Skip to content

Instantly share code, notes, and snippets.

@richard303d
richard303d / GBMsimulator.py
Last active January 3, 2022 19:48
GBM simulator
# Asset Path
import numpy as np
def GBMsimulator(seed, So, mu, sigma, Cov, T, N):
"""
Parameters
seed: seed of simulation
So: initial stocks' price
mu: expected return
@richard303d
richard303d / datareader.py
Created October 22, 2020 15:53
pandas_datareader
import pandas_datareader as pdr
from datetime import datetime
intc = pdr.get_data_yahoo(symbols='INTC', start=datetime(2018, 1, 1), end=datetime(2020, 1, 1))
amd = pdr.get_data_yahoo(symbols='AMD', start=datetime(2018, 1, 1), end=datetime(2020, 1, 1))
@richard303d
richard303d / visualize_data.py
Created October 22, 2020 15:56
Visualize pandas_datareader dataframes
#Visualize the closing price history
import matplotlib.pyplot as plt
plt.figure(figsize = (16,8))
plt.title('Close Price History', fontsize = 18)
plt.plot(intc['Adj Close'])
plt.plot(amd['Adj Close'])
plt.legend(['INTC', 'AMD'], loc = 'upper left', fontsize = 18)
plt.xlabel('Date', fontsize = 18)
plt.ylabel('Close Price USD ($)', fontsize = 18)
@richard303d
richard303d / estimating_parameters.py
Created October 22, 2020 15:59
GBM Parameters estimation
# Two-dimensional Case
seed = 22
dim = 2; T = 1; N = int(2.**9)
S0 = np.array([100, 100])
# Parameter Estimation
@richard303d
richard303d / random_parameters.py
Created October 22, 2020 16:43
Multidimensional GBM simulation
# Multidimensional Case
from scipy.stats import random_correlation
seed = 2222
dim = 10
T = 1
N = int(2.**9)
S0 = np.random.normal(100, 1, dim)