Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save anonymous/1e14a0f8e51f0fc52726d99d4bd308b9 to your computer and use it in GitHub Desktop.
Save anonymous/1e14a0f8e51f0fc52726d99d4bd308b9 to your computer and use it in GitHub Desktop.
Схема усиления сигнала от источника питания

Схема усиления сигнала от источника питания


= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Файл: >>>>>> Скачать ТУТ!
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


Усилительный каскад с ОЭ. Схема и назначение элементов. Пояснить принцип усиления мощности входного сигнала
Анализ процесса усиления электрических сигналов
Обработка сигналов. Усиление сигнала для корректной передачи


























Как отремонтировать китайскую люстру - история одного р Как устроены и работают источники бесперебойного питани Безопасность при работе с инструментами: Почему перегорают светодиодные лампы Что такое динамо-машина. Автомобильный генератор и его особенности Как измерить емкость аккумулятора Что такое ПИД-регулятор Почему искрят щетки электродвигателя Современные способы дистанционного управления уличным о Схемы включения биполярных транзисторов. Транзистором называется полупроводниковый прибор, который может усиливать, преобразовывать и генерировать электрические сигналы. Первый работоспособный биполярный транзистор был изобретен в году. Материалом для его изготовления служил германий. А уже в году на свет появился кремниевый транзистор. В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Кроме биполярных существуют униполярные полевые транзисторы, у которых используется лишь один тип носителей — электроны или дырки. В этой статье будут рассмотрены биполярные транзисторы. Долгое время транзисторы в основном были германиевыми, и имели структуру p-n-p, что объяснялось возможностями технологий того времени. Но параметры германиевых транзисторов были нестабильны, их самым большим недостатком следует считать низкую рабочую температуру, - не более При более высоких температурах транзисторы становились неуправляемыми, а затем и вовсе выходили из строя. Со временем кремниевые транзисторы начали вытеснять германиевых собратьев. В настоящее время в основном они, кремниевые, и применяются, и в этом нет ничего удивительного. Ведь кремниевые транзисторы и диоды практически все типы сохраняют работоспособность до … градусов. Транзисторы по праву считаются одним из великих открытий человечества. Придя на смену электронным лампам, они не просто заменили их, а совершили переворот в электронике, удивили и потрясли мир. Если бы не было транзисторов, то многие современные приборы и устройства, такие привычные и близкие, просто не появились на свет: Подробнее об истории транзисторов смотрите здесь. Большинство кремниевых транзисторов имеют структуру n-p-n, что также объясняется технологией производства, хотя существуют и кремниевые транзисторы типа p-n-p, но их несколько меньше, нежели структуры n-p-n. Такие транзисторы используются в составе комплементарных пар транзисторы разной проводимости с одинаковыми электрическими параметрами. Например, КТ и КТ, КТ и КТ, а в выходных каскадах транзисторных УМЗЧ КТ и КТ В импортных усилителях очень часто применяется мощная комплементарная пара 2SA и 2SC Часто транзисторы структуры p-n-p называют транзисторами прямой проводимости, а структуры n-p-n обратной. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь. На рисунке 1 показано схематичное устройство транзисторов и их условные графические обозначения. Кроме различия по типу проводимости и материалу, биполярные транзисторы классифицируются по мощности и рабочей частоте. Если мощность рассеивания на транзисторе не превышает 0,3 Вт, такой транзистор считается маломощным. При мощности 0,3…3 Вт транзистор называют транзистором средней мощности, а при мощности свыше 3 Вт мощность считается большой. Современные транзисторы в состоянии рассеивать мощность в несколько десятков и даже сотен ватт. Транзисторы усиливают электрические сигналы не одинаково хорошо: Поэтому для работы в широком диапазоне частот транзисторы выпускаются с разными частотными свойствами. По рабочей частоте транзисторы делятся на низкочастотные, - рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц. Если же рабочая частота превышает МГц, то это уже сверхвысокочастотные транзисторы. Вообще, в серьезных толстых справочниках приводится свыше различных параметров транзисторов, что также говорит об огромном числе моделей. А количество современных транзисторов таково, что в полном объеме их уже невозможно поместить ни в один справочник. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками. Существует множество транзисторных схем достаточно вспомнить количество хотя бы бытовой аппаратуры для усиления и преобразования электрических сигналов, но, при всем разнообразии, схемы эти состоят из отдельных каскадов, основой которых служат транзисторы. Для достижения необходимого усиления сигнала, приходится использовать несколько каскадов усиления, включенных последовательно. Чтобы понять, как работают усилительные каскады, надо более подробно познакомиться со схемами включения транзисторов. Сам по себе транзистор усилить ничего не сможет. Его усилительные свойства заключаются в том, что малые изменения входного сигнала тока или напряжения приводят к значительным изменениям напряжения или тока на выходе каскада за счет расходования энергии от внешнего источника. Именно это свойство широко используется в аналоговых схемах, - усилители, телевидение, радио, связь и т. Для упрощения изложения здесь будут рассматриваться схемы на транзисторах структуры n-p-n. Все что будет сказано об этих транзисторах, в равной степени относится и к транзисторам p-n-p. Достаточно только поменять полярность источников питания, электролитических конденсаторов и диодов , если таковые имеются, чтобы получить работающую схему. Всего таких схем применяется три: Все эти схемы показаны на рисунке 2. Но прежде, чем перейти к рассмотрению этих схем, следует познакомиться с тем, как работает транзистор в ключевом режиме. Это знакомство должно упростить понимание работы транзистора в режиме усиления. В известном смысле ключевую схему можно рассматривать как разновидность схемы с ОЭ. Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме. Такой режим работы транзистора рассматривался уже давно. Автор статьи предлагал регулировать частоту вращения коллекторного двигателя изменением длительности импульсов в обмотке управления ОУ. Теперь подобный способ регулирования называется ШИМ и применяется достаточно часто. Схема из журнала того времени показана на рисунке 3. Но ключевой режим используется не только в системах ШИМ. Часто транзистор просто что-то включает и выключает. В этом случае в качестве нагрузки можно использовать реле: Вместо реле в ключевом режиме часто используются лампочки. Обычно это делается для индикации: Схема такого ключевого каскада показана на рисунке 4. Ключевые каскады также применяются для работы со светодиодами или с оптронами. На рисунке каскад управляется обычным контактом, хотя вместо него может быть цифровая микросхема или микроконтроллер. Следует обратить внимание на тот факт, что для управления используется напряжение 5В, а коммутируемое коллекторное напряжение 12В. Ничего странного в этом нет, поскольку напряжения в данной схеме никакой роли не играют, значение имеют только токи. Поэтому лампочка может быть хоть на В, если транзистор предназначен для работы на таких напряжениях. Напряжение коллекторного источника также должно соответствовать рабочему напряжению нагрузки. С помощью подобных каскадов выполняется подключение нагрузки к цифровым микросхемам или микроконтроллерам. В этой схеме ток базы управляет током коллектора, который, за счет энергии источника питания, больше в несколько десятков, а то и сотен раз зависит от коллекторной нагрузки , чем ток базы. Нетрудно заметить, что происходит усиление по току. Это есть отношение тока коллектора, определяемого нагрузкой, к минимально возможному току базы. В виде математической формулы это выглядит вот так: Даже, если ток базы и получится больше расчетного, то транзистор от этого сильнее не откроется, на то он и ключевой режим. Сопротивление базового резистора получится: Из стандартного ряда выбирается резистор с сопротивлением Ом. Напряжение 0,6В это напряжение на переходе Б—Э, и при расчетах о нем не следует забывать! Об этом резисторе не следует забывать, хотя в некоторых схемах его почему-то нет, что может привести к ложному срабатыванию каскада от помех. Номинал этого резистора должен быть таким, чтобы при размыкании контакта напряжение на базе не оказалось бы меньше 0,6В, иначе каскад будет неуправляемым, как будто участок Б—Э просто замкнули накоротко. Практически резистор Rбэ ставят номиналом примерно в десять раз больше, нежели Rб. Но даже если номинал Rб составит 10Ком, схема будет работать достаточно надежно: Такой ключевой каскад, если он исправен, может включить лампочку в полный накал, или выключить совсем. В этом случае транзистор может быть полностью открыт состояние насыщения или полностью закрыт состояние отсечки. В этом случае транзистор наполовину открыт или наполовину закрыт? Это как в задаче о наполнении стакана: Такой режим работы транзистора называется усилительным или линейным. Достаточно просто подобрать режим работы операционного усилителя, чтобы получить требуемый коэффициент усиления или полосу пропускания. Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером ОЭ. Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А. При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико не более нескольких сотен Ом , а выходное в пределах десятков КОм. Такое обозначение пришло из представления транзистора в виде четырехполюсника. После таких расчетов, как правило, требуется настройка схемы. Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки читай одной партии. Для маломощных транзисторов этот коэффициент колеблется в пределах …, а у мощных 5… Чем тоньше база, тем выше коэффициент. Простейшая схема включения транзистора ОЭ показана на рисунке 5. Это просто небольшой кусочек из рисунка 2, показанного во второй части статьи. Такая схема называется схемой с фиксированным током базы. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, - защитить входные цепи от постоянной составляющей входного сигнала достаточно вспомнить угольный или электретный микрофон и обеспечить необходимую полосу пропускания каскада. Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора. Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: Во-вторых, от температуры окружающей среды, - с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи — ООС. Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током, показанной на рисунке 5. Несколько лучше обстоит дело в случае применения схем, показанных на рисунке 7. В схеме с коллекторной стабилизацией резистор смещения R1 подключен не к источнику питания, а к коллектору транзистора. В этом случае, если при увеличении температуры происходит увеличение обратного тока, транзистор открывается сильнее, напряжение на коллекторе уменьшается. Это уменьшение приводит к уменьшению напряжения смещения, подаваемого на базу через R1. Транзистор начинает закрываться, коллекторный ток уменьшается до приемлемой величины, положение рабочей точки восстанавливается. Совершенно очевидно, что такая мера стабилизации приводит к некоторому снижению усиления каскада, но это не беда. Недостающее усиление, как правило, добавляют наращиванием количества усилительных каскадов. Зато подобная ООС позволяет значительно расширить диапазон рабочих температур каскада. Несколько сложней схемотехника каскада с эмиттерной стабилизацией. Усилительные свойства подобных каскадов остаются неизменными в еще более широком диапазоне температур, чем у схемы с коллекторной стабилизацией. И еще одно неоспоримое преимущество, - при замене транзистора не приходится заново подбирать режимы работы каскада. Эмиттерный резистор R4, обеспечивая температурную стабилизацию, также снижает усиление каскада. Это для постоянного тока. Для того, чтобы исключить влияние резистора R4 на усиление переменного тока, резистор R4 шунтирован конденсатором Cэ, который для переменного тока представляет незначительное сопротивление. Его величина определяется диапазоном частот усилителя. Если эти частоты лежат в звуковом диапазоне, то емкость конденсатора может быть от единиц до десятков и даже сотен микрофарад. Для радиочастот это уже сотые или тысячные доли, но в некоторых случаях схема прекрасно работает и без этого конденсатора. Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК. Схема с общим коллектором ОК Показана на рисунке 8. Эта схема является кусочком рисунка 2, из второй части статьи, где показаны все три схемы включения транзисторов. Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Вот тут можно спросить, почему же эта схема называется ОК? Ведь, если вспомнить схему ОЭ, то там явно видно, что эмиттер соединен с общим проводом схемы, относительно которого подается входной и снимается выходной сигнал. В схеме же ОК коллектор просто соединен с источником питания, и на первый взгляд кажется, что к входному и выходному сигналу отношения не имеет. Но на самом деле источник ЭДС батарея питания имеет очень маленькое внутреннее сопротивление, для сигнала это практически одна точка, один и тот же контакт. Известно, что для кремниевых транзисторов напряжение перехода б-э находится в пределах 0,5…0,7В, поэтому можно принять его в среднем 0,6В, если не задаваться целью проводить расчеты с точностью до десятых долей процента. Поэтому, как видно на рисунке 9, выходное напряжение всегда будет меньше входного на величину Uб-э, а именно на те самые 0,6В. В отличие от схемы ОЭ эта схема не инвертирует входной сигнал, она просто повторяет его, да еще и снижает на 