Skip to content

Instantly share code, notes, and snippets.

Sebastian Kosch skosch

Block or report user

Report or block skosch

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View test2.fzn
predicate maximum_int(var int: m,array [int] of var int: x);
predicate minimum_int(var int: m,array [int] of var int: x);
array [1..8] of int: X_INTRODUCED_313 = [1,1,1,1,1,1,1,1];
array [1..4] of int: X_INTRODUCED_538 = [-1,-1,-1,-1];
array [1..14] of int: X_INTRODUCED_633 = [1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1];
array [1..7] of int: X_INTRODUCED_657 = [1,-1,-1,-1,-1,-1,-1];
array [1..11] of int: X_INTRODUCED_675 = [1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1];
array [1..8] of int: X_INTRODUCED_699 = [1,-1,-1,-1,-1,-1,-1,-1];
array [1..6] of int: X_INTRODUCED_716 = [1,-1,-1,-1,-1,-1];
array [1..5] of int: X_INTRODUCED_741 = [1,-1,-1,-1,-1];
View server.jsx
// meteor algorithm to check if this is a meteor serving http request or not
function IsAppUrl(req) {
var url = req.url;
if(url === '/favicon.ico' || url === '/robots.txt') {
return false;
// NOTE: app.manifest is not a web standard like favicon.ico and
// robots.txt. It is a file name we have chosen to use for HTML5
// appcache URLs. It is included here to prevent using an appcache
skosch / grafana_dashboard.json
Last active Jun 23, 2018
Very simple Grafana dashboard for Prometheus Elixir metrics
View grafana_dashboard.json
"__inputs": [
"name": "DS_PROMETHEUS",
"label": "Prometheus",
"description": "",
"type": "datasource",
"pluginId": "prometheus",
"pluginName": "Prometheus"
View Differentiable image translation using Tensorflow
def shift_bhw1_into_bhwn(images1c, shifts):
"""Shifts images horizontally and back-fills with zeros.
@param images: [batch_size, height, width, channels=1]
@param shifts: [batch_size, n_shifts]
@output [batch_size, height, width, channels=n_shifts]
images = tf.tile(images1c, [1, 1, 1, shifts.shape[1]]) # create n_sample_distances channel copies
left = tf.maximum(0, tf.reduce_max(shifts)) # positive numbers are shifts to the right, for which we need to add zeros on the left
right = -tf.minimum(0, tf.reduce_min(shifts)) # negative numbers are shifts to the left, for which we need to add zeros on the right
You can’t perform that action at this time.