Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Interactively playing with MNIST!\n",
"## https://ricardodeazambuja.com/\n",
"\n",
"I really like to be the person that tries to automate things, even when they don't pay off in the very short term... that's because it's fun and you always learn something new. So I'm republishing the image below straight from the place it seems to be [it's first appearance](https://i.imgur.com/Q8kV8.png):\n",
"\n",
"<img src=\"https://i.imgur.com/Q8kV8.png\" width=\"600\"/>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Keras has some famous datasets that you can import very easily. Below I'm showing a list with all names:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['boston_housing',\n",
" 'cifar10',\n",
" 'cifar100',\n",
" 'fashion_mnist',\n",
" 'imdb',\n",
" 'mnist',\n",
" 'reuters']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[i for i in dir(tf.keras.datasets) if '__' not in i]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now I will list the useful methods available for each dataset:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[[('boston_housing', 'load_data')],\n",
" [('cifar10', 'load_data')],\n",
" [('cifar100', 'load_data')],\n",
" [('fashion_mnist', 'load_data')],\n",
" [('imdb', 'get_word_index'), ('imdb', 'load_data')],\n",
" [('mnist', 'load_data')],\n",
" [('reuters', 'get_word_index'), ('reuters', 'load_data')]]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[[(i,j) for j in dir(getattr(tf.keras.datasets,i)) if '__' not in j] \n",
" for i in dir(tf.keras.datasets) if '__' not in i]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The load_data method is quite obvious, but I had to check what [get_word_index](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/imdb/get_word_index) was about.\n",
"\n",
"I'm interested in the MNIST numbers, so let's load it."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
"11493376/11490434 [==============================] - 1s 0us/step\n"
]
}
],
"source": [
"mnist = tf.keras.datasets.mnist\n",
"\n",
"# download the dataset\n",
"# mnist.load_data already splits train/test for us\n",
"(x_train, y_train),(x_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0, 255, dtype('uint8'))"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# verify the range and type of the original data\n",
"x_train.min(),x_train.max(), x_train.dtype"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.0, 1.0, dtype('float64'))"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x_train, x_test = x_train / 255.0, x_test / 255.0\n",
"\n",
"# now rescaled to be from 0.0 to 1.0 (float64)\n",
"x_train.min(),x_train.max(), x_train.dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, I will reuse the very first example from [Tensorflow tutorials](https://www.tensorflow.org/tutorials) (Feb/2019). This example is interesting because it's NOT using convolutional layers and that will be useful to see the differences later on.\n",
"\n",
"The example is simple, but not totally super duper old school. It uses as activation the [RELU](https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions) and a [Dropout](https://en.wikipedia.org/wiki/Dropout_(neural_networks)) layer... I didn't know it was patented by Google in 2012.\n",
"\n",
"This model is also smarter than old ones in respect to its input because it uses a `Flatten` layer as its first, so you can use your 28x28 values (pixels) matrix and it is transformed into an array with 784 values."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"784"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Size of the flattened input:\n",
"x_train.shape[1]*x_train.shape[2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When we need to know more about a method, object, etc (e.g tf.keras.layers.Flatten), you can move the cursor over the word and press ```Shift+Tab``` or write: "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"tf.keras.layers.Flatten?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"by the way, ?? will show you the source code instead of docstring ;)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"or the python interpreter way that prints it directly instead of creating the extra window:"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"help(tf.keras.layers.Flatten)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now it's time to create the model. I will keep the sequential method, but it's also possible to use .add (e.g. model.add()) instead of passing all layers as a list:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"model = tf.keras.models.Sequential([\n",
" tf.keras.layers.Flatten(input_shape=(28, 28), name='Flatten1'),\n",
" tf.keras.layers.Dense(512, activation=tf.nn.relu, name='Dense1'),\n",
" tf.keras.layers.Dropout(0.2, name='Dropout1'),\n",
" tf.keras.layers.Dense(10, activation=tf.nn.softmax, name='Dense2')\n",
"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"https://github.com/tensorflow/tensorflow/blob/r1.11/tensorflow/python/keras/backend.py#L3546"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And compile the beast!"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"model.compile(optimizer='adam',\n",
" loss='sparse_categorical_crossentropy',\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((60000, 28, 28), (60000,))"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x_train.shape,y_train.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's train it:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/5\n",