0,6В. Такую схему еще называют эмиттерным повторителем. Зачем же такая схема нужна, в чем ее польза? Схема ОК усиливает сигнал по току в h21э раз, что говорит о том, что входное сопротивление схемы в h21э раз больше, чем сопротивление в цепи эмиттера. Другими словами можно не опасаясь спалить транзистор подавать непосредственно на базу без ограничительного резистора напряжение. Высокое входное сопротивление позволяет подключать источник входного сигнала с высоким импедансом комплексное сопротивление , например, пьезоэлектрический звукосниматель. Отличительной особенностью схемы ОК является то, что ее коллекторный ток Iк зависит только от сопротивления нагрузки и напряжения источника входного сигнала. При этом параметры транзистора тут вообще никакой роли не играют. Про такие схемы говорят, что они охвачены стопроцентной обратной связью по напряжению. При этом будем считать, что Uбэ известен и всегда равен 0,6В. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Ведь если вместо Rн поставить гвоздь — сотку, то никакой транзистор не выдержит! Схема ОК позволяет достаточно легко измерить статический коэффициент передачи тока h21э. Как это сделать, показано на рисунке Сначала следует измерить ток нагрузки, как показано на рисунке 10а. При этом базу транзистора никуда подключать не надо, как показано на рисунке. После этого измеряется ток базы в соответствии с рисунком 10б. Измерения должны в обоих случаях производиться в одних величинах: Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях. Чтобы узнать статический коэффициент передачи тока достаточно ток нагрузки разделить на ток базы: Следует отметить, что при увеличении тока нагрузки h21э несколько уменьшается, а при увеличении напряжения питания увеличивается. Эмиттерные повторители часто строятся по двухтактной схеме с применением комплементарных пар транзисторов, что позволяет увеличить выходную мощность устройства. Такой эмиттерный повторитель показан на рисунке Такая схема дает только усиление по напряжению, но обладает лучшими частотными свойствами по сравнению со схемой ОЭ: Основное применение схемы ОБ это антенные усилители диапазонов ДМВ. Схема антенного усилителя показана на рисунке Необходимые инструменты и приборы для начинающих изучать электронику С чего начать изучение электроники Пробник для проверки транзисторов. Смотрите также на Электрик Инфо: Работа транзистора в ключевом режиме Характеристики биполярных транзисторов Устройство и работа биполярного транзистора Биполярные и полевые транзисторы - в чем различие Схемы на операционных усилителях с обратной связью. Особенно нюанс с частотами. Я как то упускал это из виду. Электрик Инфо - электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров. Информация и обучающие материалы для начинающих электриков. Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок. За применение этой информации администрация сайта ответственности не несет. Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. Перепечатка материалов сайта запрещена. Работа транзистора в ключевом режиме Характеристики биполярных транзисторов Устройство и работа биполярного транзистора Биполярные и полевые транзисторы - в чем различие Схемы на операционных усилителях с обратной связью VK.


Операционный усилитель? Это очень просто!


Усилителями постоянного тока УПТ или медленно меняющихся во времени сигналов называются усилители низкой частоты, коэффициент усиления которых не равен нулю на частоте. УПТ способны усиливать постоянные и переменные напряжения. Амплитудно-частотная характеристика УПТ приведена на рис. Усилители постоянного тока широко используются в технике физического эксперимента и радиоизмерительных устройствах — электронных вольтметрах, высокочувствительных гальванометрах, осциллографах, в схемах различных стабилизаторов. В усилителях постоянного тока применяется непосредственная связь между каскадами, так как связь через разделительные конденсаторы и трансформаторы не обеспечивает передачи постоянной составляющей усиливаемого сигнала. Поэтому база транзистора каждого последующего каскада непосредственно соединяется с коллектором транзистора предыдущего каскада. Гальваническое соединение связано с необходимостью согласования режимов соседних транзисторов по постоянному току. При создании многокаскадных УПТ с большими коэффициентами усиления возникают определенные трудности, вызванные нестабильностью усилителей постоянного тока. Отличие коэффициента усиления от нуля при нулевой частоте приводит к тому, что медленные процессы, связанные с колебаниями напряжения источников питания, изменениями сопротивлений резисторов