Skip to content

Instantly share code, notes, and snippets.

View rafalpronko's full-sized avatar

Rafal Pronko rafalpronko

View GitHub Profile
modelpy = NeuralNet(10)
criterion = nn.CrossEntropyLoss()
optim = torch.optim.Adam(modelpy.parameters())
modelpy
modeltf = keras.Sequential([
keras.layers.Conv2D(input_shape=(28,28,1), filters=16, kernel_size=5, strides=1, padding="same", activation=tf.nn.relu),
keras.layers.BatchNormalization(),
keras.layers.MaxPooling2D(pool_size=2, strides=2),
keras.layers.Conv2D(32, kernel_size=5, strides=1, padding="same", activation=tf.nn.relu),
keras.layers.BatchNormalization(),
keras.layers.MaxPooling2D(pool_size=2, strides=2),
keras.layers.Flatten(),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
# for Pytorch
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# for tensorflow
import tensorflow as tf
from tensorflow import keras