"60000/60000 [==============================] - 3s 53us/sample - loss: 0.2202 - acc: 0.9352\n",
"Epoch 2/5\n",
"60000/60000 [==============================] - 3s 46us/sample - loss: 0.0971 - acc: 0.9706\n",
"Epoch 3/5\n",
"60000/60000 [==============================] - 3s 47us/sample - loss: 0.0700 - acc: 0.9777\n",
"Epoch 4/5\n",
"60000/60000 [==============================] - 3s 48us/sample - loss: 0.0549 - acc: 0.9829\n",
"Epoch 5/5\n",
"60000/60000 [==============================] - 3s 46us/sample - loss: 0.0438 - acc: 0.9853\n"
]
},
{
"data": {
"text/plain": [
"<tensorflow.python.keras.callbacks.History at 0x7f30b5091438>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(x_train, y_train, epochs=5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And, last but not least, verify how it works on the never seen before test data:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10000/10000 [==============================] - 0s 28us/sample - loss: 0.0650 - acc: 0.9807\n"
]
},
{
"data": {
"text/plain": [
"[0.06496644636945566, 0.9807]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.evaluate(x_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(10000, 28, 28)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x_test.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is a function that will run the prediction and, after that, show the results using matplotlib:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"\n",
"def predict_from_image(input_img):\n",
" get_ipython().magic('matplotlib inline')\n",
" \n",
" prediction = model.predict(input_img.reshape((1,28,28)))[0]\n",
"\n",
" fig = plt.figure(figsize=(10,10))\n",
" ax1 = fig.add_subplot(1,2,1)\n",
" ax1.imshow(input_img, cmap='gray')\n",
" ax1.set_aspect(1.0)\n",
"\n",
" ax2 = fig.add_subplot(1,2,2)\n",
" _ = ax2.bar(range(10), prediction*10, alpha=0.8, color='b')\n",
" ax2.set_xticks(np.arange(10))\n",
" ax2.set_xticklabels(range(10))\n",
" ax2.set_title(\"Prediction Probability\")\n",
"\n",
" ax2.set_yticks(range(0, 11))\n",
" ax2.set_yticklabels([str(ri)+'%' for ri in range(0, 110, 10)])\n",
" ax2.set_aspect(1.0)\n",
"\n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFjCAYAAAAgmP3GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu03WV97/v3h4tI0G5ugR1ARDGHDYcjASMbq+AFbAnlZhULCnK2aBxnqAXFgbSVikUK7oKArZcdBA0WuQQvoDteslMV7RFqCCggeqAUAZOSyKUiuDGQ7/lj/pb8CCvJTLLmbeX9GiNjzvnM728+z29NiZ886/n9nlQVkiRJkjo2GfQAJEmSpGFiQJYkSZJaDMiSJElSiwFZkiRJajEgS5IkSS0GZEmSJKnFgCxJ0iSWZLcklWSz5vU3kpy4Hp+za5LfJNl04kc5cZJ8PslH1/PYM5P84xrevz3Ja1atHZWfjbpnQJYkacCS3JPkt03IeiDJ55I8rxd9VdWsqprb5ZgOaR13b1U9r6qemugxNQH+seb8f5nk48MYNqvq/6yq747T/oyfTZLvJnlH3weoCWNAliRpOBxRVc8D9gNeDnxo1YJ0TNb/796nOf+DgbcA71y1YGwWXOq1yfofmSRJI6mqfgl8A9gbfj8beXaSfwYeB16c5D8luSTJ0mbG9aNjM65JNk1yXpJfJbkb+JP25686u5nknUnuSPJokp8m2S/JF4Bdga81s7qnjbNUY6ck1yV5KMldSd7Z+swzk1yd5LLmc29PMrPL8/8Z8P3W+d+T5INJfgI8lmSzJHs25/FI89lHrvIx2ydZ0PT9vSQvbI3toiT3Jfl1kpuSHLjKsc9NclVz7OIk+7SOfcaseqv99z+bJGcDBwL/0Pzs/iHJJ5Ocv8oxX0tySjc/E/WfAVmSpCGS5AXAYcDNreYTgNnA84FfAHOBJ4GXAPsCfwSMhd53Aoc37TOBN62hr2OAM4G3AX8AHAk8WFUnAPfSzGpX1X8f5/ArgPuBnZo+/jbJwa33jwSuBLYGrgP+ocvz34tOwGyf/3F0gv7WQICvAd8GdgDeC1yeZI9W/VuBs4DtgVuAy1vv/QiYAWwLfBGYl+S5rfePAua13v9qks27GTtAVf0VnYD/nuZn9x4639dxY7P/SbanM1N+Rbefq/4yIEuSNBy+muQR4AfA94C/bb33+aq6vaqepBPcZgGnVNVjVbUMuAA4tql9M3BhVd1XVQ8B56yhz3cA/72qflQdd1XVL9Y20CbEvwr4YFX976q6BfgsnSA/5gdVNb9Zl/sFYJ9xPqptcZKH6YTfzwKfa733ieZ8fgscADwPOLeqfldV/wR8nU6IHvM/q+r6qnoC+CvgFc2Yqap/rKoHq+rJqjof2AJoh+ubquqaqloBfBx4btPnequqfwH+g04ohs539d2qemBDPle941oeSZKGw9FV9b9W8959recvBDYHliYZa9ukVbPTKvVrCrwvAP513YfKTsBDVfXoKv20l1H8e+v543SWLmzWhPzx7FdVd63mvfb57ATcV1UrV+l75/Hqq+o3SR4aOy7JqXT+YbATUHRmzrdfzbErk4zNkm+oucDxwILm8aIJ+Ez1iAFZkqThV63n9wFPANuvJmwupRN8x+y6hs+9D9i9iz5XtQTYNsnzWyF5V+CXazhmQ7THsgR4QZJNWiF5V+D/a9X8/vybu4FsCyxp1ht/kM5M7u1NAH6YzrKN8Y7dBNil6XN9xzvmH4HbmjXNewJfXcfPVB+5xEKSpBFSVUvprL89P8kfJNkkye5JXt2UXA38eZJdkmwDnL6Gj/ss8IEkL2vukPGS1gVtDwAvXs0Y7gP+X+CcJM9N8lLgJJ651rdXbgQeA05Lsnk69yU+gs565zGHJXlVkufQWYt8YzPm59NZu70c2CzJX9OZQW57WZI/bS5GPIXOP0ZuWMcxPutnV1X301n//AXgS81yEQ0pA7IkSaPnbcBzgJ8CDwPXANOa9y4GvgX8GFgMfHl1H1JV84Cz6VyM9iidWc1tm7fPAT7U3CniA+McfhywG53Z1a8AH66qBRt0Vl2oqt/RuQBwFvAr4FPA25q7X4z5IvBh4CHgZXQu2oPOz+UbdGabfwH8b565fAPgWuDP6PxcTwD+tFmPvC4uAt6U5OEkn2i1zwX+LzohWUMsVWv6DYokSZImQpKD6Cy12G2VNdQaMn1dg5zENC5pMvtVVU0d9CAkDZ/mVnEnA581HA8/l1hI0sRZ6+2xJG18kuwJPEJnGcyFAx6OurBBATnJoUl+3uygs6aLACRJkjZKVXVHVW1VVX9YVb8e9Hi0dusdkJstLT9JZ5H8XnR2iNlrogYmSZIkDcKGzCDvD9xVVXc3V5ReSWd7RkmSJGlkbchFejvzzFuj3A/81w0bjiRpkLbffvvabbfdBj0MSeqJm266qauLqTckIGectmfdpSLJbGD2BvQjSeqT3XbbjUWLFg16GJLUE0m6uph6QwLy/TxzK8txt2KsqjnAnGZQ3uZNkiRJQ21D1iD/CJie5EXNVo7HAtdNzLAkSZKkwVjvGeSqejLJe+hs27gpcGlV3T5hI5MkSZIGYIN20quq+cD8CRqLJEmSNHDupCdJkiS1GJAlSZKkFgOyJA2BJJcmWZbktlbbtkkWJLmzedymaU+STyS5K8lPkuzXtO+R5KYkP07yiqZtsyT/K8mUwZyZJI0eA7IkDYfPA4eu0nY6sLCqpgMLm9cAs4DpzZ/ZwKeb9nc1NW8CPtC0/T/AF6rq8Z6NXJImGQOyJA2BqroeeGiV5qOAuc3zucDRrfbLquMGYOsk04AVwJbAFGBFkq2BI4DLej1+SZpMNuguFpKkntqxqpYCVNXSJDs07TsD97Xq7m/aPkknDG9BZzb5r4Gzq8pNmiRpHTiDLEmjJ+O0VVXdW1WvqapXAI8DOwE/S/KFJFcl+T/G/bBkdpJFSRYtX768l+OWpJFgQJak4fVAs3SC5nFZ034/8IJW3S7AklWOPRs4A/hz4HLgw82fZ6mqOVU1s6pmTp06dQKHL0mjyYAsScPrOuDE5vmJwLWt9rc1d7M4APiPsaUYAEleDfyyqu6ksx55JfBU81yStBauQZakIZDkCuA1wPZJ7qcz23sucHWSk4B7gWOa8vnAYcBddJZS/LfW5wT4EPDmpmkOnRnkzejc0UJSy8yZvfvsRYt699nqLQOyJA2BqjpuNW8dPE5tAe9ezecU8PrW6zuA/SZijJK0sXCJhSRJktRiQJYkSZJaDMiSJElSiwFZkiRJajEgS5IkSS0GZEmSJKnFgCxJkiS1GJAlSZKkFgOyJEmS1GJAliRJkloMyJIkSVKLAVmSJElq2WzQA5BmzJjRde1ZZ53Vde1hhx22TuN4/PHHu6599atf3XXt4sWL12kckiRpsJxBliRJkloMyJIkSVKLAVmSJElqMSBLkiRJLQZkSZIkqcWALEmSJLUYkCVJkqQWA7IkSZLUYkCWpCGX5OQktyW5PckpTdu2SRYkubN53KZpf2NT9/0k2zVtuye5cpDnIEmjxIAsSUMsyd7AO4H9gX2Aw5NMB04HFlbVdGBh8xrgVOAA4DLgLU3bR4Ez+jluSRplbjWtgTv33HO7rj3kkEO6rq2qdRrHY4891nXt+973vq5rTzjhhHUah7SKPYEbqupxgCTfA94AHAW8pqmZC3wX+CCwEtgCmAI8keRAYGlV3dnfYUvS6DIgS9Jwuw04u1ku8VvgMGARsGNVLQWoqqVJdmjqPwJ8C1gCHA9cDRy7pg6SzAZmA+y66669OAdJGikusZCkIVZVdwAfAxYA3wR+DDy5hvoFVfWyqjoCOBqYD+yR5JokFyeZMs4xc6pqZlXNnDp1am9ORJJGiAFZkoZcVV1SVftV1UHAQ8CdwANJpgE0j8vaxzRB+ETgU8A5wNuBm4C39nPskjSKDMiSNOTGlk8k2RX4U+AK4Do6AZjm8dpVDjsNuKiqVgBbAkVnffKzZpAlSc/kGmRJGn5fatYgrwDeXVUPJzkXuDrJScC9wDFjxUl2AmZW1ZlN0/nADcAjdJZdSJLWwIAsSUOuqg4cp+1B4ODV1C8BDm+9ngfM69kAJWmScYmFJEmS1GJAliRJkloMyJIkSVKLAVmSJElq8SI99cRrX/varmv322+/nozhvPPOW6f6Sy+9tOvabbfddl2HI0mSRsQGBeQk9wCPAk8BT1bVzIkYlCRJkjQoEzGD/Nqq+tUEfI4kSZI0cK5BliRJklo2NCAX8O0kNyWZPREDkiRJkgZpQ5dYvLKqliTZAViQ5GdVdX27oAnOhmdJkiSNhA2aQW62M6WqlgFfAfYfp2ZOVc30Aj5JkiSNgvUOyEm2SvL8sefAHwG3TdTAJEmSpEHYkCUWOwJfSTL2OV+sqm9OyKgkSZKkAVnvgFxVdwP7TOBYJEmSpIHzNm+SJElSi1tNq2vbbbdd17Xz5s3runbrrbfuuvbrX/9617Uf+tCHuq4FePLJJ9epXpIkTU7OIEuSJEktBmRJkiSpxYAsSZIktRiQJUmSpBYDsiQNuSTvS3J7ktuSXJHkuUlelOTGJHcmuSrJc5ra9zZ181ttr0ry8cGehSSNDgOyJA2xJDsDfw7MrKq9gU2BY4GPARdU1XTgYeCk5pB3AC8Fbgb+OJ3dnM4Azur32CVpVBmQJWn4bQZsmWQzYAqwFHgdcE3z/lzg6Fb95k3dCuAEYH5VPdy/4UrSaDMgS9IQq6pfAucB99IJxv8B3AQ8UlVjN+++H9i5eX4ecAMwFfhn4ETgU2vqI8nsJIuSLFq+fPnEn4QkjRgDsiQNsSTbAEcBLwJ2ArYCZo1TWgBV9YWq2reqjgfeD3wCmJXkmiQXJHnW3/tVNaeqZlbVzKlTp/bsXCRpVBiQJWm4HQL8W1Utr6oVwJeBPwS2bpZcAOwCLGkflGQn4OVVdS3wIeDPgCeAg/s2ckkaUW41ra694hWv6Lp2XbaPXhfnnntu17VuHa1J4l7ggCRTgN/SCbiLgO8AbwKupLOM4tpVjjuLzsV5AFvSmWFeSWdtsiRpDZxBlqQhVlU30rkYbzFwK52/t+cAHwTen+QuYDvgkrFjkuzbHHtz03RJc+x+wDf7NnhJGlHOIEvSkKuqDwMfXqX5bmD/1dTfzNO3faOqLgQu7NkAJWmScQZZkiRJajEgS5IkSS0GZEmSJKnFgCxJkiS1GJAlSZKkFgOyJEmS1GJAliRJkloMyJIkSVKLG4Woa69+9au7rk3Sde1Xv/rVrmtvuOGGrmslSZLWhzPIkiRJUosBWZIkSWoxIEuSJEktBmRJkiSpxYAsSZIktRiQJUmSpBYDsiRJktRiQJYkSZJaDMiSJElSiwFZkiRJajEgS5IkSS2bDXoAGqwddtih69pDDz2069qq6rr2M5/5TNe10sYmyR7AVa2mFwN/DVzWtO8G3AO8uaoeTvJG4G+Ah4Cjq+rBJLsDZ1fVsf0cuySNKmeQJWmIVdXPq2pGVc0AXgY8DnwFOB1YWFXTgYXNa4BTgQPoBOi3NG0fBc7o68AlaYQZkCVpdBwM/GtV/QI4CpjbtM8Fjm6erwS2AKYAK5IcCCytqjv7PVhJGlUusZCk0XEscEXzfMeqWgpQVUuTjK2X+gjwLWAJcDxwdXOcJKlLziBL0ghI8hzgSGDemuqqakFVvayqjqAzqzwf2CPJNUkuTjJlnM+enWRRkkXLly/vyfglaZQYkCVpNMwCFlfVA83rB5JMA2gel7WLmyB8IvAp4Bzg7cBNwFtX/eCqmlNVM6tq5tSpU3t4CpI0GgzIkjQajuPp5RUA19EJwDSP165SfxpwUVWtALYEis765GfNIEuSnsk1yJI05JrZ4NcD72o1nwtcneQk4F7gmFb9TsDMqjqzaTofuAF4hKcv5pMkrYYBWZKGXFU9Dmy3StuDdO5qMV79EuDw1ut5rGXtsiTpaS6xkCRJkloMyJIkSVKLSyw2cm9729u6rt1rr726rn300Ue7rn3wwQe7rpUkSeq1tc4gJ7k0ybIkt7Xatk2yIMmdzeM2vR2mJEmS1B/dLLH4PHDoKm2nAwurajqwsHktSZIkjby1BuSquh54aJXmo4C5zfO5eNsgSZIkTRLre5HejlW1FKB53GHihiRJkiQNTs8v0ksyG5jd634kSZKkibC+M8gPJJkG0DwuW11hVc2pqplVNXM9+5IkSZL6Zn0D8nXAic3zE4FrJ2Y4kiRJ0mB1c5u3K4AfAnskuT/JScC5wOuT3Am8vnktSZIkjby1rkGuquNW89bBEzwWSZIkaeDcalqSJElqcavpjdyee+7Zk8+9++67u65dvHhxT8YgSZK0PpxBliRJkloMyJIkSVKLAVmSJElqMSBLkiRJLQZkSZIkqcWALEmSJLUYkCVpyCXZOsk1SX6W5I4kr0iybZIFSe5sHrdpat+Y5PYk30+yXdO2e5IrB3sWkjQ6DMiSNPwuAr5ZVf8F2Ae4AzgdWFhV04GFzWuAU4EDgMuAtzRtHwXO6OuIJWmEGZAlaYgl+QPgIOASgKr6XVU9AhwFzG3K5gJHN89XAlsAU4AVSQ4EllbVnX0duCSNMHfSk6Th9mJgOfC5JPsANwEnAztW1VKAqlqaZIem/iPAt4AlwPHA1cCxfR+1JI0wA/JGbtasWT353M985jM9+VxpI7QZsB/w3qq6MclFPL2c4lmqagGwACDJicB8YI8kHwAeBk6uqsfbxySZDcwG2HXXXXtyEpI0SlxiIUnD7X7g/qq6sXl9DZ3A/ECSaQDN47L2QUmmACcCnwLOAd5OZ/b5rat2UFVzqmpmVc2cOnVqz05EkkaFAVmShlhV/TtwX5I9mqaDgZ8C19EJwDSP165y6GnARVW1AtgSKDrrk6f0fNCSNOJcYiFJw++9wOVJngPcDfw3OhMcVyc5CbgXOGasOMlOwMyqOrNpOh+4AXiEpy/mkySthgFZkoZcVd0CzBznrYNXU78EOLz1eh4wrzejk6TJxyUWkiRJUosBWZIkSWoxIEuSJEktBmRJkiSpxYAsSZIktRiQJUmSpBZv87aRS9J17SabdP/vqSOOOKLr2pe85CVd1+65555d1x522GFd18K6nd/KlSu7rv3FL37Rde1ZZ53Vde1ll13WdS3AU089tU71kiRtrJxBliRJkloMyJIkSVKLAVmSJElqMSBLkiRJLQZkSZIkqcWALEmSJLUYkCVJkqQWA7IkSZLUYkCWJEmSWgzIkiRJUotbTW/kqqrr2nXZXnnWrFk9qV0X63JuALfddlvXteuy5fWuu+7ade3FF1/cde3222/fdS3A3/3d361TvSRJGytnkCVJkqQWA7IkSZLUYkCWpCGX5J4ktya5Jcmipm3bJAuS3Nk8btO0vzHJ7Um+n2S7pm33JFcO8hwkaZQYkCVpNLy2qmZU1czm9enAwqqaDixsXgOcChwAXAa8pWn7KHBGPwcrSaPMgCxJo+koYG7zfC5wdPN8JbAFMAVYkeRAYGlV3dn/IUrSaPIuFpI0/Ar4dpIC/kdVzQF2rKqlAFW1NMkOTe1HgG8BS4DjgauBYwcwZkkaWQZkSRp+r6yqJU0IXpDkZ6srrKoFwAKAJCcC84E9knwAeBg4uaoebx+TZDYwG9bttoSSNFm5xEKShlxVLWkelwFfAfYHHkgyDaB5XNY+JskU4ETgU8A5wNuBm4C3jvP5c6pqZlXNnDp1ai9PRZJGggFZkoZYkq2SPH/sOfBHwG3AdXQCMM3jtascehpwUVWtALaks0xjJZ21yZKkNXCJhSQNtx2BrySBzt/ZX6yqbyb5EXB1kpOAe4Fjxg5IshMws6rObJrOB24AHuHpi/kkSathQJakIVZVdwP7jNP+IHDwao5ZAhzeej0PmNerMUrSZGNAVk/85je/6br2hz/8Yde1l112Wde1v/rVr7quBbj++uu7rj3ooIO6rp09e3bXtW94wxu6rj3nnHO6rgW45557uq6dN88sJUnaeK11DXKSS5MsS3Jbq+3MJL9sdnW6JclhvR2mJEmS1B/dXKT3eeDQcdovaHZ1mlFV8yd2WJIkSdJgrDUgV9X1wEN9GIskSZI0cBtym7f3JPlJswRjmwkbkSRJkjRA6xuQPw3sDswAltK5hdC4ksxOsijJovXsS5IkSeqb9QrIVfVAVT1VVSuBi+ns6rS62t/v0LS+g5QkSZL6Zb0C8tj2po030NnVSZIkSRp5a70PcpIrgNcA2ye5H/gw8JokM+hsXXoP8K4ejlGSJEnqm7UG5Ko6bpzmS3owFkmSJGngNuQuFpIkSdKk41bTG7m5c+d2XXvaaad1XXvVVVd1Xfuud43eCp0FCxZ0XXvDDTd0Xbv33nt3XTt9+vSuawFe+MIXrlO9JEkbK2eQJUmSpBYDsiRJktRiQJYkSZJaDMiSJElSiwFZkiRJajEgS5IkSS0GZEmSJKnFgCxJkiS1GJAlaQQk2TTJzUm+3rx+UZIbk9yZ5Kokz2na35vktiTzW22vSvLxQY5fkkaJAVmSRsPJwB2t1x8DLqiq6cDDwElN+zuAlwI3A3+cJMAZwFl9HKskjTS3mt7IPfjggz353Je//OU9+dxR9Oijj3Zd+4Mf/KDr2nXdalqjK8kuwJ8AZwPvb0Lv64C3NCVzgTOBTzevNwemACuAE4D5VfVwP8csSaPMgCxJw+9C4DTg+c3r7YBHqurJ5vX9wM7N8/OAG4DbgX8Gvgoc2r+hStLoc4mFJA2xJIcDy6rqpnbzOKUFUFVfqKp9q+p44P3AJ4BZSa5JckGSZ/29n2R2kkVJFi1fvrwXpyFJI8WALEnD7ZXAkUnuAa6ks7TiQmDrJGO/BdwFWNI+KMlOwMur6lrgQ8CfAU8AB6/aQVXNqaqZVTVz6tSpPTsRSRoVBmRJGmJV9RdVtUtV7QYcC/xTVb0V+A7wpqbsRODaVQ49i87FeQBb0plhXklnbbIkaQ0MyJI0mj5I54K9u+isSb5k7I0k+wJU1c1N0yXArcB+wDf7PE5JGjlepCdJI6Kqvgt8t3l+N7D/aupu5unbvlFVF9JZliFJ6oIzyJIkSVKLAVmSJElqMSBLkiRJLQZkSZIkqcWL9DZyjz32WNe1m2zS/b+nNt98865rt9hii65rn3jiia5rh8WMGTO6rj3yyCO7ru3sNixJkiaaM8iSJElSiwFZkiRJajEgS5IkSS0GZEmSJKnFgCxJkiS1GJAlSZKkFgOyJEmS1GJAliRJkloMyJIkSVKLAVmSJElqcavpjdynP/3prmv333//rmtPOOGErmv//u//vuvak08+ueva3/72t13Xrqtdd92169pPfvKTXddut912XddWVde1AMuXL1+nekmSNlbOIEuSJEktBmRJkiSpxYAsSZIktRiQJUmSpBYDsiQNsSTPTfIvSX6c5PYkH2naX5TkxiR3JrkqyXOa9vcmuS3J/Fbbq5J8fJDnIUmjxIAsScPtCeB1VbUPMAM4NMkBwMeAC6pqOvAwcFJT/w7gpcDNwB8nCXAGcFbfRy5JI8qALElDrDp+07zcvPlTwOuAa5r2ucDRrcM2B6YAK4ATgPlV9XB/RixJo8+ALElDLsmmSW4BlgELgH8FHqmqJ5uS+4Gdm+fnATcAU4F/Bk4EPtXfEUvSaDMgS9KQq6qnqmoGsAuwP7DneGVN7Reqat+qOh54P/AJYFaSa5JckORZf+8nmZ1kUZJFbigjSQZkSRoZVfUI8F3gAGDrJGO7oe4CLGnXJtkJeHlVXQt8CPgzOuuZDx7nc+dU1cyqmjl16tQenoEkjQYDsiQNsSRTk2zdPN8SOAS4A/gO8Kam7ETg2lUOPYvOxXkAW9KZYV5JZ22yJGkNNlt7idTx/ve/v+vaQw45pOvat7/97esznLW65ppr1l7UstVWW3Vd+4lPfKLr2mnTpnVdu3Tp0q5rP/e5z3VdCzB37tx1qtfQmAbMTbIpnUmNq6vq60l+ClyZ5KN07lhxydgBSfYFqKqbm6ZLgFuB+4CP9HPwkjSK1hqQk7wAuAz4z3RmH+ZU1UVJtgWuAnYD7gHe7FXSkjSxquonwL7jtN9NZz3yeMfczNO3faOqLgQu7NUYJWmy6WaJxZPAqVW1J511b+9OshdwOrCwuQfnwua1JEmSNNLWGpCramlVLW6eP0pn7dvOwFF07r0Jz74HpyRJkjSS1ukivSS70flV343AjlW1FDohGthhogcnSZIk9VvXF+kleR7wJeCUqvp1Z/fSro6bDcxev+FJkiRJ/dXVDHKSzemE48ur6stN8wNJpjXvT6Ozw9OztO+vOREDliRJknpprQE5naniS4A7qurjrbeuo3PvTRj/HpySJEnSyOlmicUrgROAW5Pc0rT9JXAucHWSk4B7gWN6M0RJkiSpf9YakKvqB8DqFhw/a8tSSZIkaZS51bQkSZLU4lbT6trDD3e/UeJRRx3Vde2113a/fH1dtqVe1y2su70zC0BVdV27cOHCrmv/4i/+ouvaxYsXd10rSZK65wyyJEmS1GJAliRJkloMyJIkSVKLAVmSJElqMSBLkiRJLQZkSZIkqcWALEmSJLUYkCVJkqQWA7IkSZLUYkCWJEmSWtxqWj2xLtsgH3HEEV3XnnXWWV3Xzpo1q+tagO9973td137jG9/ouvaiiy7quvZ3v/td17XaOCR5AXAZ8J+BlcCcqrooybbAVcBuwD3Am6vq4SRvBP4GeAg4uqoeTLI7cHZVHTuIc5CkUeMMsiQNtyeBU6tqT+AA4N1J9gJOBxZW1XRgYfMa4NSm7jLgLU3bR4Ez+jpqSRphBmRJGmJVtbSqFjfPHwXuAHYGjgLmNmVzgaOb5yuBLYApwIokBwJLq+rOvg5ckkaYSywkaUQk2Q3YF7gR2LGqlkInRCfZoSn7CPAtYAlwPHA14NIKSVoHziBL0ghI8jzgS8ApVfXr1dVV1YKqellVHUFnVnk+sEeSa5JcnGTKOJ89O8miJIuWL1/es3OQpFFhQJakIZdkczrh+PKq+nLT/ECSac3704BlqxwzBTgR+BRwDvB24Cbgrat+flXNqaqZVTVz6tSpvTsRSRoRBmRJGmJJAlwC3FFVH2+9dR21OqxlAAALlElEQVSdAEzzeO0qh54GXFRVK4AtgaKzPvlZM8iSpGdyDbIkDbdXAicAtya5pWn7S+Bc4OokJwH3AseMHZBkJ2BmVZ3ZNJ0P3AA8wtMX80mSVsOALElDrKp+AGQ1bx+8mmOWAIe3Xs8D5k386CRpcnKJhSRJktRiQJYkSZJaXGKhgbvlllvWXtRYl22pJUmS1oczyJIkSVKLAVmSJElqMSBLkiRJLQZkSZIkqcWALEmSJLUYkCVJkqQWA7IkSZLUYkCWJEmSWgzIkiRJUosBWZIkSWoxIEuSJEktBmRJkiSpxYAsSZIktRiQJUmSpBYDsiRJktRiQJYkSZJaDMiSJElSiwFZkoZYkkuTLEtyW6tt2yQLktzZPG7TtL8xye1Jvp9ku6Zt9yRXDmr8kjSKDMiSNNw+Dxy6StvpwMKqmg4sbF4DnAocAFwGvKVp+yhwRu+HKUmThwFZkoZYVV0PPLRK81HA3Ob5XODo5vlKYAtgCrAiyYHA0qq6sx9jlaTJYrNBD0CStM52rKqlAFW1NMkOTftHgG8BS4DjgauBYwczREkaXc4gS9IkUVULquplVXUEnVnl+cAeSa5JcnGSKeMdl2R2kkVJFi1fvryvY5akYWRAlqTR80CSaQDN47L2m00QPhH4FHAO8HbgJuCt431YVc2pqplVNXPq1Kk9HbgkjYK1BuQkL0jynSR3NFdHn9y0n5nkl0luaf4c1vvhSpKA6+gEYJrHa1d5/zTgoqpaAWwJFJ31yePOIEuSnqmbNchPAqdW1eIkzwduSrKgee+Cqjqvd8OTpI1bkiuA1wDbJ7kf+DBwLnB1kpOAe4FjWvU7ATOr6sym6XzgBuARnr6YT5K0BmsNyM2FIGMXgzya5A5g514PTJIEVXXcat46eDX1S4DDW6/nAfN6MDRJmrTWaQ1ykt2AfYEbm6b3JPlJcyP7bSZ4bJIkSVLfdR2QkzwP+BJwSlX9Gvg0sDswg84M8/mrOe73V0dPwHglSZKknuoqICfZnE44vryqvgxQVQ9U1VNVtRK4GNh/vGPbV0dP1KAlSZKkXunmLhYBLgHuqKqPt9qntcreANw28cOTJEmS+qubu1i8EjgBuDXJLU3bXwLHJZlB5/ZB9wDv6skIJUmSpD7q5i4WPwAyzlvzJ344kiRJ0mC5k54kSZLUYkCWJEmSWgzIkiRJUosBWZIkSWoxIEuSJEktBmRJkiSpxYAsSZIktRiQJUmSpBYDsiRJktRiQJYkSZJaDMiSJElSiwFZkiRJajEgS5IkSS0GZEmSJKnFgCxJIyrJoUl+nuSuJKc3bZcn+UmSv23VnZHkqMGNVJJGiwFZkkZQkk2BTwKzgL2A45K8FKCqXgocmOQ/JZkG7F9V1w5utJI0WjYb9AAkSetlf+CuqrobIMmVwJ8AWybZBHgO8BTwN8BfD2yU0jqYObN3n71oUe8+W5OPM8iSNJp2Bu5rvb6/absXWAxcDbwESFXd3P/hSdLocgZZkkZTxmmrqjrl9wXJ14B3JfkrYB9gQVVd/KwPSmYDs5uXv0ny814MeBXbA7/qQz/2aZ8AZLz/YiZhnxNkMvf5wm6KDMiSNJruB17Qer0LsGTsRXNR3iJgK2DvqnpzkuuTXF5Vj7c/qKrmAHP6MObfS7Koqnr4C3X7tE/7tM/15xILSRpNPwKmJ3lRkucAxwLXASTZHDgZ+DtgClDNMWNrkyVJa+AMsiSNoKp6Msl7gG8BmwKXVtXtzdvvBuZW1eNJfgIkya3A/Kp6ZEBDlqSRYUCWpBFVVfOB+eO0X9h6XsBx/RxXl/q6pMM+7dM+7XNdpPN3Z586S5YDvxjnrUEsBu+XyXxu4PmNOs9vYr2wqqb2sT9JUg/0NSCvdhBDtjB7Ik3mcwPPb9R5fpIkPZsX6UmS+mq8LbJ73N+lSZYlua3XfbX6fEGS7yS5I8ntSU7uQ5/PTfIvSX7c9PmRXvfZ6nvTJDcn+Xqf+rsnya1JbknSly1Akmyd5JokP2u+11f0uL89mvMb+/PrJKes/cgN7vd9zf9+bktyRZLn9qHPk5v+bu/HOXbDgCxJ6pvVbJG9V4+7/TxwaI/7WNWTwKlVtSdwAPDuPpznE8DrqmofYAZwaJIDetznmJOBO/rU15jXVtWMPv6W6CLgm1X1X+jcV7yn51tVP2/ObwbwMuBx4Cu97DPJzsCfAzOram86FwAf2+M+9wbeSWd30H2Aw5NM72Wf3RiWgDxUC7Mn2GQ+N/D8Rp3np377/RbZVfU74ErgqF52WFXXAw/1so9x+lxaVYub54/SCVM797jPqqrfNC83b/70fB1lkl3obHP+2V73NShJ/gA4CLgEoKp+1+c7whwM/GtVjXcd10TbjM6W9ZvRuU3kkrXUb6g9gRuq6vGqehL4HvCGHve5VkMRkJub1E9Kk/ncwPMbdZ6fBmB1W2RPWkl2A/YFbuxDX5smuQVYRmfnxJ73CVwInAas7ENfYwr4dpKbmp0ge+3FwHLgc81Sks8m2aoP/Y45Frii151U1S+B8+hsWb8U+I+q+naPu70NOCjJdkmmAIfxzE2QBmIoArIkaaMx7hbZfR9FnyR5HvAl4JSq+nWv+6uqp5pfye8C7N/8+rpnkhwOLKuqm3rZzzheWVX70Vmq8+4kB/W4v82A/YBPV9W+wGNAz9fPAzQbAR0JzOtDX9vQ+Y3Oi4CdgK2SHN/LPqvqDuBjwALgm8CP6SxRGqiBBuR+X6jRb4O4iKCXxrvQJcm2SRYkubN53GaQY9wQqzm/M5P8snWRxGGDHOP6Wt0FQ5Pl+1vD+U2K72+SWeMW2ZNJs6Phl4DLq+rL/ey7+fX/d+n92utXAkcmuYfOcpnXJfnHHvdJVS1pHpfRWZe7f4+7vB+4vzUjfw2dwNwPs4DFVfVAH/o6BPi3qlpeVSuALwN/2OtOq+qSqtqvqg6isxzqzl73uTYDC8gDulBjEPp9EUEvfZ5n/2V7OrCwqqYDC+nTv6h75POM/38mF4xdKNFszDCKVnfB0GT5/tZ0QdRk+P4mk9VukT2ZJAmd9ap3VNXH+9Tn1CRbN8+3pBN2ftbLPqvqL6pql6rajc53+U9V1dMZxyRbJXn+2HPgj+j8mr5nqurfgfuS7NE0HQz8tJd9thxHH5ZXNO4FDkgypfnf8MH04eLLJDs0j7sCf0r/zne1BjmD3PcLNbRhVnOhy1HA3Ob5XODovg5qAg3iQp5+WcMFQ5Pi+xvEBVFaP81FOGNbZN8BXN3aIrsnklwB/BDYI8n9SU7qZX+NVwIn0JlR7ddvMKYB30lne/Ef0VmD3JfbrvXZjsAPkvwY+Bfgf1bVN/vQ73uBy5uf7wzgb3vdYbMm9/V0ZnJ7rpkhvwZYDNxKJyf241qOLyX5KfA14N1V9XAf+lyjgW0UkuRNwKFV9Y7m9QnAf62q9wxkQD2Q5N+Ah+msr/sfk+GCoeZik683t38hySNVtXXr/YeraiR/TQ/jnt+ZwP8N/BpYRGeWcuD/4W6I5hyvB/YG7p1M3x886/zezyT7/iRJvTfIGeSN4UKNfl9EoIn3aWB3OrMFS4HzBzucDdPvC4b6bZzzm1TfnySpPwYZkCf9hRoDuIhgEB5IMg2geVw24PFMqKp6oLkqfCVwMSP8Ha7mgqFJ8/2Nd36T6fuTJPXPIAPypL5QYxAXEQzIdcCJzfMTgWsHOJYJNxYeG29gRL/DNVwwNCm+v9Wd32T5/iRJ/TWwNcgAzQULF9LZyvDSqjp7YIOZYElezNNbQm4GfHHUz6+50OU1wPbAA8CHga8CVwO70rn69ZiqGskL3VZzfq+h8+v5Au4B3lVVSwczwvWX5FXA9+lcdDF2M/+/pLNxwch/f2s4v+OYBN+fJKm/BhqQJUmSpGHjTnqSJElSiwFZkiRJajEgS5IkSS0GZEmSJKnFgCxJkiS1GJAlSZKkFgOyJEmS1GJAliRJklr+f8OCICu7UYIbAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x720 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"n = 21 #it can go from 0 to 9999\n",
"predict_from_image(x_test[n])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Finally this is the part that will allow us to test digits we draw directly on the screen!!"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"#\n",
"# Interactive Matplotlib plot\n",
"#\n",
"# Based on https://matplotlib.org/users/event_handling.html\n",
"#\n",
"# Sadly, this will not work on Google Colab :(\n",
"\n",
"# import sys\n",
"\n",
"# if \"pyplot\" in sys.modules:\n",
"# from importlib import reload\n",
"# plt = reload(plt)\n",
"# else:\n",
"# from matplotlib import pyplot as plt\n",
"\n",
"%matplotlib inline\n",
"from matplotlib import pyplot as plt\n",
"# import matplotlib\n",
"# from importlib import reload\n",
" \n",
"from matplotlib.widgets import Button, Slider\n",
"import numpy as np\n",
"\n",
"import io\n",
"import PIL.Image\n",
"\n",
"class CaptureHandwriting:\n",
" def __init__(self):\n",
" # if it's called only once, it fails sometimes on my computer...\n",
" # if I don't call inline before calling notebook, it behaves weirdly\n",
" # e.g. figsize gives me a different size ?!?!\n",
" get_ipython().magic('matplotlib inline')\n",
" get_ipython().magic('matplotlib notebook')\n",
" get_ipython().magic('matplotlib notebook') # the third time's a charm!\n",
"\n",
" self.img_in = []\n",
" self.img_array = []\n",
" self.mouse_captured = False\n",
" \n",
" fig = plt.figure(figsize=(10,10))\n",
" ax = fig.add_subplot(1,1,1)\n",
" plt.subplots_adjust(bottom=0.2)\n",
"\n",
" canvas = ax.figure.canvas\n",
" ax.set_title('Click to draw your number from 0 to 9')\n",
"\n",
" ax.set_xticks([])\n",
" ax.set_xlim(0,1)\n",
"\n",
" ax.set_yticks([])\n",
" ax.set_ylim(0,1)\n",
"\n",
" ax.set_aspect(1.0)\n",
"\n",
" init_line_width = 20\n",
"\n",
" self.line, = ax.plot([0], [0], linewidth=init_line_width, linestyle='solid', color='black') # empty line\n",
"\n",
" # save the clean slate background -- everything but the animated line\n",
" # is drawn and saved in the pixel buffer background\n",
" self.background = canvas.copy_from_bbox(ax.bbox)\n",
" \n",
" self.xs = list(self.line.get_xdata())\n",
" self.ys = list(self.line.get_ydata())\n",
" \n",
" event_clickDown = self.line.figure.canvas.mpl_connect('button_press_event', self.onclickDown)\n",
" event_clickUp = self.line.figure.canvas.mpl_connect('button_release_event', self.onclickUp)\n",
" cid = self.line.figure.canvas.mpl_connect('motion_notify_event', self)\n",
" \n",
" # http://www.math.buffalo.edu/~badzioch/MTH337/PT/PT-matplotlib_subplots/\\\n",
" # PT-matplotlib_subplots.html#axes-objects\n",
" # ax1 = plt.axes([\n",
" # 0.1, # x-coordinate of the lower left corner of the axes object\n",
" # 0.1, # y-coordinate of the lower left corner of the axes object\n",
" # 0.5, # width of the object\n",
" # 0.4 # height of the object\n",
" # ])\n",
"\n",
" axsave = plt.axes([ax.get_position().bounds[0], 0.12, ax.get_position().bounds[2], 0.07])\n",
" self.b_save = Button(axsave, 'Convert to MNIST style')\n",
" self.b_save.on_clicked(self.button_update)\n",
"\n",
" axwidth = plt.axes([ax.get_position().bounds[0], 0.06, ax.get_position().bounds[2], 0.05])\n",
" self.s_width = Slider(axwidth, 'Line Width',5, 50, valinit=init_line_width)\n",
" self.s_width.on_changed(self.slider_update)\n",
" \n",
" self.ax = ax\n",
" self.fig = fig \n",
"\n",
" plt.show()\n",
"\n",
" def __call__(self, event):\n",
" if self.mouse_captured:\n",
" if event.inaxes!=self.line.axes: return\n",
" self.xs.append(event.xdata)\n",
" self.ys.append(event.ydata)\n",
" self.line.set_data(self.xs, self.ys)\n",
"\n",
" canvas = self.line.figure.canvas\n",
" axes = self.line.axes\n",
" \n",
" # restore the background region\n",
" canvas.restore_region(self.background)\n",
"\n",
" # redraw just the current rectangle\n",
" axes.draw_artist(self.line)\n",
"\n",
" # blit just the redrawn area\n",
" canvas.blit(axes.bbox)\n",
"\n",
" \n",
" def onclickDown(self, event): \n",
" self.mouse_captured = True\n",
" self.xs = []\n",
" self.ys = []\n",
" \n",
" def onclickUp(self, event):\n",
" self.mouse_captured = False\n",
"\n",
" def button_update(self, event):\n",
" f = io.BytesIO()\n",
"\n",
" self.ax.axis('off')\n",
" extent = self.ax.get_window_extent().transformed(self.fig.dpi_scale_trans.inverted())\n",
" self.fig.savefig(f, dpi='figure', transparent=False, pad_inches=0, bbox_inches=extent)\n",
"\n",
" img_in = PIL.Image.open(f)\n",
" img_in = img_in.resize((28,28),PIL.Image.BICUBIC)\n",
" img_in = img_in.convert(\"L\")\n",
" self.img_array = -(np.array(img_in)-255)/255.0\n",
"\n",
" self.ax.axis('on');\n",
" \n",
" self.ax.imshow(self.img_array, cmap='gray')\n",
" self.ax.set_xlim(0,27)\n",
" self.ax.set_ylim(0,27)\n",