и параметров активных элементов, вызывают появление внутри усилителя небольшого напряжения, которое усиливается последующими каскадами. В результате при отсутствии входного сигнала выходное напряжение УПТ медленно флуктуирует около некоторого среднего значения. Это вредное явление называется дрейфом нуля. Дрейф нуля, вызываемый перечисленными причинами, можно минимизировать, используя высокостабильные элементы схемы и стабилизаторы напряжений источников питания. Однако основной причиной дрейфа нуля являются температурные изменения входной характеристики и параметров транзисторов. Температурное смещение входных характеристик кремниевых транзисторов составляет, примерно, -2,5мВ на один градус Цельсия. Чтобы оценить порядок величины температурного дрейфа нуля на выходе усилителя, рассмотрим двухкаскадный усилитель постоянного тока на кремниевых транзисторах, схема которого представлена на рис. При этом произойдет смещение входной характеристики каждого транзистора на - 0,1В, что эквивалентно появлению дополнительного напряжения на базах транзисторов. Это напряжение суммируется с напряжением, вызванным температурным смещением входной характеристики второго транзистора. В результате общее приращение напряжения на базе второго транзистора составит -0,58В. Умноженное на коэффициент усиления второго транзистора , результирующее смещение на выходе усилителя составит:. Из-за большого температурного дрейфа нуля многокаскадные УПТ с непосредственной связью между каскадами не находят применения. Дрейф нуля почти полностью отсутствует в усилителях с преобразованием сигнала. В них усиливаемое постоянное напряжение на входе усилителя преобразуется в переменное, которое усиливается усилителем переменного напряжения, на выходе которого обратно преобразуется в постоянное напряжение. Преобразование осуществляется по принципу модуляции-демодуляции сигнала М-Д-М усилители с помощью электронных коммутаторов, синхронно коммутирующих входное и выходное напряжения. Входное напряжение при этом преобразуется в короткие прямоугольные импульсы, амплитуда которых соответствует мгновенным значениям напряжения входного сигнала в моменты коммутации. Частота коммутации должна не менее чем в два раза превышать максимальную частоту в спектре входного сигнала. Недостатком таких усилителей являются наводки при коммутации малых входных напряжений. Примером такого усилителя является усилитель в интегральном исполнении УД Структурная схема М-Д-М усилителя приведена на рис. Структурная схема М-Д-М усилителя. Значительно минимизировать температурный дрейф нуля можно, используя параллельно-балансные каскады усилителя, построенные на двух идентичных по своим параметрам и характеристикам транзисторах. Такие усилители называются дифференциальными. Дифференциальные усилители ДУ представляют широкий класс усилителей, основным назначением которых является усиление разности между двумя сигналами. По этой причине их также называют разностными усилителями. Свойства ДУ зависят от симметрии между двумя плечами схемы. Балансная природа ДУ делает его идеальным усилителем в интегральном исполнении. Так как практически невозможно получить два абсолютно идентичных по своим параметрам и характеристикам транзистора на дискретных элементах, дифференциальные усилители изготавливают по интегральной технологии, поскольку такой технологии свойственно хорошее согласование элементов усилителя. Принципиальным достижением планарной технологии явилось создание на одной подложке пары строго согласованных по своим параметрам и характеристикам транзисторов. Степень согласования параметров определяется качеством технологического процесса. Для транзисторов, расположенных на одном кристалле, эквивалентная разность температур переходов может быть доведена до нескольких десятых долей градуса. Столь малая разность температур позволяет серийным интегральным дифференциальным структурам иметь разрешающую способность по постоянной составляющей порядка десятых долей милливольта. Температурный дрейф постоянной составляющей при этом имеет порядок единиц микровольт на изменения окружающей температуры. Такие характеристики обусловили ключевую роль дифференциального усилителя в схемотехнике линейных интегральных схем. Принципиальная схема дифференциального усилителя приведена на рис. У дифференциального усилителя два входа и два выхода. Можно подавать разные сигналы на оба входа. Можно подавать сигнал на один из входов, второй вход при этом заземляется. Выходной усиленный сигнал можно снимать между выходами усилителя, либо с каждого из выходов относительно земли. При полной симметрии схемы, когда напряжения на входах равны нулю, коллекторные токи транзисторов одинаковы, потенциалы коллекторов левого и правого транзисторов также одинаковы и выходное напряжение между коллекторами транзисторов равно нулю. Любые изменения температуры окружающей среды или флуктуации напряжения питания вызовут одинаковые изменения коллекторных токов и коллекторных напряжений транзисторов. Выходное напряжение между коллекторами при этом останется равным нулю. Дифференциальный усилитель усиливает разность входных сигналов. У высококачественных дифференциальных усилителей сопротивление резистора Должно быть неограниченно велико. Совместно с источником питания этот резистор образует генератор стабильного тока. Поэтому необходимо обеспечить высокую стабильность источника питания усилителя, так как качество усилителя зависит от стабильности тока. У дифференциального усилителя ток практически не зависит от наличия сигналов на входах. Если напряжения генераторов и Одинаковы, ток Делится пополам между транзисторами усилителя. Напряжения на выходах усилителя при этом равны напряжению баланса:. Транзистор усиливает и не инвертирует входной импульс, так как по отношению к входному сигналу представляет схему с ОБ. На выходах ДУ появятся одинаковые импульсы разной полярности. При этом ток левого транзистора во время действия входного импульса будет увеличиваться, а ток правого транзистора будет уменьшаться. Таким образом, на время действия импульса происходит перераспределение тока I 0 между левым и правым транзисторами. Суммарный же ток остается равным I 0. Изменение напряжений на выходах транзисторов усилителя для этого случая показано на рис. Если подать положительный импульс на базу правого транзистора, то правый транзистор будет представлять собой схему с ОЭ, а левый транзистор по отношению к входному сигналу — схему с ОБ. Ток правого транзистора будет увеличиваться, а ток левого транзистора — уменьшаться. При этом также происходит перераспределение тока между транзисторами усилителя. Сигнал управления, прикладываемый между входами усилителя, называется дифференциальным. Если на входы поданы одинаковые сигналы, то такой сигнал называется синфазным. Идеальный дифференциальный усилитель не дает отклика на синфазный сигнал. Реальный дифференциальный усилитель откликается на синфазный сигнал из-за неидеальности генератора тока и неидеальной симметрии схемы. Обычно под синфазным сигналом понимают сигнал помехи, действующей одновременно на оба входа. Синфазный сигнал может появляться также за счет наводок на оба входа усилителя, за счет нестабильности источников питания, за счет неидеальности генератора тока и неидеальной симметрии схемы усилителя, за счет изменения температуры и других воздействий на усилитель. Синфазный сигнал может присутствовать автоматически в некоторых схемах подачи дифференциального сигнала. В этом случае на входах усилителя происходит суммирование полезного сигнала и синфазного мешающего сигнала. Если сигналы на входах ДУ и неодинаковы, их можно представить в виде комбинации синфазной и дифференциальной составляющих:. Различают коэффициент усиления разностного сигнала и коэффициент передачи синфазного сигнала. Коэффициент усиления разностного сигнала равен:. С учетом крутизны транзистора коэффициент усиления дифференциального сигнала равен, как и у одиночного - каскада по схеме с ОЭ:. Коэффициент передачи синфазного сигнала можно выразить через отношение коллекторного и эмиттерного резисторов:. Поскольку дифференциальный усилитель значительно ослабляет синфазные сигналы. Качество дифференциального усилителя оценивается коэффициентом ослабления синфазного сигнала, который равен отношению. Величина относительного ослабления синфазного сигнала может быть выражена в логарифмических единицах через коэффициент ослабления синфазного сигнала. Коэффициент ослабления синфазного сигнала для этого случая равен Раз или дБ. Способность дифференциального усилителя различать по входу малые дифференциальные сигналы на фоне больших синфазных помех является одним из его важнейших достоинств. Другой характерной особенностью ДУ является низкое значение температурного дрейфа напряжения на выходе. Это обусловлено тем, что температурные изменения напряжений база-эмиттер левого и правого транзисторов воспринимаются усилителем как синфазный сигнал и значительно ослабляются на выходе. Типовая величина температурного дрейфа разности напряжений база-эмиттер для современных ДУ составляет единицы микровольт на градус Цельсия. Из выражения для коэффициента передачи синфазного сигнала следует, что чем больше , тем сильнее ослабляется синфазный