Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Exercises3.ipynb
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": "# Exercise 1"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 1. Go to [Kaggle]( https://www.kaggle.com/openfoodfacts/world-food-facts/downloads/world-food-facts.zip)"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 2. Download the dataset to your computer and unzip it."
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 3. Use the tsv file and assign it to a dataframe called food(values are tab separated)"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "# Hint: It's a large file, it will take some time to read data, may have to wait for a couple of minutes before you call any functions on the dataframe after read_csv()",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 4. See the first 5 entries"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 5. What is the number of observations in the dataset?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 6. What is the number of columns in the dataset?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 7. Print the name of all the columns."
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 8. What is the name of 105th column?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 9. What is the type of the observations of the 105th column?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 10. How is the dataset indexed?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 11. What is the product name of the 19th observation?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.3",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "",
"data": {
"description": "Exercises3.ipynb",
"public": true
}
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment