe83VU+pxOpxsaGgZ7UXAUTJoQGy2Par9V5BJAl+FQ36h5wHgVfW5uaLggrwA6DNL+XLygI9po3Jc1GBskg+4fiKqHFD1nJhfJtYdWozEws+S5sv1tba1tba2tra0+vwIAEBlSMXQUQ49IMXR9fX10JmHxaSGEgsXQqVQqZ1vxiMTQa9tvbVq8ZLDS53g8Ho0nB559sNLntYlEMpns6elpaWlJpVJRspxMJguWPmei6ng8nv2ilD5z7DguNmoeHGsE0MAYMUgGPVjzRma7dJRHlyzoyA+g+weC7DLbOYbU9TzUMwnLvW0UPdv4DABAvqgYuqurK1MMXTDAjWLoYRRDRxUc+TOjDcLDKIbOSZ/fnxmPb+7YFI/Hm5oXlyyG3tyxKR6vb1q8JKp7DiGkUts2d2wapNz5/fFkMhWPx6PxnL7mkHe0YFTBEaXMBTdKZ6Lq7EGlz8DYIIAGxpSsDDpzxmDB5o1hl0SHrOg5PbCluogiGXH+Dw4jeg6Hzyy4U9tJgwAAlKuzszNTDB1CaG5uLjhtqMXQtbW1RZ40pxi6ZAwdQokbhhBWtayMappLnk84MDOWTG2Lx+s3d2zKibaj2o2c8VQqlWhvj0qfsydnjhZsyTtacLDS55AVVUd7pZU+A2NJLJ0u+fva413/bzZUewnlmvBn11V7CXBMWL16dVvb6oFmjEh/obw4P8MtPq0mK8gu/5jBIpP7BlZY/mbqgsvOuXTYy2lra/OxFQCAodq6deuCBQvi8XhLS0vBncuRZDIZ7Ude2dISjw86LZVKLm5uLnm3zA3r8wLcHJl90Pl5ce4NU6lEoj2E0NKysvjMKXVTc44WXJtoT7S3t6xcmb8hOtHeXrB2I5FIdHR05LzG2trawSbnNEQ3NTXFQphQU6N2g2PNg3/yZ9VeQrmueuM31V4Ch7EDugxVb3bWAQ1D1Nra2tYWRa7ZWe2EQdqfc0aKTDs0EE8PaXty+Q3O5bdzlHVbu54BABi2hoaGdDq9cOHC5ubmIucEllkMHUKI0uch7XEuMi2ZTG7u6Njc0VF23XPpYugcxdPnEMJgTRo5RwvW1tbWx+ODRdXZ6XMikUilUo0LF0qfOQYdNyE2Wh7VfqvIJYAGxqbW1ta2traBooxITvtzpGRJdPa0MjPizI+UzIjDUG5bZk6dFj0DADBSMsXQ5aTGRYqhU8lUfX19fo/zYFpaWnp6eoZSDH2kMXTmUMHIe+XO73Tnp88hFtvc0ZE9ebCjBROJRHNzczxv23XBqDp6T/z+IjD2CKCBMWsgg85pf85UXoSswXShDDp/Wk4ZdI4hbU/OnG1Y0pCKodMhBNEzAAAjq7Ozc82aNevWrSseBxcphk6lkpkctsw9ziGEIsXQ2UcaRjeM19eXfepgsfMJk6lUpvQ5Z3xK3dQQi+XvZY6OFswvfU4mkx0dHSGEzKUiUbXSZ2CsEkCXFuvtHS2Par9VcMxpbW3t7OwcpFIjJ1wOZRxUOJgjPzzwyG/73q5nzf4AAFRCQ0NDOTF0diNH8fMJh77HucSm6VUtLft7ekIsVuapg6lUakrd1MxW6ESivaVl5dpEe1Pz4ng8nr/xual5cabHOZlKxevrwyBNGiGE9/qpN2/O3uNcJKqeNGlSOp1uaGgosmyoruMn1YyWR7XfKnIJoMvQ3z9qHkCe6INy0eaN2MBIrIyoOsdQG5wzt50w8EXBvHhoibbCDQAAjo7o0/UwiqGzNyxnK7LHOf+GIYTa2troeQc7TnBVS8vmjo5UKlWy7nlzx6bNHZuyGzkSifZUKrW5Y1N++pxKpfb39GT2PqeSyfp4fG0iEUIoWPocsnY9R6+9YFQdbYieNGmSD/Mc+2omxEbLo9pvFbkE0MDYFx2f0tBwwSAZdGwgBS5eEp0TFlfw8MDybpuOoue2tlafVgEAOJqiXzQcUjF0kbsNtRg6hBC1WJRxwyEUQydTqXg8vrljU0603dS8OMRiOY0ZIYSm5uaQlTJHotLnqIok+1kKRtXR5IULF/o8D4xtAmhgvOjs7Bw8g84o2LyRMzK86HmwyZn4e2i3bWioj6Jnn1YBADj6ymzkCCG0tLREqetQ9zgXv2EylRrB8wlbWlbWF6rdmFI3NV5fn1/6nEylclLmMFD63NPTk7PHOXrq/MlKn4FxQgBdht5Do+YBFNXZ2dnW1looXA6l2p8z00Ywes7IHIFY7m3b2lp9VAUAoOpyYujBpsXj8Xg8Xk7VRvYe5yLTosP9Vra0rC2vu6Oc8wlzrE20J9rbN3d05KfPiUQiejnZ44MdLdjc3Jw/Wekzo9HEyRNHy6PabxW5BNBlqHqzsw5oGDmtra2FMuhy2p+jabERjZ4LZtzFbqvuGQCAY02mGHqwzctRCfKQqjbKL4aO19c3NTevLeN8wiLF0MlkKp7VvLE20R5isf2HN2aEgZS5o6MjezCRSNTW1tYXOlowWnzOhuja2lqlz4xGsZrYaHlU+60ilwAaGHcKZdBhIIMuXtBR0vDOJAzlFEOLngEAOJYVKYZOJpOZeDdTtVF2gUaBtDr7SMNo03QymZxSW1vkhuH9Aw8LNHKkUqn6+ngIIZlKRaXP+Rufp9TWxuvrW1pasp89UehowWg8esbsXDvaEN3W1uZTPTCuCKCB8Sgrg452PUcHDJZsfy7y76hHciZhuvhM0TMAAKPCkIqhy9/jHA4vhs6OszM2b97c0dFRZiPHYDH02kR7U/PigqXP2SlzZgGZ0ufsjdLRHucwsPE5k1YnEomuri5NesA4FEuniwQfhBBCesst1V5CuWILv1XtJcBosnXr1gULFgx0a/SFUBNCGIibs0PkaCR2+LTsq+nyqjkGm5x/z/dm2hwBAMAoFX3Yjsfjmzdvrq2t7ejoyKmziCSTyShZzpxVOJgo7Y1S3UQikdO2nHPDWBk3jGLllpUrV7WsnFI3tWXlylQqlf9TaxOJZDKZ/XRNTU319fXJZLJg7UYikcicTxgtZvPmzVHps8/2jGpbP/6/VnsJ5Wp45ulqL4HD2AENjF/RBo2sUDizGzoMXhIdy9qwPLxdz/mTY4c/nV3PAACMeg0NDel0OiqGDiGkCjUvh1JVG9kym6abm5uLJMtDLYYOsdiUuqkhhBCLbd68OWcvc8GjBVOpVCKRGKz0OaeOI5VKKX0GxjkBNDCuRRl0Q0N9COmsZDk/g472LPcPTMu0RR9h9Jw/s1/0DADAmBEVQzc0NCSTyXKqNso6dTAej6Lh4hUfPT09IYQptbUlY+iWlpb6eDy/dqOpuTleKGUOIeSXPmei6kyEnUwmm5ubQwh+rxEY5wTQwHg3kEE3hBDKyKCza6BHKnqOnrS/ra21ra3VZ1MAAMaSES+GDiFs6tgcj9c3NzeX3DTd0dFRMq0OIcTzajcGO1owKoDOL33O3xCdSqWi1+4TPjDO6YAuLf3EqClWjl04auqq4Ri0YMGCrVt/OXj7c/ZgOdHz0IqhbYsAAGDMi4qhMxXJgyleDF1bW9v9Tk/09eLmplQqNVjBdM4NByuGbmpqyh5fO/DUOXdobm5eubIllUpmT84pfc5Q+szYs/2C3MM/j1nn/bJw5w/VYgc0wHs6Ozvb2loHb3/OKP7vdkMuhta5AQDAOBEVQ0+aNKm2trbI5uUixdDRBuTMt5s6Nm/q6Ci5aTq64cqWlqbm5qgro6BkMjmltjbkpc9R8fTKlS0rC22I7unpyZ4fbYiWPgNkCKAB3tfa2pqXQWe3P2dGCmbQQy6GFj0DADAORcXQXV1d5aTGoVQxdDxev6lj88oyujvq6+t7enri9fU5xdDJVKq+vj4qfS64lzmZTG7q6IjS51QqFW1/Lng+YRRV++1GgGwCaIDDZGXQ2YnzhIGzByM5AXR/1iXRMwAAlDDsYuhUKhWPF2jbiGLo4RVD18fjawvtZQ4hNDU1pdPvVU4PPFE8kUgULH1OJBJdXV0+5wPk0AFdWvrRv672EsoVW/adai8BxojVq1e3tbXlnTqY086RM1hWMbTdEAAAkC367F1mMXQqlcqvwsgx1GLoZCqV/+yZ0uec55paVxtCyL95U1PTwoULfdRnDPv1hQurvYRyffKJLdVeAoexAxqggOi3AvPan3P+zszUPU8o9depXc8AAFBYa2trphi6ZCNHPB5vb0+0F93jPKRi6Hh9fTweL7P0eXFzUzwe7+npyU6fo9Jn6TPAYATQAIVFvxV4eL1GGPhrM132SYOiZwAAKC3aAlKykSOVSnW/0xNCmFpXWySGLr8YOplMFix97n6nJzt9TqWS0cbqglG1X3MEKEIAXYb+9Kh5ACMqyqAbGi4olEGXEz33i54BAKBMJYuhk8lkPB4PIaxsadnU0TEQCpc4n7CcYuiMTOlz9mB7IrG4uTker4+ePUPpM+PKhJrYaHlU+60ilwC6DAcPjZoHMNIGyaBjh3+b473oua2t1SdRAAAYkugT+MKFC4unxpk9zu2JRPEYemVLS/c7Pel0qK2tzb9hKpWK+jSiowXj8fqc2o32RKK9PbGpo2NlS0tmcgihqalp0qRJnZ2dw3+pMKpMnDxxtDyq/VaRSwANUFqhDHow70fP0mcAABieqBi6q6ureDF0Zo/z4ubm4sXQ0abpZDKZvbc6s6U6kUgkEu+lzNk/Fd2z+52eeLw+lXp/stJngPIJoAHK0tnZ2dbWOpBBF/yNnvfqnkXPAAAwIjo7O7OLoQfbEB3tcQ7DLYbOlD7H4+8fLRj1e0Q3z75JFFV3dnb6zA9Qplg6rTi4hPSD36j2EsoVu+qOai8BxrjVq1e3ta0OYUIIfSHUDAz3h5B28AgAAFTI1q1bV69evXXr1hBClDUXlEolowB6ZUtLdpqcLyrWiL5eubKlYO1GzniUR9fU1KjdYHz6f664sNpLKNdfPPREtZfAYQTQpfX/XzdUewnlmnDNf6n2EmDsG8ig0yHUiJ4BAOCoWb16dVtbW35enKP8GHpxc1PB0udUKpn/s1Pran3yZzz7zZc/V+0llOvP7v15tZfAYVRwAAxNa2trW1v0obOvra3VmdcAAHB0RMXQ27d3FT91sPxi6JDXsBHNj348e1D6DDBsAmiAIWttbe3s7BQ9AwDA0dfZ2blmzZrvrFtXPIYupxg6lUplfZ2cWlcbCkXS7e1KnwGGTwVHaf1/91fVXkK5Jvxv36/2EgAAAOBoiIqh+/r6ildtDNbIEY1v6tgcBil9jsa3b+9S+gwhhN/975+v9hLKdebGR6q9BA4zsdoLGA0O9Vd7BQAAAMBhGhoaGhoaVq9evbi5uUgxdDxev6mjfiCGTuSn1VHp86aOjvx4euHChdJniEyYJEVkmFRwjHF79uw5+eSTly9fXnzak08+uWTJkjlz5px22mmXX3759u3by78KAAAA1RL14w2jGDqVTMXj9Yubm0Kh0ufFzc0LFy5UuwGj3a9+9avYgAcffLD45KrnY8WfYunSpbHD/ehHPxrxNVSCAHqMW7Vq1cSJE9va2orMueuuu5qammbNmrV+/frbb7994sSJjY2NDz/8cDlXAQAAoLoaGhqGUwzdnmhvT8Tj9UqfYQw7++yzn3766aeffnrKlCnFZ1Y9Hyv5FC+99NLNN9/8dJYlS5aM4AIqRwd0af1/e121l1CuCddvyP722Wef/eQnP/n3f//3l1122WA/smfPng996EM33HDDLbfckhm86aabNmzYsHPnzkOHDhW5OnXq1Eq8CgAAABieTDF0VO48mFQqWbC4oz2ROO64SaJnyPf/fuPKai+hXP/LHT/OH5w2bdpdd9111VVXFfyRqudjxRcwderU/fv3T506dcuWLQ0NDUf+dEeZALq0vv/z2movoVw1X78783U6nT733HOnTZv2i1/8osiPPP7448uWLXvzzTenT5+eGdy9e/eJJ5742GOPhRCKXL3ooosq8CIAAADgiKxevbqtra1IMXQIYWpdbbQbOpIpfZY+Q0H/tuJL1V5CuT70N/flDxYPoKuejxVfwEUXXfTss89+/OMf/+Mf/zh79uwjf7qjTAXHmHXPPfc899xz3/3ud1955ZUi/8ywc+fOk046KfsPdwhh1qxZM2bM2LVrV/GrlVo6AAAAHIGSxdCpVDIej2e+VfoM49yR52PpdHrjxo2NjY0nnnjiySeffPHFF2/ZsqXgc3V1dcVisd/97nflLyCE8NJLL82YMePkk0/+/e9/v3PnziN/yUeTAHpseuONN2666aZYLHbOOed8+MMfjupjCsbQ+/btmzZtWv74jBkzuru7i18d+XUDAADASCi/GFrpM3CE+di77767YMGCb33rW42Njffff//3v//9efPmXXTRRatWrRqRBYQQXnrppVgsduaZZ37wgx887bTT5syZM1pOIAwhTKz2AkaB9MH+ai9hyJYvX75///7vfOc7l156aSwWe/jhh2+66abdu3evWbMmf3IsFssfnDBhQjlXAQAA4JjV0NDQ0NCwdevWBQsWxOPxTDF0KpmKx+vDQOmzelIoaeLk46q9hMo6knxsxYoVr7/++osvvnjSSSdFI5dccsmVV1752c9+9mMf+9ill1565AvYsWPHO++8s2rVqksvvbSmpubBBx+87rrr3njjjeXLl5dz8+oSI5ahPz1qHiGEEP7lX/7l/vvv37Bhw9e//vW5c+fOmTPnhhtu+P73v79u3bp/+7d/q+pbCQAAAEdbQ0NDOp1euHDh1Lra9kQihBBtiJ5aV+vIQShTrGbCaHkc5Xemt7d348aN3/nOdzLpc+T888+/9tpr77jjjhF5lra2ts7OzuXLl5922mmnnHLKihUrvve9733rW9/64x//OCL3rygB9Bj0y1/+csaMGV/84hezB7/0pS9NmjSpq6srf35/f4Et3pnB4lcBAABgVMguhg4htLcn2trapM9AZNj52I4dOw4cOPD5z38+lufOO++Mup537dqVGTz//PNDCGeddVb07aRJk8pZwPz58z/96U9nX7ruuuv6+voKZn3HGhUcY9Dvf//7U045JWdwwoQJc+bMee2113LGp0+fvmfPnvyb7Nu3b+bMmT09PUWujshqAQAA4OjIbuTo7OxsaGio9oqAY8KR5GMf+MAHQggPPPDAhz/84cHuP2PGjIceeij6+re//W1bW9ttt90WxXdR80bxBbzwwguvv/764sWLsy9NmjRpzpw5r776arkvsnoE0KWNug7os84665VXXnn33XePP/74zOD+/ftfffXVP/uzP8uZfOqpp77xxhtvvfXWCSeckBncvXv33r17586de+DAgSJXK/1CAAAAYMRFjRzVXgWMMjWTjy89adQ6knxs7ty5s2fP3rVr11VXXZVz2x/84Adz5swJIUyePPnyyy+PBru6utra2pYsWXLmmWeWuYDnn3/+a1/72u7duydPnpy5unfv3p07d5599tkj+k5UhAqOMlS92XmIHdCLFi2aPHnyLbfckv0iEonErFmz4vF4CKG7u3vLli379+8PITQ2NtbW1t52223Zk++8885p06add955xa9W9m0HAAAA4NhQ9WbnEe+AHsF8bM2aNa2trS+++GL2hJ/+9KfXX399tD+6pOJP8bnPfa62tratrS376re//e3Zs2fn9HIcm+yAHoNOPvnk73//+1dfffWrr74anYz58MMPP/DAA3//938f9Wa88sorixYtevnll88444y6urr77rvviiuueO2115YuXRpC6Ojo2Lhx4/r16+vq6kIIxa8CAAAAwKgzgvnYtddeu3379nPOOef666+/4IIL0un0o48++sADD9xxxx1lBsTFF1BXV3fPPfdcdtllf/jDH6644or+/v7777//sccee+SRR6ZNm1bB92iECKDHpiuvvPJP//RPV69e/dWvfrW/v/8Tn/jEP/3TP33iE58oOHnZsmWbNm3asGHDN77xje7u7vnz5//sZz9btmxZOVcBAAAAYLQ7wnzs3nvvvfjii+++++777ruvpqZm/vz5XV1dn/zkJ/Of6CMf+ciTTz45b968IS1g6dKl27ZtW7NmzdVXX33cccd96lOf+vWvf/3Rj360Mm/GCIupPSrp4KovVXsJ5Tpu7X3VXgIAAAAAY82bf/vNai+hXCde/91qL4HD2AFdhn4ZPQAAAADjV/ndypDDHx0AAAAAACpCAA0AAAAAQEWo4Cit/4AKDgAAAADGr0m1k6u9BEYrO6ABAAAAAKgIATQAAAAAABUhgAYAAAAAoCJ0QJfW/261VwAAAAAA1TOhtrbaS2C0sgMaAAAAAICKEEADAAAAAFARKjhKS/dXewUAAAAAUEUTaqq9AkYrAXRp/b2xai8BAAAAAKpmwnGTq70ERisVHAAAAAAAVIQAGgAAAACAilDBUZoOaAAAAADGNR3QDJcAurS+QzqgAQAAABi/YsfrgGaYVHAAAAAAAFARAmgAAAAAACpCBUdp6T4xPQAAAADjV2zicdVeAqOVALq0fh3QAAAAAIxjsYmTqr0ERit7ewEAAAAAqAgBNAAAAAAAFaGCo7S+fhUcAAAAAIxfOqAZNgF0af19AmgAAAAAxrFJOqAZJhUcAAAAAABUhAAaAAAAAICKUMFR2qFDNdVeAgAAAABUTey446u9BEYrAXRp6bQOaAAAAADGsQk2aDJMKjgAAAAAAKgIATQAAAAAABWhgqO0Q31iegAAAADGr9hxk6u9BEYrAXRpOqABAAAAGNcm2KDJMPmjAwAAAABARQigAQAAAACoCBUcpfXqgAYAAABgHEvXHFftJTBaCaBL0wENAAAAwLgWs0GTYfJHBwAAAACAihBAAwAAAABQESo4SjvYV1PtJQAAAABA1aQnHl/tJTBa2QENAAAAAEBFCKABAAAAAKgIATQAAAAAABWhA7o0HdAAAAAAjGfpSZOrvQRGKzugAQAAAACoCAE0AAAAAAAVoYKjtP50tVcAAAAAAFUUs42VYRJAl9bb7z8wAAAAAMaxmuOqvQJGK9HquPAf/sN/iMViv/zlLweb8OSTTy5ZsmTOnDmnnXba5Zdfvn379vKvAgAAAMAxaEihlnysQgTQY9+mTZsefPDBIhPuuuuupqamWbNmrV+//vbbb584cWJjY+PDDz9czlUAAAAAOAYNKdSSj1VOLJ3WcFxC8vwV1V5Cueq3/U3OyNtvv3322Wc3NTX93d/93datWy+44IKcCXv27PnQhz50ww033HLLLZnBm266acOGDTt37jx06FCRq1OnTq3cawEAAADgGHHwrf9Z7SWU67gTTgqlIq+cUEs+VlEC6NKeOu+mai+hXI3b1+WM/NVf/VVHR0cqlTrllFMKBtCPP/74smXL3nzzzenTp2cGd+/efeKJJz722GMhhCJXL7roooq9FAAAAACOFe++/Va1l1Cu46edEEpFXjmhlnysohxCOJZt27btrrvu2rx5c11d3WBzdu7cedJJJ2X/9xNCmDVr1owZM3bt2nXw4MEiVyu1bgAAAAA4AsUjryFNlo8dIR3QY9aBAwe+8pWvXH311YsWLSoybd++fdOmTcsfnzFjRnd3d/GrI7ZWAAAAABg5Qwq15GMVZQd0aYfSsWovYThWr169d+/e733veyVnxmIFXuCECRPKuQoAAADAmJeeMPpSxCGFWvKxyhl9f3SOvr7+0RdAP/fcc9/73vd+/OMfz5o1q9prAQAAAGCUG4UBNMcIOf0YdOjQoa985SuLFy++9NJLy5nf399fZLD4VQAAAAA4Bg0p1JKPVY5/uxiDvvvd77788ss///nPy5k8ffr0PXv25I/v27dv5syZPT09Ra4e0SoBAAAAoDKKR15DmiwfO0IC6NL6RlsH9COPPPL222/PmzcvZ7yhoWHt2rUtLS3Zg6eeeuobb7zx1ltvnXDCCZnB3bt37927d+7cuQcOHChytaKvAgAAAIBjRF+62isYouKR15Amy8eOkAqO0vrSsdHyiBZ87733Pn24X/ziFyGE//pf/+s111wTQuju7t6yZcv+/ftDCI2NjbW1tbfddlv2S77zzjunTZt23nnnFb96dN5/AAAAAKqrLz1qHpGSoZZ87KixA3oM+shHPpIzsnfv3hDCn//5n59yyikhhFdeeWXRokUvv/zyGWecUVdXd999911xxRWvvfba0qVLQwgdHR0bN25cv359XV1dCKH4VQAAAAA41pSMvORjR40AmrBs2bJNmzZt2LDhG9/4Rnd39/z583/2s58tW7asnKsAAAAAcAwaUqglH6ucWDo92hpcjrpHPvGtai+hXJ//51uqvQQAAAAAxpq33u6p9hLKdcK02movgcPYAV3aIRE9AAAAAONYnz2sDJdDCAEAAAAAqAgBNAAAAAAAFaGCo7TetJgeAAAAgPGrt18FB8MkgC5NxQ0AAAAA45l8jGGztxcAAAAAgIoQQAMAAAAAUBEqOErrTceqvQQAAAAAqJpeHRwMlwC6NB3rAAAAAIxn8meGTQUHAAAAAAAVIYAGAAAAAKAiVHCU9m6/DmgAAAAAxq+DfTo4GCY7oAEAAAAAqAgBNAAAAAAAFSGABgAAAACgInRAl3awv9orAAAAAIDq0QHNsNkBDQAAAABARQigAQAAAACoCBUcpfkFAwAAAADGs/60hIxhEkCX1tsfq/YSAAAAAKBqenVAM1wqOAAAAAAAqAgBNAAAAAAAFaGCo7R+v2EAAAAAwDimA5phE0CX1ttf7RUAAAAAQPUcOCQgY5hUcAAAAAAAUBECaAAAAAAAKkIFR2l9Km4AAAAAGMd6HZLGcAmgSxNAAwAAADCe9fbpgGaYVHAAAAAAAFARAmgAAAAAACpCBUdpKjgAAAAAGM90QDNsAujSBNAAAAAAjGe9AjKGSwUHAAAAAAAVIYAGAAAAAKAiVHCU1tdf7RUAAAAAQPX0CsgYLgF0aYdU3AAAAAAwjjmEkGFTwQEAAAAAQEUIoAEAAAAAqAgVHKX5FQMAAAAAxrN3D+mAZpgE0KWJnwEAAAAYz/rSEjKGSQUHAAAAAAAVIYAGAAAAAKAiVHCUpgMaAAAAgPFMBzTDJoAuTcUNAAAAAOOZDmiGTQUHAAAAAAAVIYAGAAAAAKAiVHCUdlAHNAAAAADjWPeBQ9VeAqOVHdAAAAAAAFSEAHrM+sUvfrFgwYKZM2fOmzfvsssue+WVV4pMfvLJJ5csWTJnzpzTTjvt8ssv3759e/lXAQAAAGBU+NWvfhUb8OCDDxafXPXErPhTLF26NHa4H/3oRyO+hiMngB6bHn744ebm5rlz595zzz2333777t27/+Iv/mLHjh0FJ991111NTU2zZs1av3797bffPnHixMbGxocffricqwAAAAAwWpx99tlPP/30008/PWXKlOIzq56YlXyKl1566eabb346y5IlS0ZwASMllk4rOC7hig98u9pLKNdD/9+aEEJvb+/pp5++ZMmSDRs2ROPpdHrRokWxWOzJJ5/M+ZE9e/Z86EMfuuGGG2655ZbM4E033bRhw4adO3ceOnSoyNWpU6dW/jUBAAAAUGU3/WPhfY3HoHVL/rycadOmTbvrrruuuuqqglernpgVX8DUqVP3798/derULVu2NDQ0HPnTVZQd0GPQM88889prr61YsSIzEovFrr322q6urr6+vpzJ27Zte+edd775zW9mD65YsWLPnj1bt24tfrVirwAAAAAAqqbqiVnJp/jNb37T399/1llnjcjTVZQAegyaNGnSX/7lX86bNy97cPLkyQcOHHj77bdzJu/cufOkk06aPn169uCsWbNmzJixa9eu4lcrtH4AAAAAqKIjT8zS6fTGjRsbGxtPPPHEk08++eKLL96yZUvB5+rq6orFYr/73e/KX0AI4aWXXpoxY8bJJ5/8+9//fufOnUf+kitnYrUXMAr0j7aSko9//OOPPvpozuBjjz12+umnz5w5M2d8375906ZNy7/JjBkzuru7Dxw4UOTqCK0XAAAAgGNa36gLyI7MESZm7777blNT029+85sbbrjhxhtv7Onpeeqppy666KLly5evXbv2yBcQQnjppZdisdiZZ575P/7H/wghzJ49e926dVdfffWQXubRIYAurTfdX+0lHKmnnnrq3nvv/eEPf1jwaiwWyx+cMGFCOVcBAAAAGPP2HzxU7SUcbUeSmK1YseL1119/8cUXTzrppGjkkksuufLKKz/72c9+7GMfu/TSS498ATt27HjnnXdWrVp16aWX1tTUPPjgg9ddd90bb7yxfPnycm5+NAmgx75nnnnmC1/4wjXXXHPNNddUey0AAAAAMJb19vZu3Ljxxz/+cSZ9jpx//vnXXnvtHXfcUWYAXVxbW9tf//Vff/rTn46+XbFiRW1t7YoVK6688so5c+Yc+f1HkAB6jHvmmWcWLVrU2Nh49913Dzanv7/AFu/MYPGrAAAAAHCs2bdv31tvvZX5dtasWQUbLYoYdmK2Y8eOAwcOfP7zny9421mzZoUQdu3aNXv27OzxzHGCEydO7O3tLbmA+fPn51y67rrrli9f3tXVdckllwz6qqpBAF1af3q0dtw8++yzn/nMZxobGx966KGampqCc6ZPn75nz5788X379s2cObOnp6fI1ZFcKwAAAADHqlHXAX333XffeOONmW/Xr1//9a9/vfwfP5LE7AMf+EAI4YEHHvjwhz882P1nzJjx0EMPRV//9re/bWtru+2220455ZQw0LxRfAEvvPDC66+/vnjx4uxLkyZNmjNnzquvvlruizxaBNClHRqdAfRzzz23aNGiBQsW/OQnP5k4cdD/Q5966qlvvPHGW2+9dcIJJ2QGd+/evXfv3rlz5x44cKDI1cq+AAAAAACODT0H+6q9hKFZvnz5kbQhH0liNnfu3NmzZ+/ateuqq67Kue0PfvCDqB9j8uTJl19+eTTY1dXV1ta2ZMmSM888s8wFPP/881/72td27949efLkzNW9e/fu3Lnz7LPPHvarrhBHyY1Nzz//fNS8UTB97u7u3rJly/79+0MIjY2NtbW1t912W/aEO++8c9q0aeedd17xq5V+FQAAAABwdIxgYrZmzZrW1tYXX3wxe8JPf/rT66+/PtofXVLxp/jc5z5XW1vb1taWffXb3/727NmzM63Qxw47oMegHTt2LFq0aN68eTfeeOMLL7yQfWn+/PmxWOyVV15ZtGjRyy+/fMYZZ9TV1d13331XXHHFa6+9tnTp0hBCR0fHxo0b169fX1dXF0IofhUAAAAAxoARTMyuvfba7du3n3POOddff/0FF1yQTqcfffTRBx544I477igzIC6+gLq6unvuueeyyy77wx/+cMUVV/T3999///2PPfbYI488MtSq66NAAF1afxhlFRypVOrNN9988803zz333JxLBw4cOP7443MGly1btmnTpg0bNnzjG9/o7u6eP3/+z372s2XLlpVzFQAAAIAxb9R1QB+5I0zM7r333osvvvjuu+++7777ampq5s+f39XV9clPfjL/iT7ykY88+eST8+bNG9ICli5dum3btjVr1lx99dXHHXfcpz71qV//+tcf/ehHK/NmHJFYenQWHB9Ni2auqPYSyvXknr+p9hIAAAAAGGu+cM+vqr2Ecv3sK5+q9hI4jA5oAAAAAAAqQgANAAAAAEBF6IAu7VDor/YSAAAAAKBqDh6SjzFMAujS+gTQAAAAAIxjAmiGTQUHAAAAAAAVIYAGAAAAAKAiVHCUdigcqvYSAAAAAKBq+lRwMFwC6NL6Ql+1lwAAAAAAVXOoTwDNMKngAAAAAACgIgTQAAAAAABUhAqO0g7FDlZ7CQAAAABQNb29KmoZJgF0af1Bxw0AAAAA41e6P13tJTBaqeAAAAAAAKAiBNAAAAAAAFSECo7SemPvVnsJAAAAAFA1h3pV1DJMAujSdEADAAAAMJ7pgGbYVHAAAAAAAFARAmgAAAAAACpCBUdpB8P+ai8BAAAAAKqm991D1V4Co5Ud0AAAAAAAVIQAGgAAAACAihBAAwAAAABQETqgSzuY7qn2EgAAAACgag7qgGa47IAGAAAAAKAiBNAAAAAAAFSECo7S0qG/2ksAAAAAgKpJ96ervQRGKwF0aYfSB6q9BAAAAAComkO9NmgyTCo4AAAAAACoCAE0AAAAAAAVoYKjtHTarxgAAAAAMH6l++VjDJMAurRD6XervQQAAAAAqJpDB3urvQRGKxUcAAAAAABUhAAaAAAAAICKUMFRmg5oAAAAAMazdH9ftZfAaCWALq2vXwc0AAAAAOPXoYP7q70ERisVHAAAAAAAVIQAGgAAAACAilDBUVp//6FqLwEAAAAAqqa/t7faS2C0EkCX1p8WQAMAAAAwfvUfOljtJTBaqeAAAAAAAKAiBNAAAAAAAFSECo7SVHAAAAAAMJ6p4GDYBNCl9aeVrAMAAAAwfgmgGTYVHAAAAAAAVIQAGgAAAACAilDBUVp/v18xAAAAAGD8OvTu/movgdFKAF1aOvRXewkAAAAAUDXp/r5qL4HRSgXHmPXkk08uWbJkzpw5p5122uWXX759+/ZhTx7SrQAAAADg2PSLX/xiwYIFM2fOnDdv3mWXXfbKK68UmVz1xKz4UyxdujR2uB/96EcjvoYjJ4Aem+66666mpqZZs2atX7/+9ttvnzhxYmNj48MPPzyMyUO6FQAAAAAcmx5++OHm5ua5c+fec889t99+++7du//iL/5ix44dBSdXPTEr+RQvvfTSzTff/HSWJUuWjOACRkosnU5Xew3HugkTplZ7CeXq7+8OIezZs+dDH/rQDTfccMstt2Qu3XTTTRs2bNi5c+fUqYe9nOKTDx06VP6tAAAAABiT6j79f1R7CeV6p2t9wfHe3t7TTz99yZIlGzZsiEbS6fSiRYtisdiTTz6ZM7nqiVnJfG///v1Tp07dsmVLQ0PDkT9dRQmgS5swobbaSyhXf39PCOHxxx9ftmzZm2++OX369Myl3bt3n3jiiY899thFF12U/SPFJ4cQyr8VAAAAAGNS7bk3VHsJ5er5p/9ScPzpp58+99xzX3755TPOOCMz+NBDD335y1/u7u6uqanJnlz1xKxkvvfss89+/OMf/+Mf/zh79uwjf7qKUsExBu3cufOkk07K/tMZQpg1a9aMGTN27do1pMlDuhUAAAAAHJsmTZr0l3/5l/PmzcsenDx58oEDB95+++2cyUeemKXT6Y0bNzY2Np544oknn3zyxRdfvGXLloIL6+rqisViv/vd78pfQAjhpZdemjFjxsknn/z73/9+586dQ3gjjjoB9Bi0b9++adOm5Y/PmDGju7t7SJOHdCsAAAAAODZ9/OMff/TRR4877rjswccee+z000+fOXNmzuQjTMzefffdBQsWfOtb32psbLz//vu///3vz5s376KLLlq1alWZqy35FC+99FIsFjvzzDM/+MEPnnbaaXPmzDk2TyAMIUys9gJGgXT6YLWXMGSxWCx/cMKEwv/eUHzykG4FAAAAwNhz6MA71V7CyHvqqafuvffeH/7whwWvHklitmLFitdff/3FF1886aSTopFLLrnkyiuv/OxnP/uxj33s0ksvLWd5xZ9ix44d77zzzqpVqy699NKampoHH3zwuuuue+ONN5YvX17OzY8mATQAAAAAML4888wzX/jCF6655pprrrlmZO/c29u7cePGH//4x5n0OXL++edfe+21d9xxR5kBdHFtbW1//dd//elPfzr6dsWKFbW1tStWrLjyyivnzJlz5PcfQQLosam/v7/MwZKTh3QrAAAAAKi6ffv2vfXWW5lvZ82ald1o8cwzzyxatKixsfHuu+8e7A7DTsx27Nhx4MCBz3/+8wVvO2vWrBDCrl27cg4PPOuss6IvJk6c2NvbW3IB8+fPz7l03XXXLV++vKur65JLLhnsRVWFAHoMmj59+p49e/LH9+3bl99oU3xyT09P+bcCAAAAgGPB3XfffeONN2a+Xb9+/de//vXo62efffYzn/lMY2PjQw89VFNTU/DHjyQx+8AHPhBCeOCBBz784Q8PtrwZM2Y89NBD0de//e1v29rabrvttlNOOSUMNG8UX8ALL7zw+uuvL168OPvSpEmT5syZ8+qrrw72pNUigC4tnT5U7SUMzamnnvrGG2+89dZbJ5xwQmZw9+7de/funTt37pAmHzhwoPxbAQAAADAmHXyucFHyMWv58uUF25Cfe+65RYsWLViw4Cc/+cnEiYNGo0eSmM2dO3f27Nm7du266qqrcm77gx/8IOrHmDx58uWXXx4NdnV1tbW1LVmy5MwzzyxzAc8///zXvva13bt3T548OXN17969O3fuPPvss8t8i44aR8mNQY2NjbW1tbfddlv24J133jlt2rTzzjsvhNDd3b1ly5b9+/eXnFzyVgAAAAAwKjz//PNR80bB9HkEE7M1a9a0tra++OKL2RN++tOfXn/99dH+6JKKP8XnPve52tratra27Kvf/va3Z8+enWmFPnbYAT0G1dXV3XfffVdcccVrr722dOnSEEJHR8fGjRvXr19fV1cXQnjllVcWLVr08ssvn3HGGSUnF78KAAAAAMe+HTt2LFq0aN68eTfeeOMLL7yQfWn+/PmxWGwEE7Nrr712+/bt55xzzvXXX3/BBRek0+lHH330gQceuOOOO8oMiIsvoK6u7p577rnsssv+8Ic/XHHFFf39/ffff/9jjz32yCOPZFddHyNi6XS62mugIp566qkNGzb8t//237q7u+fPn//Vr3512bJl0aUXXnjh3//7fx/951RycsmrAAAAAHCM27Bhw1e/+tWClw4cOHD88cePeGL2yCOP3H333c8++2xNTc38+fNbW1s/+clP5j/73r17//mf//ncc8+tra3NuVT8KX7961+vWbNm+/btxx133Kc+9albbrnlox/96PDenIoSQAMAAAAAUBE6oAEAAAAAqAgBNAAAAAAAFSGABgAAAACgIgTQAAAAAABUhAAaAAAAAICKEEADAAAAAFARAmgAAAAAACpCAA0AAAAAQEUIoAEAAAAAqAgBNAAAAAAAFSGABgAAAACgIgTQAAAAAABUhAAaAAAAAICKEEADAAAAAFARAmgAAAAAACpCAA0AAAAAQEUIoAEAAAAAqAgBNAAAAAAAFSGABgAAAACgIgTQAAAAAABUhAAaAAAAAICKEEADAAAAAFARAmgAAAAAACpCAA0AAAAAQEUIoAEAAAAAqAgBNAAAAAAAFSGABgAAAACgIgTQAAAAAABUhAAaAAAAAICKEEADAAAAAFARAmgAAAAAACpCAA0AAAAAQEUIoAEAAAAAqAgBNAAAAAAAFSGABgAAAACgIgTQAAAAAABUhAAaAAAAAICKEEADAAAAAFARAmgAAAAAACpCAA0AAAAAQEUIoAEAAAAAqAgBNAAAAAAAFSGABgAAAACgIgTQAAAAAABUhAAaAAAAAICKEEADAAAAAFARAmgAAAAAACpCAA0AAAAAQEUIoAEAAAAAqAgBNAAAAAAAFSGABgAAAACgIgTQAAAAAABUhAAaAAAAAICK+P8BhC2wGINMyJ4AAAAASUVORK5CYII=\n",
"text/plain": [
"<PIL.Image.Image image mode=RGB size=1920x1080 at 0x7FCB605D1700>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[(-7660.16298698021, -12605.978568447243, 12085.265135261985),\n",
" (5610.073566725802, 1485.4731686040536, -552.5943624341437),\n",
" (0.38039384351927424, 0.39270852688016344, 0.8373055217351943)]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plotter.clear()\n",
"plotter.add_mesh(grid_l, show_edges=True, scalars='T',\n",
" clim=[0, 8], cmap='magma',\n",
" scalar_bar_args=T_sargs, show_scalar_bar=True)\n",
"plotter.add_mesh(grid_r, show_edges=True, scalars='eddy_forc', \n",
" clim=[-2e5, 2e5], cmap='RdBu_r',\n",
" scalar_bar_args=eddy_sargs, show_scalar_bar=True)\n",
"plotter.camera_position = cpos\n",
"plotter.show(auto_close=False)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "970f42a6",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"IMAGEIO FFMPEG_WRITER WARNING: input image is not divisible by macro_block_size=16, resizing from (1920, 1080) to (1920, 1088) to ensure video compatibility with most codecs and players. To prevent resizing, make your input image divisible by the macro_block_size or set the macro_block_size to 1 (risking incompatibility).\n"
]
}
],
"source": [
"# Run through each frame\n",
"#plotter.write_frame() # write initial data\n",
"\n",
"days = ds.time.values.astype('timedelta64[D]').astype('int')\n",
"# Update scalars on each frame\n",
"for i in range(0, len(ds.time)):\n",
" update_data(i)\n",
" plotter.add_text(\"Day: {:d}\".format(days[i] - days[0]), name='time-label', font_size=10)\n",
" plotter.write_frame() # Write this frame\n",
"\n",
"# Be sure to close the plotter when finished\n",
"plotter.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3ba3d66",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment