Skip to content

Instantly share code, notes, and snippets.

@0042
Forked from agyild/FSR.glsl
Created January 5, 2023 20:28
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save 0042/98f0575bf0186db5250deb9224e3bea3 to your computer and use it in GitHub Desktop.
Save 0042/98f0575bf0186db5250deb9224e3bea3 to your computer and use it in GitHub Desktop.
AMD FidelityFX Super Resolution v1.0.2 for mpv
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FidelityFX FSR v1.0.2 by AMD
// ported to mpv by agyild
// Changelog
// Made it compatible with pre-OpenGL 4.0 renderers
// Made it directly operate on LUMA plane, since the original shader was operating on LUMA by deriving it from RGB. This should cause a major increase in performance, especially on OpenGL 4.0+ renderers (4+2 texture lookups vs. 12+5)
// Removed transparency preservation mechanism since the alpha channel is a separate source plane than LUMA
// Added optional performance-saving lossy optimizations to EASU (Credit: atyuwen, https://atyuwen.github.io/posts/optimizing-fsr/)
//
// Notes
// Per AMD's guidelines only upscales content up to 4x (e.g., 1080p -> 2160p, 720p -> 1440p etc.) and everything else in between,
// that means FSR will scale up to 4x at maximum, and any further scaling will be processed by mpv's scalers
//!HOOK LUMA
//!BIND HOOKED
//!SAVE EASUTEX
//!DESC FidelityFX Super Resolution v1.0.2 (EASU)
//!WHEN OUTPUT.w OUTPUT.h * LUMA.w LUMA.h * / 1.0 >
//!WIDTH OUTPUT.w OUTPUT.w LUMA.w 2 * < * LUMA.w 2 * OUTPUT.w LUMA.w 2 * > * + OUTPUT.w OUTPUT.w LUMA.w 2 * = * +
//!HEIGHT OUTPUT.h OUTPUT.h LUMA.h 2 * < * LUMA.h 2 * OUTPUT.h LUMA.h 2 * > * + OUTPUT.h OUTPUT.h LUMA.h 2 * = * +
//!COMPONENTS 1
// User variables - EASU
#define FSR_PQ 0 // Whether the source content has PQ gamma or not. Needs to be set to the same value for both passes. 0 or 1.
#define FSR_EASU_DERING 1 // If set to 0, disables deringing for a small increase in performance. 0 or 1.
#define FSR_EASU_SIMPLE_ANALYSIS 0 // If set to 1, uses a simpler single-pass direction and length analysis for an increase in performance. 0 or 1.
#define FSR_EASU_QUIT_EARLY 0 // If set to 1, uses bilinear filtering for non-edge pixels and skips EASU on those regions for an increase in performance. 0 or 1.
// Shader code
#ifndef FSR_EASU_DIR_THRESHOLD
#if (FSR_EASU_QUIT_EARLY == 1)
#define FSR_EASU_DIR_THRESHOLD 64.0
#elif (FSR_EASU_QUIT_EARLY == 0)
#define FSR_EASU_DIR_THRESHOLD 32768.0
#endif
#endif
float APrxLoRcpF1(float a) {
return uintBitsToFloat(uint(0x7ef07ebb) - floatBitsToUint(a));
}
float APrxLoRsqF1(float a) {
return uintBitsToFloat(uint(0x5f347d74) - (floatBitsToUint(a) >> uint(1)));
}
float AMin3F1(float x, float y, float z) {
return min(x, min(y, z));
}
float AMax3F1(float x, float y, float z) {
return max(x, max(y, z));
}
#if (FSR_PQ == 1)
float ToGamma2(float a) {
return pow(a, 4.0);
}
#endif
// Filtering for a given tap for the scalar.
void FsrEasuTap(
inout float aC, // Accumulated color, with negative lobe.
inout float aW, // Accumulated weight.
vec2 off, // Pixel offset from resolve position to tap.
vec2 dir, // Gradient direction.
vec2 len, // Length.
float lob, // Negative lobe strength.
float clp, // Clipping point.
float c){ // Tap color.