" self.ax.invert_yaxis()\n",
" self.ax.figure.canvas.draw()\n",
" plt.pause(0.0001)\n",
" #self.ax.figure.canvas.draw_idle()\n",
" \n",
" plt.close(self.fig)\n",
"\n",
" def slider_update(self, val):\n",
" self.line.set_linewidth(val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ok, I still need to debug it better because sometimes it needs to called many times until it actually works. It's something related to matplolib backend switching. Apparently, if you start with inline it has a hard time to switch to notebook (or the other way around)."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"720\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"captured = CaptureHandwriting()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"My experience shows the network is very good at predicting digits, iff the line width above is set somewhere above 35."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFjCAYAAAAgmP3GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8XVV99/vPV7klYEuAwAmXGEXkweORi7s8+ChqRVugcqmXFhSaU9DYUy9Q6UvphQpHrLbK9Vg9RrFGS6GAF6CN0Dyp1st5oISLCKINIgVMTKCAgFhNzO/8seaWSdhJ1k72um0+79drv9ZaY/3mHL+5F3vzy9hjzJGqQpIkSVLHMwadgCRJkjRMLJAlSZKkFgtkSZIkqcUCWZIkSWqxQJYkSZJaLJAlSZKkFgtkSZKmsSTzklSSrZrXX04yfzPOMzfJY0meOfVZTp0kn0ly9mYee2aSv9vI+7cneeX6saPyvVH3LJAlSRqwJHcn+WlTZK1K8rdJduhFX1V1RFUt6jKnV7eOu6eqdqiqX0x1Tk0B/5Pm+n+Y5NxhLDar6n+vqq9O0P6k702SryZ5S98T1JSxQJYkaTgcVVU7AAcBvwb8+foB6Ziu/+/ev7n+w4A3AW9dP2B8FFzqten6QyZJ0kiqqh8CXwZeCL8cjfxAkm8CjwPPTfKrSS5KsrIZcT17fMQ1yTOTfCTJA0nuAn6rff71RzeTvDXJHUkeTfKdJAcl+RwwF7i6GdV9zwRTNXZPclWSB5PcmeStrXOemeSyJJ9tznt7krEur/+7wNdb1393kvcmuRX4SZKtkuzXXMfDzbmPXu80uyRZ0vT9r0me3crtgiT3JnkkyY1JDl3v2O2S/ENz7E1J9m8d+6RR9Vb7L783ST4AHAp8tPnefTTJ3yQ5Z71jrk5yajffE/WfBbIkSUMkyV7AkcDNreYTgQXAs4D/ABYBa4HnAQcCvwGMF71vBV7btI8Bb9hIX28EzgR+D/gV4GjgP6vqROAemlHtqvrrCQ6/BLgP2L3p4y+THNZ6/2jgUmBH4Crgo11e/wvoFJjt6z+eTqG/IxDgauCfgV2BdwIXJ9m3Ff9m4P3ALsAtwMWt924ADgB2Av4euDzJdq33jwEub73/pSRbd5M7QFX9GZ0C/x3N9+4ddD6v48dH/5PsQmek/JJuz6v+skCWJGk4fCnJw8A3gH8F/rL13meq6vaqWkuncDsCOLWqflJVq4HzgOOa2N8Bzq+qe6vqQeCDG+nzLcBfV9UN1XFnVf3HphJtiviXAe+tqv+qqluAT9Ep5Md9o6oWN/NyPwfsP8Gp2m5K8hCd4vdTwN+23ruwuZ6fAocAOwAfqqqfV9W/AP9Ip4ge909V9bWq+hnwZ8BLmpypqr+rqv+sqrVVdQ6wLdAurm+sqiuqag1wLrBd0+dmq6p/A35MpyiGzmf11apatSXnVe84l0eSpOFwbFX9zw28d2/r+bOBrYGVScbbntGK2X29+I0VvHsB3598quwOPFhVj67XT3saxY9azx+nM3Vhq6bIn8hBVXXnBt5rX8/uwL1VtW69vveYKL6qHkvy4PhxSU6j8w+D3YGiM3K+ywaOXZdkfJR8Sy0CTgCWNI8XTME51SMWyJIkDb9qPb8X+BmwywaKzZV0Ct9xczdy3nuBvbvoc30rgJ2SPKtVJM8FfriRY7ZEO5cVwF5JntEqkucC/96K+eX1N3cD2QlY0cw3fi+dkdzbmwL4ITrTNiY69hnAnk2fm5vvuL8DbmvmNO8HfGmS51QfOcVCkqQRUlUr6cy/PSfJryR5RpK9k7yiCbkMeFeSPZPMAk7fyOk+Bfxxkhc3d8h4XmtB2yrguRvI4V7g/wM+mGS7JC8CTubJc3175XrgJ8B7kmydzn2Jj6Iz33nckUlelmQbOnORr29yfhadudv3A1sl+Qs6I8htL07yumYx4ql0/jFy3SRzfMr3rqruozP/+XPA55vpIhpSFsiSJI2e3wO2Ab4DPARcAcxp3vskcC3wLeAm4AsbOklVXQ58gM5itEfpjGru1Lz9QeDPmztF/PEEhx8PzKMzuvpF4H1VtWSLrqoLVfVzOgsAjwAeAD4G/F5z94txfw+8D3gQeDGdRXvQ+b58mc5o838A/8WTp28AXAn8Lp3v64nA65r5yJNxAfCGJA8lubDVvgj4P+gUyRpiqdrYX1AkSZI0FZK8nM5Ui3nrzaHWkOnrHOQkVuOSprMHqmr2oJOQNHyaW8WdAnzK4nj4OcVCkqbOJm+PJenpJ8l+wMN0psGcP+B01AXvYiFJktRDVXUHsP2g81D3tmgEOcnhSb7XbDG5sVWykiRJ0kjY7BHkZs/3vwFeQ2eryRuSXFVV35mq5CRJ/bXLLrvUvHnzBp2GJPXEjTfe2NVakS2ZYnEwcGdV3QWQ5FI6+5dbIEvSiJo3bx7Lli0bdBqS1BNJulorsiVTLPbgyfcOvI8nb/M4nsiCJMuS+BtXkiRJQ29LRpAzQdtTbuNWVQuBheBt3iRJkjT8tmQE+T6evNf75uxVLkmSJA2VLSmQbwD2SfKcZq/z44CrpiYtSZIkaTA2e4pFVa1N8g46+5o/E/h0Vd0+ZZlJkiRJA7BFG4VU1WJg8RTlIo2MnXbaqevYBx98sIeZSJKkqeZW05IkSVKLBbIkSZLUYoEsSZIktVggS9IQSPLpJKuT3NZq2ynJkiTLm8dZTXuSXJjkziS3Jjmoad83yY1JvpXkJU3bVkn+Z5KZg7kySRo9FsiSNBw+Axy+XtvpwNKq2gdY2rwGOALYp/laAHy8aX9bE/MG4I+btv8L+FxVPd6zzCVpmrFAlqQhUFVfA9a/5ckxwKLm+SLg2Fb7Z6vjOmDHJHOANcAMYCawJsmOwFHAZ3udvyRNJ1t0mzdJUk/tVlUrAapqZZJdm/Y9gHtbcfc1bX9Dpxjels5o8l8AH6iq2lgnSRbQGYlm7ty5U3oBkjSKLJAlafRkgraqqnuAVwIkeR6wO/DdJJ8DtgHOqKp/n+DAhcBCgLGxsY0W09J0MzbWu3MvW9a7c6u3nGIhScNrVTN1guZxddN+H7BXK25PYMV6x34AOAN4F3Ax8L7mS5K0CRbIkjS8rgLmN8/nA1e22n+vuZvFIcCPx6diACR5BfDDqlpOZz7yOuAXzXNJ0iY4xUJqvPOd7+w69l3velfXsccff3zXscv8e9zTVpJL6EyP2CXJfXRGez8EXJbkZOAe4I1N+GLgSOBO4HHg91vnCfDnwO80TQvpjCBvReeOFpKkTbBAlqQhUFUb+pfUYRPEFvD2DZyngNe0Xt8BHDQVOUrS04VTLCRJkqQWC2RJkiSpxQJZkiRJarFAliRJkloskCVJkqQWC2RJkiSpxQJZkiRJarFAliRJkloskCVJkqQWC2RJkiSpxa2mNVKSdB374Q9/eFLnPu200yabTlfmz5/fdeyyZct6koMkSeqeI8iSJElSiwWyJEmS1GKBLEmSJLVYIEuSJEktFsiSJElSiwWyJEmS1GKBLEmSJLVYIEuSJEktFsiSJElSiwWyJA25JKckuS3J7UlObdp2SrIkyfLmcVbT/vom7utJdm7a9k5y6SCvQZJGiVtNa+C23nrrrmMvvPDCrmP/4A/+YHPS6cpf//Vfdx37/ve/v2d5aPpL8kLgrcDBwM+Ba5L8U9O2tKo+lOR04HTgvcBpwCHAccCbgP8HOBs4YwDpS9JIcgRZkobbfsB1VfV4Va0F/hX4beAYYFETswg4tnm+DtgWmAmsSXIosLKqlvc3bUkaXY4gS9Jwuw34QDNd4qfAkcAyYLeqWglQVSuT7NrEnwVcC6wATgAuozOavEFJFgALAObOnduLa5CkkeIIsiQNsaq6A/grYAlwDfAtYO1G4pdU1Yur6ig6o8qLgX2TXJHkk0lmTnDMwqoaq6qx2bNn9+ZCJGmEWCBL0pCrqouq6qCqejnwILAcWJVkDkDzuLp9TFMIzwc+BnwQOAm4EXhzP3OXpFFkgSxJQ258+kSSucDrgEuAq+gUwDSPV6532HuAC6pqDTADKDrzk58ygixJejLnIEvS8Pt8Mwd5DfD2qnooyYeAy5KcDNwDvHE8OMnuwFhVndk0nQNcBzzME4v5JEkbYIEsSUOuqg6doO0/gcM2EL8CeG3r9eXA5T1LUJKmGadYSJIkSS0WyJIkSVKLBbIkSZLU4hxkDdyHP/zhrmMns310VU0qj/e+971dx04mZ0mSNFocQZYkSZJatmgEOcndwKPAL4C1VTU2FUlJkiRJgzIVUyx+vaoemILzSJIkSQPnFAtJkiSpZUsL5AL+OcmNSRZMFJBkQZJlSZZtYV+SJElSz23pFIuXVtWKJLsCS5J8t6q+1g6oqoXAQoAkk7utgCRJktRnWzSC3GxnSlWtBr4IHDwVSUmSJEmDstkFcpLtkzxr/DnwG8BtU5WYJEmSNAhbMsViN+CLScbP8/dVdc2UZCVJkiQNyGYXyFV1F7D/FOYiSZIkDZxbTasnfv/3f7/r2FNOOaUnOZx66qmTir/wwgt7kockSRot3gdZkiRJarFAliRJkloskCVJkqQWC2RJkiSpxQJZkiRJarFAlqQhl+SPktye5LYklyTZLslzklyfZHmSf0iyTRP7ziZucavtZUnOHexVSNLosECWpCGWZA/gXcBYVb0QeCZwHPBXwHlVtQ/wEHByc8hbgBcBNwO/mc5uTmcA7+937pI0qiyQJWn4bQXMSLIVMBNYCbwKuKJ5fxFwbCt+6yZuDXAisLiqHupfupI02iyQJWmIVdUPgY8A99ApjH8M3Ag8XFVrm7D7gD2a5x8BrgNmA98E5gMf21gfSRYkWZZk2f333z/1FyFJI8YCWZKGWJJZwDHAc4Ddge2BIyYILYCq+lxVHVhVJwDvBi4EjkhyRZLzkjzl935VLayqsaoamz17ds+uRZJGhVtNq2tjY2Ndx55zzjk9yWEy20G7dbSmiVcDP6iq+wGSfAH4H8COSbZqRpH3BFa0D0qyO/BrVXVWkn8DXgJ8ADgMWNLPC5CkUeMIsiQNt3uAQ5LMbBbcHQZ8B/gK8IYmZj5w5XrHvZ/O4jyAGXRGmNfRmZssSdoIC2RJGmJVdT2dxXg3Ad+m83t7IfBe4N1J7gR2Bi4aPybJgc2xNzdNFzXHHgRc07fkJWlEOcVCkoZcVb0PeN96zXcBB28g/maeuO0bVXU+cH7PEpSkacYRZEmSJKnFAlmSJElqsUCWJEmSWiyQJUmSpBYLZEmSJKnFAlmSJElqsUCWJEmSWrwP8tPcwQdPeBvVCX3pS1/qOnbWrFldx1533XVdx/7Jn/xJ17GSJEmbwxFkSZIkqcUCWZIkSWqxQJYkSZJaLJAlSZKkFgtkSZIkqcUCWZIkSWqxQJYkSZJaLJAlSZKkFgtkSZIkqcUCWZIkSWqxQJYkSZJathp0Appae+6556TiL7nkkq5j58yZ03XsLbfc0nXs8ccf33Xs448/3nWsJEnS5nAEWZKGWJJ9k9zS+nokyalJdkqyJMny5nFWE//6JLcn+XqSnZu2vZNcOtgrkaTRYYEsSUOsqr5XVQdU1QHAi4HHgS8CpwNLq2ofYGnzGuA04BDgs8CbmrazgTP6mrgkjTALZEkaHYcB36+q/wCOARY17YuAY5vn64BtgZnAmiSHAiuranm/k5WkUeUcZEkaHccB4wsHdquqlQBVtTLJrk37WcC1wArgBOCy5rgNSrIAWAAwd+7cHqQtSaPFEWRJGgFJtgGOBi7fWFxVLamqF1fVUXRGlRcD+ya5Isknk8yc4JiFVTVWVWOzZ8/uSf6SNEoskCVpNBwB3FRVq5rXq5LMAWgeV7eDm0J4PvAx4IPAScCNwJv7lrEkjSgLZEkaDcfzxPQKgKvoFMA0j1euF/8e4IKqWgPMAIrO/OSnjCBLkp7MOciSNOSa0eDXAG9rNX8IuCzJycA9wBtb8bsDY1V1ZtN0DnAd8DBPLOaTJG2ABbIkDbmqehzYeb22/6RzV4uJ4lcAr229vpxNzF2WJD3BKRaSJElSiyPI08x55503qfjnPve5Xcd+//vf7zr26KOP7jr23nvv7TpWkiSp1xxBliRJklo2WSAn+XSS1Ulua7XtlGRJkuXN46zepilJkiT1RzcjyJ8BDl+v7XRgaVXtAyxtXkuSJEkjb5MFclV9DXhwveZjgEXN80V42yBJkiRNE5u7SG+3qloJUFUrk+y6ocAkC4AFm9mPJEmS1Fc9v4tFVS0EFgIkqV73J0mSJG2Jzb2LxaokcwCax9VTl5IkSZI0OJtbIF8FzG+ezweunJp0JEmSpMHq5jZvlwD/C9g3yX1JTgY+BLwmyXLgNc1rSZIkaeRtcg5yVR2/gbcOm+JcJEmSpIFzq+kR8OpXv7rr2Ne97nWTOvfPfvazrmNPOOGErmMns330r/7qr3YdO3v27K5jd9hhh65jAWbN6n6/m+22225S5+7Wo48+2nXsLbfcMqlzP/bYY5NNR5KkpyW3mpYkSZJaLJAlSZKkFgtkSZIkqcUCWZIkSWqxQJYkSZJaLJAlSZKkFgtkSZIkqcUCWZKGXJIdk1yR5LtJ7kjykiQ7JVmSZHnzOKuJfX2S25N8PcnOTdveSS4d7FVI0uiwQJak4XcBcE1V/Tdgf+AO4HRgaVXtAyxtXgOcBhwCfBZ4U9N2NnBGXzOWpBFmgSxJQyzJrwAvBy4CqKqfV9XDwDHAoiZsEXBs83wdsC0wE1iT5FBgZVUt72vikjTC3Gp6BJx22mldxz7jGZP7N8+1117bdey+++7bdexZZ53VdewLXvCCrmN33XXXrmO32WabrmNH0a233jqp+De/+c1dx952222TTUe981zgfuBvk+wP3AicAuxWVSsBqmplkvEfjrOAa4EVwAnAZcBxG+sgyQJgAcDcuXN7cQ2SNFIcQZak4bYVcBDw8ao6EPgJT0yneIqqWlJVL66qo+iMKi8G9m3mMH8yycwJjllYVWNVNTZ79uweXYYkjQ4LZEkabvcB91XV9c3rK+gUzKuSzAFoHle3D2oK4fnAx4APAifRGX3u/k8JkvQ0ZYEsSUOsqn4E3JtkfI7TYcB3gKvoFMA0j1eud+h7gAuqag0wAyg685OfMoIsSXoy5yBL0vB7J3Bxkm2Au4DfpzPAcVmSk4F7gDeOByfZHRirqjObpnOA64CHeWIxnyRpAyyQJWnIVdUtwNgEbx22gfgVwGtbry8HLu9NdpI0/TjFQpIkSWqxQJYkSZJaLJAlSZKkFgtkSZIkqcUCWZIkSWrxLhYDMpndqsbGJlq8PjUOPfTQrmOPPvronuXRrccff7zr2B//+MeTOvejjz7adex//dd/Terc3ZozZ07XsS960Ysmde6rr76669iXvOQlXcf+6Ec/mlQekiQNO0eQJUmSpBYLZEmSJKnFAlmSJElqsUCWJEmSWiyQJUmSpBYLZEmSJKnFAlmSJElqsUCWJEmSWiyQJUmSpBYLZEmSJKnFraYHZPvtt+9J7GTNmjWr69jVq1d3HXvRRRd1HbtkyZKuY++6666uYx977LGuY2Fy21ivXbt2Uufu1vOf//yuYxcvXjypc8+bN6/r2GOOOabr2E984hOTykOSpGHnCLIkSZLUYoEsSZIktVggS5IkSS0WyJI05JLcneTbSW5Jsqxp2ynJkiTLm8dZTfvrk9ye5OtJdm7a9k5y6SCvQZJGiQWyJI2GX6+qA6pqrHl9OrC0qvYBljavAU4DDgE+C7ypaTsbOKOfyUrSKLNAlqTRdAywqHm+CDi2eb4O2BaYCaxJciiwsqqW9z9FSRpN3uZNkoZfAf+cpIBPVNVCYLeqWglQVSuT7NrEngVcC6wATgAuA47b2MmTLAAWAMydO7c3VyBJI8QCWZKG30urakVTBC9J8t0NBVbVEmAJQJL5wGJg3yR/DDwEnFJVj693zEJgIcDY2Fj16BokaWQ4xUKShlxVrWgeVwNfBA4GViWZA9A8PmknnyQzgfnAx4APAicBNwJv7l/mkjSaLJAlaYgl2T7Js8afA78B3AZcRacApnm8cr1D3wNcUFVrgBl0pmmsozM3WZK0EU6xkKThthvwxSTQ+Z3991V1TZIbgMuSnAzcA7xx/IAkuwNjVXVm03QOcB3wME8s5pMkbYAF8oD85Cc/6UnsjBkzJpXH6tWrNx3UeNWrXtV17O233z6pPNQxme/bF77whUmd+9RTT+069uCDD+469hOf+MSk8tDkVNVdwP4TtP8ncNgGjlkBvLb1+nLg8l7lKEnTjVMsJEmSpJZNFshJPp1kdZLbWm1nJvlhs6vTLUmO7G2akiRJUn90M4L8GeDwCdrPa3Z1OqCqFk9tWpIkSdJgbLJArqqvAQ/2IRdJkiRp4LZkDvI7ktzaTMGYtaGgJAuSLEuybAv6kiRJkvpicwvkjwN7AwcAK+ncQmhCVbWwqsaqamwz+5IkSZL6ZrMK5KpaVVW/qKp1wCfp7OokSZIkjbzNKpDHtzdt/DadXZ0kSZKkkbfJjUKSXAK8EtglyX3A+4BXJjmAztaldwNv62GOkiRJUt9sskCuquMnaL6oB7lIkiRJA+dW0wPywAMPdB27bFn3NwA5/PCJblm9Yd/85je7jnX76OGyatWqnp37Wc96Vs/OLUnSsHOraUmSJKnFAlmSJElqsUCWJEmSWiyQJUmSpBYLZEmSJKnFAlmSJElqsUCWJEmSWiyQJUmSpBYLZEmSJKnFAlmSRkCSZya5Ock/Nq+fk+T6JMuT/EOSbZr2dya5LcniVtvLkpw7yPwlaZS41fSAVFXXsddcc03XsZPdanrevHldx86YMaPr2J/+9KeTykOTt/fee/fs3I888kjPzq3NdgpwB/Arzeu/As6rqkuT/L/AycDHgbcALwLeD/xmU1CfARzX/5QlaTQ5gixJQy7JnsBvAZ9qXgd4FXBFE7IIOLZ1yNbATGANcCKwuKoe6lvCkjTiLJAlafidD7wHWNe83hl4uKrWNq/vA/Zonn8EuA6YDXwTmA98bGMnT7IgybIky+6///6pzl2SRo4FsiQNsSSvBVZX1Y3t5glCC6CqPldVB1bVCcC7gQuBI5JckeS8JE/5vV9VC6tqrKrGZs+e3YvLkKSRYoEsScPtpcDRSe4GLqUzteJ8YMck4+tI9gRWtA9Ksjvwa1V1JfDnwO8CPwMO61PekjSyLJAlaYhV1Z9U1Z5VNY/OQrt/qao3A18B3tCEzQeuXO/Q99NZnAcwg84I8zo6c5MlSRthgSxJo+m9wLuT3ElnTvJF428kORCgqm5umi4Cvg0cBHR/WxxJepryNm+SNCKq6qvAV5vndwEHbyDuZjq3fRt/fT6daRmSpC44gixJkiS1WCBLkiRJLRbIkiRJUotzkEfA1Vdf3XXs2WefPalzH3jggV3HLly4sOvYk046qevYNWvWdB073b3iFa/oOvZNb3pTz/JYunRpz84tSdKwcwRZkiRJarFAliRJkloskCVJkqQWC2RJkiSpxQJZkiRJarFAliRJkloskCVJkqQWC2RJkiSpxQJZkiRJarFAliRJklrcanoE3HXXXV3HvuMd75jUuT/1qU91HXvCCSd0HTtjxoyuY//oj/6o69h7772369hhsdtuu3UdO5nPY+bMmZPK46qrruo69oorrpjUuSVJmk4cQZYkSZJaLJAlSZKkFgtkSZIkqcUCWZIkSWqxQJYkSZJaLJAlaYgl2S7JvyX5VpLbk5zVtD8nyfVJlif5hyTbNO3vTHJbksWttpclOXeQ1yFJo8QCWZKG28+AV1XV/sABwOFJDgH+CjivqvYBHgJObuLfArwIuBn4zSQBzgDe3/fMJWlEWSBL0hCrjseal1s3XwW8Chi/YfUi4NjWYVsDM4E1wInA4qp6qD8ZS9Los0CWpCGX5JlJbgFWA0uA7wMPV9XaJuQ+YI/m+UeA64DZwDeB+cDHNnH+BUmWJVl2//339+ISJGmkWCBL0pCrql9U1QHAnsDBwH4ThTWxn6uqA6vqBODdwIXAEUmuSHJekqf83q+qhVU1VlVjs2fP7uGVSNJosECWpBFRVQ8DXwUOAXZMslXz1p7AinZskt2BX6uqK4E/B36Xznzmw/qWsCSNqK02HaJRsmjRoknFb7vttl3HfvSjH+069vWvf33XsQcffHDXsR//+Me7jv3yl7/cdSzA9773va5jJ/N9m0zOz3ve87qOvfvuu7uOBfjDP/zDrmPXrFkzqXOrd5LMBtZU1cNJZgCvprNA7yvAG4BL6UyjuHK9Q99PZ3EewAw6I8zr6MxNliRthCPIkjTc5gBfSXIrcAOwpKr+EXgv8O4kdwI7AxeNH5DkQICqurlpugj4NnAQcE0fc5ekkbTJEeQkewGfBf43OqMPC6vqgiQ7Af8AzAPuBn7HVdKSNLWq6lbgwAna76IzH3miY27midu+UVXnA+f3KkdJmm66GUFeC5xWVfvRmff29iQvAE4Hljb34FzavJYkSZJG2iYL5KpaWVU3Nc8fBe6gczuhY+jcexOeeg9OSZIkaSRNapFeknl0/tR3PbBbVa2EThGdZNcNHLMAWLBlaUqSJEn90XWBnGQH4PPAqVX1SGf30k2rqoXAwuYctTlJSpIkSf3S1V0skmxNpzi+uKq+0DSvSjKneX8OnR2eJEmSpJG2yQI5naHii4A7qurc1ltX0bn3Jkx8D05JkiRp5HQzxeKlwInAt5Pc0rT9KfAh4LIkJwP3AG/sTYqSJElS/2yyQK6qbwAbmnDslqWSJEmaVlLVv3VzLtIbbYcffnjXseeee+6mgxr77bff5qSzSevWrZtU/A9+8IOuY7fZZpuuY/faa6+uY9euXdt17JFHHtl1LMCSJUsmFa/NcmNVjQ06iS0xNjZWy5YtG3QaUt+M9fAn1h+l4ZOkq9/TbjUtSZIktVggS5IkSS0WyJIkSVKLBbIkSZLUYoEsSZIktVggS5IkSS0WyJIkSVKLBbIkSZLUYoEsSZIktVggS5IkSS1bDToBjY5rrrmm69gbbrih69iTTjqp69ijjjqq69ixSe4fuvfee08qvlsPPPBA17Gnn35617FuHS1JUm84gixJQyzJXkm+kuSOJLcnOaVp6SN9AAAM7klEQVRp3ynJkiTLm8dZTfvrm7ivJ9m5ads7yaWDvA5JGiUWyJI03NYCp1XVfsAhwNuTvAA4HVhaVfsAS5vXAKc1cZ8F3tS0nQ2c0desJWmEWSBL0hCrqpVVdVPz/FHgDmAP4BhgURO2CDi2eb4O2BaYCaxJciiwsqqW9zVxSRphzkGWpBGRZB5wIHA9sFtVrYROEZ1k1ybsLOBaYAVwAnAZcNwmzrsAWAAwd+7cXqQuSSPFEWRJGgFJdgA+D5xaVY9sKK6qllTVi6vqKDqjyouBfZNckeSTSWZOcMzCqhqrqrHZs2f37BokaVRYIEvSkEuyNZ3i+OKq+kLTvCrJnOb9OcDq9Y6ZCcwHPgZ8EDgJuBF4c7/ylqRRZYEsSUMsSYCLgDuq6tzWW1fRKYBpHq9c79D3ABdU1RpgBlB05ic/ZQRZkvRkzkGWpOH2UuBE4NtJbmna/hT4EHBZkpOBe4A3jh+QZHdgrKrObJrOAa4DHuaJxXySpA2wQJakIVZV3wCygbcP28AxK4DXtl5fDlw+9dlJ0vTkFAtJkiSpJVXVv86S/nWmp73nP//5k4p/9rOf3XXsZH5u/v3f/73r2HvuuafrWA2lG6tqcnucD5mxsbFatmzZoNOQ+mashz+x/igNnyRd/Z52BFmSJElqsUCWJEmSWiyQJUmSpBYLZEmSJKnFAlmSJElqsUCWJEmSWiyQJUmSpBYLZEmSJKnFAlmSJElqsUCWJEmSWrYadAJSr0xmi+fNiZckSdOTI8iSJElSiwWyJEmS1GKBLEmSJLVYIEuSJEktFsiSJElSiwWyJEmS1GKBLEmSJLVYIEvSEEvy6SSrk9zWatspyZIky5vHWU3765PcnuTrSXZu2vZOcumg8pekUWSBLEnD7TPA4eu1nQ4srap9gKXNa4DTgEOAzwJvatrOBs7ofZqSNH1YIEvSEKuqrwEPrtd8DLCoeb4IOLZ5vg7YFpgJrElyKLCyqpb3I1dJmi7calqSRs9uVbUSoKpWJtm1aT8LuBZYAZwAXAYcN5gUJWl0OYIsSdNEVS2pqhdX1VF0RpUXA/smuSLJJ5PMnOi4JAuSLEuy7P777+9rzpI0jCyQJWn0rEoyB6B5XN1+symE5wMfAz4InATcCLx5opNV1cKqGquqsdmzZ/c0cUkaBZsskJPsleQrSe5oVkef0rSfmeSHSW5pvo7sfbqSJOAqOgUwzeOV673/HuCCqloDzACKzvzkCUeQJUlP1s0c5LXAaVV1U5JnATcmWdK8d15VfaR36UnS01uSS4BXArskuQ94H/Ah4LIkJwP3AG9sxe8OjFXVmU3TOcB1wMM8sZhPkrQRmyyQm4Ug44tBHk1yB7BHrxOTJEFVHb+Btw7bQPwK4LWt15cDl/cgNUmatiY1BznJPOBA4Pqm6R1Jbm1uZD9rA8f8cvHHFmUqSZIk9UHXBXKSHYDPA6dW1SPAx4G9gQPojDCfM9Fx7cUfU5CvJEmS1FNdFchJtqZTHF9cVV8AqKpVVfWLqloHfBI4uHdpSpIkSf3RzV0sAlwE3FFV57ba57TCfhu4berTkyRJkvqrm7tYvBQ4Efh2kluatj8Fjk9yAJ3bB90NvK0nGUqSJEl91M1dLL4BZIK3Fk99OpIkSdJguZOeJEmS1GKBLEmSJLVYIEuSJEktFsiSJElSiwWyJEmS1GKBLEmSJLVYIEuSJEktFsiSJElSiwWyJEmS1GKBLEmSJLVYIEuSJEktFsiSJElSiwWyJEmS1GKBLEmSJLVYIEvSiEpyeJLvJbkzyelN28VJbk3yl624M5IcM7hMJWm0WCBL0ghK8kzgb4AjgBcAxyd5EUBVvQg4NMmvJpkDHFxVVw4uW0kaLVsNOgFJ0mY5GLizqu4CSHIp8FvAjCTPALYBfgH838BfDCxLSRpBFsiSNJr2AO5tvb4P+O/APcBNwOeA5wGpqpv7n540eWNjvTv3smW9O7emHwtkSRpNmaCtqurUXwYkVwNvS/JnwP7Akqr65FNOlCwAFjQvH0vyvV4kvJ5dgAf60I992icAmegnZhr2OUWmc5/P7ibIAlmSRtN9wF6t13sCK8ZfNIvylgHbAy+sqt9J8rUkF1fV4+0TVdVCYGEfcv6lJMuqqofjhfZpn/Zpn5vPRXqSNJpuAPZJ8pwk2wDHAVcBJNkaOAX4MDATqOaY8bnJkqSNcARZkkZQVa1N8g7gWuCZwKer6vbm7bcDi6rq8SS3AknybWBxVT08oJQlaWT0u0B+APiPCdoHMdelX6bztYHXN+q8vqnV1dy2qVJVi4HFE7Sf33pewPH9zKtLfZ3SYZ/2aZ/2ORnp/O4ccBJDNu9kKk3nawOvb9R5fZIkPZVzkCVJkqQWC2RJUl9NtEV2j/v7dJLVSW7rdV+tPvdK8pUkdyS5PckpfehzuyT/luRbTZ9n9brPVt/PTHJzkn/sU393J/l2kluS9OUOx0l2THJFku82n+tLetzfvs31jX89kuTUTR+5xf3+UfPfz21JLkmyXR/6PKXp7/Z+XGM3hqVAHqp5J1NsOl8beH2jzutTX21gi+wX9LjbzwCH97iP9a0FTquq/YBDgLf34Tp/BryqqvYHDgAOT3JIj/scdwpwR5/6GvfrVXVAH6dRXQBcU1X/jc59xXt6vVX1veb6DgBeDDwOfLGXfSbZA3gXMFZVL6SzAPi4Hvf5QuCtdHYH3R94bZJ9etlnN4aiQG7uwTktTedrA69v1Hl9GoBfbpFdVT8HLgWO6WWHVfU14MFe9jFBnyur6qbm+aN0iqk9etxnVdVjzcutm6+eLzRKsiedbc4/1eu+BiXJrwAvBy4CqKqf9/mOMIcB36+qiW50MNW2orNl/VZ0bhO5YhPxW2o/4Lqqeryq1gL/Cvx2j/vcpKEokCVJTxsTbZHd08Jx0JLMAw4Eru9DX89Mcguwms7OiT3vEzgfeA+wrg99jSvgn5Pc2OwE2WvPBe4H/raZSvKpJNv3od9xxwGX9LqTqvoh8BE6W9avBH5cVf/c425vA16eZOckM4EjefImSANhgSxJ6qcJt8juexZ9kmQH4PPAqVX1SK/7q6pfNH+S3xM4uPnzdc8keS2wuqpu7GU/E3hpVR1EZ6rO25O8vMf9bQUcBHy8qg4EfgL0fP48QLMR0NHA5X3oaxadv+g8B9gd2D7JCb3ss6ruAP4KWAJcA3yLzhSlgRpogdzvhRr9NohFBL000UKXJDslWZJkefM4a5A5bokNXN+ZSX7YWiRx5CBz3FwbWjA0XT6/jVzftPj8ppmNbpE9nTQ7Gn4euLiqvtDPvps//3+V3s+9filwdJK76UyXeVWSv+txn1TViuZxNZ15uQf3uMv7gPtaI/JX0CmY++EI4KaqWtWHvl4N/KCq7q+qNcAXgP/R606r6qKqOqiqXk5nOtTyXve5KQMrkAe0UGMQ+r2IoJc+w1N/2Z4OLK2qfYCl9Olf1D3yGSb+n8l54wslmo0ZRtGGFgxNl89vYwuipsPnN51scIvs6SRJ6MxXvaOqzu1Tn7OT7Ng8n0Gn2PluL/usqj+pqj2rah6dz/JfqqqnI45Jtk/yrPHnwG/Q+TN9z1TVj4B7k+zbNB0GfKeXfbYcTx+mVzTuAQ5JMrP5b/gw+rD4MsmuzeNc4HX073o3aJAjyH1fqKEts4GFLscAi5rni4Bj+5rUFBrEQp5+2ciCoWnx+Q1iQZQ2T7MIZ3yL7DuAy1pbZPdEkkuA/wXsm+S+JCf3sr/GS4ET6Yyo9usvGHOAr6SzvfgNdOYg9+W2a322G/CNJN8C/g34p6q6pg/9vhO4uPn+HgD8Za87bObkvobOSG7PNSPkVwA3Ad+mUyf2Y7Hz55N8B7gaeHtVPdSHPjdqYDvpJXkDcHhVvaV5fSLw36vqHQNJqAeS/AB4iM78uk9MhxX1zWKTf2xu/0KSh6tqx9b7D1XVSP6ZHia8vjOB/xN4BFhGZ5Ry4D+4W6K5xq8BLwTumU6fHzzl+t7NNPv8JEm9N8gR5KfDQo1+LyLQ1Ps4sDed0YKVwDmDTWfL9HvBUL9NcH3T6vOTJPXHIAvkab9QYwCLCAZhVZI5AM3j6gHnM6WqalWzKnwd8ElG+DPcwIKhafP5TXR90+nzkyT1zyAL5Gm9UGMQiwgG5CpgfvN8PnDlAHOZcuPFY+O3GdHPcCMLhqbF57eh65sun58kqb8GNgcZoFmwcD6drQw/XVUfGFgyUyzJc3liS8itgL8f9etrFrq8EtgFWAW8D/gScBkwl87q1zdW1UgudNvA9b2Szp/nC7gbeFtVrRxMhpsvycuAr9NZdDF+M/8/pbNxwch/fhu5vuOZBp+fJKm/BlogS5IkScPGnfQkSZKkFgtkSZIkqcUCWZIkSWqxQJYkSZJaLJAlSZKkFgtkSZIkqcUCWZIkSWr5/wHIT0vy4dTdjwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x720 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"predict_from_image(captured.img_array)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.