Skip to content

Instantly share code, notes, and snippets.

Avatar
🍕

0verflowme 0verflowme

🍕
View GitHub Profile
View tcp_packet_dropper_4040.py
#!/usr/bin/python
from bcc import BPF
from bcc.utils import printb
F = """
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/in.h>
View h1_sol.sage
import hashlib
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from Crypto.Util.number import long_to_bytes, bytes_to_long
from lll_helper import resultant,prmat
a2b_r1,a2b_s1,_ = (8618416354247009865173783322782283385800726568519779763790691157278063798628048418532907783021806238103423515210146966468025964847364086792099622893845216, 2932674107137731789093617068375500084388905453653468925392946088867116597531950960271857205235755778202380084260003117176704579423285955014316540314931750, 27865871384804321325511205140263204607)
a2b_r2,a2b_s2,flag = (8832295267397231051293216564016639537146222596144354850230682204978731311879255662259663270183445827348338041752369314181111940713714991119349376636404112, 8683784208731634307361157916911868656279723101808163939313971801256736484458199874570532609285522391139002296248059424750941962344918156540408403221858292, 1053985354644091714
View find_x_y_z.py
2*z**5 - x**3 + y*z = 47769864706750161581152919266942014884728504309791272300873440765010405681123224050402253883248571746202060439521835359010439155922618613520747411963822349374260144229698759495359592287331083229572369186844312169397998958687629858407857496154424105344376591742814310010312178029414792153520127354594349356721
x**4 + y**5 + x*y*z = 89701863794494741579279495149280970802005356650985500935516314994149482802770873012891936617235883383779949043375656934782512958529863426837860653654512392603575042842591799236152988759047643602681210429449595866940656449163014827637584123867198437888098961323599436457342203222948370386342070941174587735051
y**6 + 2*z**5 + z*y = 47769864706750161581152919266942014884728504309791272300873440765010405681123224050402253883248571746202060439521835359010439155922618613609786612391835856376321085593999733543104760294208916442207908167085574197779179315081994735796390000652436258333943257231020011932605906567086908226693333446521506911058
View tux_sol_dicectf.sage
import itertools
from sympy.solvers.diophantine.diophantine import diop_linear
from sympy import symbols
def getPolyInfo(poly):
HM = poly.monomials()[0] # HM: head monomial
HC = poly.monomial_coefficient(HM) # HC: head coefficient
HT = HC*HM # HT: head term
HI = poly.exponents()[0] # HI: head index
return {'HT':HT,'HC':HC,'HM':HM,'HI':HI}
View Factor.py
def check_cong(k, p, q, n, xored=None):
kmask = (1 << k) - 1
p &= kmask
q &= kmask
n &= kmask
pqm = (p*q) & kmask
return pqm == n and (xored is None or (p^q) == (xored & kmask))
def extend(k, a):
kbit = 1 << (k-1)
View lll_helper.py
import numpy as np
from sage.all import *
from sage.modules.free_module_integer import IntegerLattice
import itertools
from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
import binascii
import numpy as np
import ast
View ecdsa_sol_tenablectf.sage
from binascii import unhexlify
from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
r= 50394691958404671760038142322836584427075094292966481588111912351250929073849
s1= 26685296872928422980209331126861228951100823826633336689685109679472227918891
s2= 40762052781056121604891649645502377037837029273276315084687606790921202237960
msg1,msg2 = 777971358777664237997807487843929900983351335441289679035928005996851307115,91840683637030200077344423945857298017410109326488651848157059631440788354195
View HomeBrew.html
<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>HomeBrew</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
View complex_tot.py
def complex_tot(factors):
phi = 1
for (p, e) in factors:
# Integer prime of this form is a Gaussian prime with norm(p) = p^2
if p % 4 == 3:
phi *= (p**(e-1))**2 * (p**2 - 1)
# Integer prime of this form is factored into two Gaussian primes with norm(P) = p
elif p % 4 == 1:
phi *= (p**(e-1) * (p - 1))**2
return phi
View oh_my_zsh.zshrc
export ZSH="/home/overflow/.oh-my-zsh"
export EDITOR='vim'
export PATH="/home/overflow/.cargo/bin":$PATH
source /usr/share/zsh/plugins/fast-syntax-highlighting/fast-syntax-highlighting.plugin.zsh
source /usr/share/zsh/plugins/zsh-autosuggestions/zsh-autosuggestions.plugin.zsh
export LC_ALL=en_IN.UTF-8
export LANG=en_IN.UTF-8
ZSH_THEME="nicoulaj"
ENABLE_CORRECTION="true"
COMPLETION_WAITING_DOTS="true"