// Rotate offset by direction.
vec2 v;
v.x = (off.x * ( dir.x)) + (off.y * dir.y);
v.y = (off.x * (-dir.y)) + (off.y * dir.x);
// Anisotropy.
v *= len;
// Compute distance^2.
float d2 = v.x * v.x + v.y * v.y;
// Limit to the window as at corner, 2 taps can easily be outside.
d2 = min(d2, clp);
// Approximation of lancos2 without sin() or rcp(), or sqrt() to get x.
// (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2
// |_______________________________________| |_______________|
// base window
// The general form of the 'base' is,
// (a*(b*x^2-1)^2-(a-1))
// Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe.
float wB = float(2.0 / 5.0) * d2 + -1.0;
float wA = lob * d2 + -1.0;
wB *= wB;
wA *= wA;
wB = float(25.0 / 16.0) * wB + float(-(25.0 / 16.0 - 1.0));
float w = wB * wA;
// Do weighted average.
aC += c * w;
aW += w;
}
// Accumulate direction and length.
void FsrEasuSet(
inout vec2 dir,
inout float len,
vec2 pp,
#if (FSR_EASU_SIMPLE_ANALYSIS == 1)
float b, float c,
float i, float j, float f, float e,
float k, float l, float h, float g,
float o, float n
#elif (FSR_EASU_SIMPLE_ANALYSIS == 0)
bool biS, bool biT, bool biU, bool biV,
float lA, float lB, float lC, float lD, float lE
#endif
){
// Compute bilinear weight, branches factor out as predicates are compiler time immediates.
// s t
// u v
#if (FSR_EASU_SIMPLE_ANALYSIS == 1)
vec4 w = vec4(0.0);
w.x = (1.0 - pp.x) * (1.0 - pp.y);
w.y = pp.x * (1.0 - pp.y);
w.z = (1.0 - pp.x) * pp.y;
w.w = pp.x * pp.y;
float lA = dot(w, vec4(b, c, f, g));
float lB = dot(w, vec4(e, f, i, j));
float lC = dot(w, vec4(f, g, j, k));
float lD = dot(w, vec4(g, h, k, l));
float lE = dot(w, vec4(j, k, n, o));
#elif (FSR_EASU_SIMPLE_ANALYSIS == 0)
float w = 0.0;
if (biS)
w = (1.0 - pp.x) * (1.0 - pp.y);
if (biT)
w = pp.x * (1.0 - pp.y);
if (biU)
w = (1.0 - pp.x) * pp.y;
if (biV)
w = pp.x * pp.y;
#endif
// Direction is the '+' diff.
// a
// b c d
// e
// Then takes magnitude from abs average of both sides of 'c'.
// Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms.
float dc = lD - lC;
float cb = lC - lB;
float lenX = max(abs(dc), abs(cb));
lenX = APrxLoRcpF1(lenX);
float dirX = lD - lB;
lenX = clamp(abs(dirX) * lenX, 0.0, 1.0);
lenX *= lenX;
// Repeat for the y axis.
float ec = lE - lC;
float ca = lC - lA;
float lenY = max(abs(ec), abs(ca));
lenY = APrxLoRcpF1(lenY);
float dirY = lE - lA;
lenY = clamp(abs(dirY) * lenY, 0.0, 1.0);
lenY *= lenY;
#if (FSR_EASU_SIMPLE_ANALYSIS == 1)
len = lenX + lenY;
dir = vec2(dirX, dirY);
#elif (FSR_EASU_SIMPLE_ANALYSIS == 0)
dir += vec2(dirX, dirY) * w;
len += dot(vec2(w), vec2(lenX, lenY));
#endif
}
vec4 hook() {
// Result
vec4 pix = vec4(0.0, 0.0, 0.0, 1.0);
//------------------------------------------------------------------------------------------------------------------------------
// +---+---+
// | | |
// +--(0)--+
// | b | c |
// +---F---+---+---+
// | e | f | g | h |
// +--(1)--+--(2)--+
// | i | j | k | l |
// +---+---+---+---+
// | n | o |
// +--(3)--+
// | | |
// +---+---+
// Get position of 'F'.
vec2 pp = HOOKED_pos * HOOKED_size - vec2(0.5);
vec2 fp = floor(pp);
pp -= fp;
//------------------------------------------------------------------------------------------------------------------------------
// 12-tap kernel.
// b c
// e f g h
// i j k l
// n o
// Gather 4 ordering.
// a b
// r g
// Allowing dead-code removal to remove the 'z's.
#if (defined(HOOKED_gather) && (__VERSION__ >= 400 || (GL_ES && __VERSION__ >= 310)))
vec4 bczzL = HOOKED_gather(vec2((fp + vec2(1.0, -1.0)) * HOOKED_pt), 0);
vec4 ijfeL = HOOKED_gather(vec2((fp + vec2(0.0, 1.0)) * HOOKED_pt), 0);
vec4 klhgL = HOOKED_gather(vec2((fp + vec2(2.0, 1.0)) * HOOKED_pt), 0);
vec4 zzonL = HOOKED_gather(vec2((fp + vec2(1.0, 3.0)) * HOOKED_pt), 0);
#else
// pre-OpenGL 4.0 compatibility
float b = HOOKED_tex(vec2((fp + vec2(0.5, -0.5)) * HOOKED_pt)).r;
float c = HOOKED_tex(vec2((fp + vec2(1.5, -0.5)) * HOOKED_pt)).r;
float e = HOOKED_tex(vec2((fp + vec2(-0.5, 0.5)) * HOOKED_pt)).r;
float f = HOOKED_tex(vec2((fp + vec2( 0.5, 0.5)) * HOOKED_pt)).r;
float g = HOOKED_tex(vec2((fp + vec2( 1.5, 0.5)) * HOOKED_pt)).r;
float h = HOOKED_tex(vec2((fp + vec2( 2.5, 0.5)) * HOOKED_pt)).r;
float i = HOOKED_tex(vec2((fp + vec2(-0.5, 1.5)) * HOOKED_pt)).r;
float j = HOOKED_tex(vec2((fp + vec2( 0.5, 1.5)) * HOOKED_pt)).r;
float k = HOOKED_tex(vec2((fp + vec2( 1.5, 1.5)) * HOOKED_pt)).r;
float l = HOOKED_tex(vec2((fp + vec2( 2.5, 1.5)) * HOOKED_pt)).r;
float n = HOOKED_tex(vec2((fp + vec2(0.5, 2.5) ) * HOOKED_pt)).r;
float o = HOOKED_tex(vec2((fp + vec2(1.5, 2.5) ) * HOOKED_pt)).r;
vec4 bczzL = vec4(b, c, 0.0, 0.0);
vec4 ijfeL = vec4(i, j, f, e);
vec4 klhgL = vec4(k, l, h, g);
vec4 zzonL = vec4(0.0, 0.0, o, n);
#endif
//------------------------------------------------------------------------------------------------------------------------------
// Rename.
float bL = bczzL.x;
float cL = bczzL.y;
float iL = ijfeL.x;
float jL = ijfeL.y;
float fL = ijfeL.z;
float eL = ijfeL.w;
float kL = klhgL.x;
float lL = klhgL.y;
float hL = klhgL.z;
float gL = klhgL.w;
float oL = zzonL.z;
float nL = zzonL.w;
#if (FSR_PQ == 1)
// Not the most performance-friendly solution, but should work until mpv adds proper gamma transformation functions for shaders
bL = ToGamma2(bL);
cL = ToGamma2(cL);
iL = ToGamma2(iL);
jL = ToGamma2(jL);
fL = ToGamma2(fL);
eL = ToGamma2(eL);
kL = ToGamma2(kL);
lL = ToGamma2(lL);
hL = ToGamma2(hL);
gL = ToGamma2(gL);
oL = ToGamma2(oL);
nL = ToGamma2(nL);
#endif
// Accumulate for bilinear interpolation.
vec2 dir = vec2(0.0);
float len = 0.0;
#if (FSR_EASU_SIMPLE_ANALYSIS == 1)
FsrEasuSet(dir, len, pp, bL, cL, iL, jL, fL, eL, kL, lL, hL, gL, oL, nL);
#elif (FSR_EASU_SIMPLE_ANALYSIS == 0)
FsrEasuSet(dir, len, pp, true, false, false, false, bL, eL, fL, gL, jL);
FsrEasuSet(dir, len, pp, false, true, false, false, cL, fL, gL, hL, kL);
FsrEasuSet(dir, len, pp, false, false, true, false, fL, iL, jL, kL, nL);
FsrEasuSet(dir, len, pp, false, false, false, true, gL, jL, kL, lL, oL);
#endif
//------------------------------------------------------------------------------------------------------------------------------
// Normalize with approximation, and cleanup close to zero.
vec2 dir2 = dir * dir;
float dirR = dir2.x + dir2.y;
bool zro = dirR < float(1.0 / FSR_EASU_DIR_THRESHOLD);
dirR = APrxLoRsqF1(dirR);
#if (FSR_EASU_QUIT_EARLY == 1)
if (zro) {
vec4 w = vec4(0.0);
w.x = (1.0 - pp.x) * (1.0 - pp.y);
w.y = pp.x * (1.0 - pp.y);
w.z = (1.0 - pp.x) * pp.y;
w.w = pp.x * pp.y;
pix.r = clamp(dot(w, vec4(fL, gL, jL, kL)), 0.0, 1.0);
return pix;
}
#elif (FSR_EASU_QUIT_EARLY == 0)
dirR = zro ? 1.0 : dirR;
dir.x = zro ? 1.0 : dir.x;
#endif
dir *= vec2(dirR);
// Transform from {0 to 2} to {0 to 1} range, and shape with square.
len = len * 0.5;
len *= len;
// Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}.
float stretch = (dir.x * dir.x + dir.y * dir.y) * APrxLoRcpF1(max(abs(dir.x), abs(dir.y)));
// Anisotropic length after rotation,
// x := 1.0 lerp to 'stretch' on edges
// y := 1.0 lerp to 2x on edges
vec2 len2 = vec2(1.0 + (stretch - 1.0) * len, 1.0 + -0.5 * len);
// Based on the amount of 'edge',
// the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}.
float lob = 0.5 + float((1.0 / 4.0 - 0.04) - 0.5) * len;
// Set distance^2 clipping point to the end of the adjustable window.
float clp = APrxLoRcpF1(lob);
//------------------------------------------------------------------------------------------------------------------------------
// Accumulation
// b c
// e f g h
// i j k l
// n o
float aC = 0.0;
float aW = 0.0;
FsrEasuTap(aC, aW, vec2( 0.0,-1.0) - pp, dir, len2, lob, clp, bL); // b
FsrEasuTap(aC, aW, vec2( 1.0,-1.0) - pp, dir, len2, lob, clp, cL); // c
FsrEasuTap(aC, aW, vec2(-1.0, 1.0) - pp, dir, len2, lob, clp, iL); // i
FsrEasuTap(aC, aW, vec2( 0.0, 1.0) - pp, dir, len2, lob, clp, jL); // j
FsrEasuTap(aC, aW, vec2( 0.0, 0.0) - pp, dir, len2, lob, clp, fL); // f
FsrEasuTap(aC, aW, vec2(-1.0, 0.0) - pp, dir, len2, lob, clp, eL); // e
FsrEasuTap(aC, aW, vec2( 1.0, 1.0) - pp, dir, len2, lob, clp, kL); // k
FsrEasuTap(aC, aW, vec2( 2.0, 1.0) - pp, dir, len2, lob, clp, lL); // l
FsrEasuTap(aC, aW, vec2( 2.0, 0.0) - pp, dir, len2, lob, clp, hL); // h
FsrEasuTap(aC, aW, vec2( 1.0, 0.0) - pp, dir, len2, lob, clp, gL); // g
FsrEasuTap(aC, aW, vec2( 1.0, 2.0) - pp, dir, len2, lob, clp, oL); // o
FsrEasuTap(aC, aW, vec2( 0.0, 2.0) - pp, dir, len2, lob, clp, nL); // n
//------------------------------------------------------------------------------------------------------------------------------
// Normalize and dering.
pix.r = aC / aW;
#if (FSR_EASU_DERING == 1)
float min1 = min(AMin3F1(fL, gL, jL), kL);
float max1 = max(AMax3F1(fL, gL, jL), kL);
pix.r = clamp(pix.r, min1, max1);
#endif
pix.r = clamp(pix.r, 0.0, 1.0);
return pix;
}
//!HOOK LUMA
//!BIND EASUTEX
//!DESC FidelityFX Super Resolution v1.0.2 (RCAS)
//!WIDTH EASUTEX.w
//!HEIGHT EASUTEX.h
//!COMPONENTS 1
// User variables - RCAS
#define SHARPNESS 0.2 // Controls the amount of sharpening. The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. 0.0 to 2.0.
#define FSR_RCAS_DENOISE 1 // If set to 1, lessens the sharpening on noisy areas. Can be disabled for better performance. 0 or 1.
#define FSR_PQ 0 // Whether the source content has PQ gamma or not. Needs to be set to the same value for both passes. 0 or 1.
// Shader code
#define FSR_RCAS_LIMIT (0.25 - (1.0 / 16.0)) // This is set at the limit of providing unnatural results for sharpening.
float APrxMedRcpF1(float a) {
float b = uintBitsToFloat(uint(0x7ef19fff) - floatBitsToUint(a));
return b * (-b * a + 2.0);
}
float AMax3F1(float x, float y, float z) {
return max(x, max(y, z));
}
float AMin3F1(float x, float y, float z) {
return min(x, min(y, z));
}
#if (FSR_PQ == 1)
float FromGamma2(float a) {
return sqrt(sqrt(a));
}
#endif
vec4 hook() {
// Algorithm uses minimal 3x3 pixel neighborhood.
// b
// d e f
// h
#if (defined(EASUTEX_gather) && (__VERSION__ >= 400 || (GL_ES && __VERSION__ >= 310)))
vec3 bde = EASUTEX_gather(EASUTEX_pos + EASUTEX_pt * vec2(-0.5), 0).xyz;
float b = bde.z;
float d = bde.x;
float e = bde.y;
vec2 fh = EASUTEX_gather(EASUTEX_pos + EASUTEX_pt * vec2(0.5), 0).zx;
float f = fh.x;
float h = fh.y;
#else
float b = EASUTEX_texOff(vec2( 0.0, -1.0)).r;
float d = EASUTEX_texOff(vec2(-1.0, 0.0)).r;
float e = EASUTEX_tex(EASUTEX_pos).r;
float f = EASUTEX_texOff(vec2(1.0, 0.0)).r;
float h = EASUTEX_texOff(vec2(0.0, 1.0)).r;
#endif
// Min and max of ring.
float mn1L = min(AMin3F1(b, d, f), h);
float mx1L = max(AMax3F1(b, d, f), h);
// Immediate constants for peak range.
vec2 peakC = vec2(1.0, -1.0 * 4.0);
// Limiters, these need to be high precision RCPs.
float hitMinL = min(mn1L, e) / (4.0 * mx1L);
float hitMaxL = (peakC.x - max(mx1L, e)) / (4.0 * mn1L + peakC.y);
float lobeL = max(-hitMinL, hitMaxL);
float lobe = max(float(-FSR_RCAS_LIMIT), min(lobeL, 0.0)) * exp2(-clamp(float(SHARPNESS), 0.0, 2.0));
// Apply noise removal.
#if (FSR_RCAS_DENOISE == 1)
// Noise detection.
float nz = 0.25 * b + 0.25 * d + 0.25 * f + 0.25 * h - e;
nz = clamp(abs(nz) * APrxMedRcpF1(AMax3F1(AMax3F1(b, d, e), f, h) - AMin3F1(AMin3F1(b, d, e), f, h)), 0.0, 1.0);
nz = -0.5 * nz + 1.0;
lobe *= nz;
#endif
// Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
float rcpL = APrxMedRcpF1(4.0 * lobe + 1.0);
vec4 pix = vec4(0.0, 0.0, 0.0, 1.0);
pix.r = float((lobe * b + lobe * d + lobe * h + lobe * f + e) * rcpL);
#if (FSR_PQ == 1)
pix.r = FromGamma2(pix.r);
#endif
return pix;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment