Skip to content

Instantly share code, notes, and snippets.

@tabrez
Last active Dec 11, 2017
Embed
What would you like to do?
Exercise_1.ipynb
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": "# Getting and Knowing your Data"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 1. Import the necessary libraries"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv). Assign it to a variable called chipo."
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "# HINT: '\\t' is the separator",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 3. See the first 10 entries"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 4. What is the number of observations in the dataset?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 5. What is the number of columns in the dataset?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 6. Print the name of all the columns."
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 7. How is the dataset indexed?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 8. Which was the most ordered item?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 9. What was the most ordered item in the choice_description column?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 10. How many items were orderd in total?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 11. Turn the item price into a float"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 12. How much was the revenue for the period in the dataset?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 13. How many orders were made in the period?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 14. What is the average amount per order?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 15. How many different items are sold?"
},
{
"metadata": {
"collapsed": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.3",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "",
"data": {
"description": "Exercise_1.ipynb",
"public": true
}
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment