Created
May 31, 2020 11:04
-
-
Save 117503445/a02f7794bd1c4fe0da49ff779bf80a99 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// C program for Huffman Coding | |
#include <stdio.h> | |
#include <stdlib.h> | |
// This constant can be avoided by explicitly | |
// calculating height of Huffman Tree | |
#define MAX_TREE_HT 100 | |
// A Huffman tree node | |
struct MinHeapNode { | |
// One of the input characters | |
char data; | |
// Frequency of the character | |
unsigned freq; | |
// Left and right child of this node | |
struct MinHeapNode *left, *right; | |
}; | |
// A Min Heap: Collection of | |
// min-heap (or Huffman tree) nodes | |
struct MinHeap { | |
// Current size of min heap | |
unsigned size; | |
// capacity of min heap | |
unsigned capacity; | |
// Array of minheap node pointers | |
struct MinHeapNode** array; | |
}; | |
// A utility function allocate a new | |
// min heap node with given character | |
// and frequency of the character | |
struct MinHeapNode* newNode(char data, unsigned freq) | |
{ | |
struct MinHeapNode* temp | |
= (struct MinHeapNode*)malloc | |
(sizeof(struct MinHeapNode)); | |
temp->left = temp->right = NULL; | |
temp->data = data; | |
temp->freq = freq; | |
return temp; | |
} | |
// A utility function to create | |
// a min heap of given capacity | |
struct MinHeap* createMinHeap(unsigned capacity) | |
{ | |
struct MinHeap* minHeap | |
= (struct MinHeap*)malloc(sizeof(struct MinHeap)); | |
// current size is 0 | |
minHeap->size = 0; | |
minHeap->capacity = capacity; | |
minHeap->array | |
= (struct MinHeapNode**)malloc(minHeap-> | |
capacity * sizeof(struct MinHeapNode*)); | |
return minHeap; | |
} | |
// A utility function to | |
// swap two min heap nodes | |
void swapMinHeapNode(struct MinHeapNode** a, | |
struct MinHeapNode** b) | |
{ | |
struct MinHeapNode* t = *a; | |
*a = *b; | |
*b = t; | |
} | |
// The standard minHeapify function. | |
void minHeapify(struct MinHeap* minHeap, int idx) | |
{ | |
int smallest = idx; | |
int left = 2 * idx + 1; | |
int right = 2 * idx + 2; | |
if (left < minHeap->size && minHeap->array[left]-> | |
freq < minHeap->array[smallest]->freq) | |
smallest = left; | |
if (right < minHeap->size && minHeap->array[right]-> | |
freq < minHeap->array[smallest]->freq) | |
smallest = right; | |
if (smallest != idx) { | |
swapMinHeapNode(&minHeap->array[smallest], | |
&minHeap->array[idx]); | |
minHeapify(minHeap, smallest); | |
} | |
} | |
// A utility function to check | |
// if size of heap is 1 or not | |
int isSizeOne(struct MinHeap* minHeap) | |
{ | |
return (minHeap->size == 1); | |
} | |
// A standard function to extract | |
// minimum value node from heap | |
struct MinHeapNode* extractMin(struct MinHeap* minHeap) | |
{ | |
struct MinHeapNode* temp = minHeap->array[0]; | |
minHeap->array[0] | |
= minHeap->array[minHeap->size - 1]; | |
--minHeap->size; | |
minHeapify(minHeap, 0); | |
return temp; | |
} | |
// A utility function to insert | |
// a new node to Min Heap | |
void insertMinHeap(struct MinHeap* minHeap, | |
struct MinHeapNode* minHeapNode) | |
{ | |
++minHeap->size; | |
int i = minHeap->size - 1; | |
while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { | |
minHeap->array[i] = minHeap->array[(i - 1) / 2]; | |
i = (i - 1) / 2; | |
} | |
minHeap->array[i] = minHeapNode; | |
} | |
// A standard function to build min heap | |
void buildMinHeap(struct MinHeap* minHeap) | |
{ | |
int n = minHeap->size - 1; | |
int i; | |
for (i = (n - 1) / 2; i >= 0; --i) | |
minHeapify(minHeap, i); | |
} | |
// A utility function to print an array of size n | |
void printArr(int arr[], int n) | |
{ | |
int i; | |
for (i = 0; i < n; ++i) | |
printf("%d", arr[i]); | |
printf("\n"); | |
} | |
// Utility function to check if this node is leaf | |
int isLeaf(struct MinHeapNode* root) | |
{ | |
return !(root->left) && !(root->right); | |
} | |
// Creates a min heap of capacity | |
// equal to size and inserts all character of | |
// data[] in min heap. Initially size of | |
// min heap is equal to capacity | |
struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) | |
{ | |
struct MinHeap* minHeap = createMinHeap(size); | |
for (int i = 0; i < size; ++i) | |
minHeap->array[i] = newNode(data[i], freq[i]); | |
minHeap->size = size; | |
buildMinHeap(minHeap); | |
return minHeap; | |
} | |
// The main function that builds Huffman tree | |
struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) | |
{ | |
struct MinHeapNode *left, *right, *top; | |
// Step 1: Create a min heap of capacity | |
// equal to size. Initially, there are | |
// modes equal to size. | |
struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size); | |
// Iterate while size of heap doesn't become 1 | |
while (!isSizeOne(minHeap)) { | |
// Step 2: Extract the two minimum | |
// freq items from min heap | |
left = extractMin(minHeap); | |
right = extractMin(minHeap); | |
// Step 3: Create a new internal | |
// node with frequency equal to the | |
// sum of the two nodes frequencies. | |
// Make the two extracted node as | |
// left and right children of this new node. | |
// Add this node to the min heap | |
// '$' is a special value for internal nodes, not used | |
top = newNode('$', left->freq + right->freq); | |
top->left = left; | |
top->right = right; | |
insertMinHeap(minHeap, top); | |
} | |
// Step 4: The remaining node is the | |
// root node and the tree is complete. | |
return extractMin(minHeap); | |
} | |
// Prints huffman codes from the root of Huffman Tree. | |
// It uses arr[] to store codes | |
void printCodes(struct MinHeapNode* root, int arr[], int top) | |
{ | |
// Assign 0 to left edge and recur | |
if (root->left) { | |
arr[top] = 0; | |
printCodes(root->left, arr, top + 1); | |
} | |
// Assign 1 to right edge and recur | |
if (root->right) { | |
arr[top] = 1; | |
printCodes(root->right, arr, top + 1); | |
} | |
// If this is a leaf node, then | |
// it contains one of the input | |
// characters, print the character | |
// and its code from arr[] | |
if (isLeaf(root)) { | |
printf("%c: ", root->data); | |
printArr(arr, top); | |
} | |
} | |
// The main function that builds a | |
// Huffman Tree and print codes by traversing | |
// the built Huffman Tree | |
void HuffmanCodes(char data[], int freq[], int size) | |
{ | |
// Construct Huffman Tree | |
struct MinHeapNode* root | |
= buildHuffmanTree(data, freq, size); | |
// Print Huffman codes using | |
// the Huffman tree built above | |
int arr[MAX_TREE_HT], top = 0; | |
printCodes(root, arr, top); | |
} | |
// Driver program to test above functions | |
int main() | |
{ | |
char arr[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'}; | |
int freq[] = {8, 21, 37, 24, 6, 18, 23, 41, 56, 14}; | |
int size = sizeof(arr) / sizeof(arr[0]); | |
HuffmanCodes(arr, freq, size); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment