Skip to content

Instantly share code, notes, and snippets.

View sparalic's full-sized avatar
🇹🇹
Focusing

Sparkle Russell-Puleri sparalic

🇹🇹
Focusing
View GitHub Profile
@sparalic
sparalic / avg_time.sql
Created May 21, 2020 03:29
avg_timeseries
'''
@author: Sparkle Russell-Puleri
'''
-- Avg events within an hour
--4.--Avg measurements done in the same hour and remove dupes all at once ################
DROP MATERIALIZED VIEW IF EXISTS mimiciii.timseries_table_avg CASCADE;
CREATE MATERIALIZED VIEW mimiciii.timseries_table_avg as(
with hours_entered as(
'''
@author: Sparkle Russell-Puleri
'''
--3. Labs
DROP MATERIALIZED VIEW IF EXISTS mimiciii.timeseries_table CASCADE;
CREATE MATERIALIZED VIEW mimiciii.timeseries_table as(
with labs as
(select a.subject_id, a.hadm_id, a.charttime, a.valuenum,
a.charttime::date as date_entered,
'''
@author: Sparkle Russell-Puleri
'''
-- 2. Comorbities:
-- 1. Heart Failure
-- 2. COPD
-- 3. Renal Disease
-- 4. Cancer (with and without metastasis)
-- 5. Diabetes mellitus
'''
@author: Sparkle Russell-Puleri
'''
DROP MATERIALIZED VIEW IF EXISTS mimiciii.readmission CASCADE;
create materialized view mimiciii.readmission as (
with
first_discharge as(
select subject_id,
@sparalic
sparalic / full_script.py
Created April 20, 2019 23:31
full_script
import pickle
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
### Checking for GPU availability
This model was trained on a GPU enabled system...highly recommended.
@sparalic
sparalic / training_loop.py
Last active April 20, 2019 23:29
training_loop
optimizer = torch.optim.Adadelta(model.parameters(), lr = 0.01, rho=0.95)
epochs = 10
counter = 0
for e in range(epochs):
for x, y in train_dl:
x, y , mask, lengths = padding(x, y, inputDimSize, numClass)
output, h = model(x, mask)
@sparalic
sparalic / loading_ds.py
Last active April 20, 2019 23:27
loading_ds
train, valid, test = load_data('data/Jan19.seqs', 'data/Jan19.seqs')
train_ds= Dataset(train[0], train[1])
train_samp = Sampler(train_ds, batchSize, shuffle=True)
train_dl = DataLoader(train_ds, sampler=train_samp, collate_fn=collate)
valid_ds= Dataset(valid[0], valid[1])
valid_samp = Sampler(valid_ds, batchSize, shuffle=False)
valid_dl = DataLoader(valid_ds, sampler=valid_samp, collate_fn=collate)
@sparalic
sparalic / cost_function.py
Created April 20, 2019 23:24
cost_function
class cost_function():
def __init__(self, yhat, y, L_2=0.001, logEps=1e-8):
self.yhat = yhat
self.y = y
self.logEps = logEps
self.L_2 = L_2
self.W_out = nn.Parameter(torch.randn(hiddenDimSize, numClass)*0.01)
@sparalic
sparalic / GRULayer.py
Created April 20, 2019 23:23
GRULayer
class build_EHR_GRU(EHR_GRU):
def __init__(self, GRUCell, *kwargs):
super().__init__(inputDimSize, hiddenDimSize, embSize, numClass, numLayers)
self.cell = GRUCell(*kwargs)
self.emb = Custom_Embedding(inputDimSize, embSize)
def forward(self, x, mask):
inputVector = self.emb(x)
for i in range(numLayers):
memories = self.cell(inputVector, mask)
@sparalic
sparalic / GRU_class.py
Created April 20, 2019 23:22
GRU_class
class EHR_GRU(Custom_Embedding):
def __init__(self, inputDimSize, hiddenDimSize, embSize, numClass, numLayers):
super().__init__(inputDimSize, embSize)
self.numClass = numClass
self.numLayers = numLayers
self.hiddenDimSize = hiddenDimSize
self.emb = Custom_Embedding(inputDimSize, embSize)
self.W_r = nn.Parameter(torch.randn(embSize, hiddenDimSize)* 0.01)