сигнал. Для увеличения в цепь эмиттера включают генератор стабильного тока на транзисторах рис. Выходное сопротивление такого генератора тока велико, так как через резистор Осуществляется последовательная отрицательная обратная связь по току. Поэтому ток стабилен даже при воздействии синфазного сигнала. Если пренебречь током базы транзистора генератора стабильного тока, то значение тока можно определить из выражения:. Температурные зависимости токов и Будут одинаковыми. В результате ток увеличивается, а ток базы транзистора уменьшается, препятствуя увеличению тока. Таким образом, ток следит за током. В интегральном исполнении вместо диода ставят транзистор в диодном включении. Дифференциальный усилительный каскад используется в качестве основного блока в схеме операционного усилителя. Наиболее распространенным классом аналоговых интегральных схем являются монолитные операционные усилители ОУ. Дифференциальные усилители являются основой схемотехники операционных усилителей. Операционным усилителем называется усилитель постоянного тока с большим коэффициентом усиления постоянного напряжения и с большим входным сопротивлением. Обычно ОУ питается от двухполярного источника питания и имеет два входа и один выход. Один вход называется неинвертирующим, так как фаза сигнала на выходе усилителя совпадает с фазой сигнала, поданного на этот вход. Второй вход называется инвертирующим, так как фаза сигнала на выходе усилителя противоположна фазе сигнала на этом входе. Термин операционный усилитель, возникший впервые в вычислительной технике, в настоящее время существенно изменил свое первоначальное значение. Широкие возможности производства качественных ОУ открылись с внедрением интегральной технологии, позволяющей в одном кристалле создать множество транзисторов с идентичными характеристиками. По своим свойствам ОУ близок к идеальному усилителю напряжения. Идеальный ОУ должен обладать следующими свойствами:. Эти свойства полностью не могут быть реализованы в реальном ОУ. Однако отсюда можно сделать 2 вывода:. Входы идеального ОУ не потребляют ток от источника сигнала, так как входное сопротивление равно бесконечности. Между входами идеального ОУ напряжение управления равно нулю, так как коэффициент усиления равен бесконечности. Эти два вывода можно сформулировать как принцип виртуального замыкания, который поясняется на рис. При виртуальном замыкании, как и при обычном, напряжение между замкнутыми зажимами равно нулю. Однако в отличие от обычного замыкания, ток источника сигналов в виртуальное замыкание не ответвляется, а течет через резистор обратной связи. Для тока виртуальное замыкание эквивалентно разрыву цепи. При этом инвертирующий вход обозначен кружком можно считать потенциально заземленным. Достоинством ОУ с характеристиками, близкими к идеальным, является то, что он может выполнять большое количество математических операций путем применения пассивных цепей обратной связи, охватывающих усилитель. Если входное и выходное сопротивления усилителя являются соответственно очень высоким и очень низким по отношению к величине сопротивления цепи обратной связи, и если коэффициент усиления достаточно велик, то результирующие характеристики усилителя определяются только параметрами элементов цепи внешней обратной связи. Работа в режиме микроамперных токов позволяет обеспечить не только высокое значение входного сопротивления, но и хорошие шумовые параметры, и низкий уровень дрейфа. Для обеспечения высокой стабильности, хорошего подавления синфазной помехи, малого дрейфа нуля в цепи эмиттеров первого ДУ включен генератор стабильного тока. За входным ДУ включается следующий дифференциальный усилитель — усилитель напряжения УН , который обычно работает с токами эмиттеров транзисторов, имеющих уровень 1 —2 мА, поэтому его коэффициент усиления всегда превышает Наиболее широкое распространение получили трех - и двухкаскадные ОУ. В ОУ применяют покаскадное соединение дифференциальных усилителей, поэтому из-за отсутствия разделительных конденсаторов на базах второго каскада ДУ будут значительные постоянные составляющие коллекторного напряжения предыдущего каскада. Необходимый сдвиг уровня обеспечивает УН. Выходной каскад ОУ представляет собой усилитель мощности, позволяющий получить необходимое усиление по мощности и малое значение выходного сопротивления. Обычно в ОУ применяют двухполярное питающее напряжение, чтобы обеспечить возможность работы, как с положительными, так и отрицательными входными сигналами. Двухполярное питание облегчает получение на выходе ОУ нулевого потенциала при отсутствии напряжения на входе. Как правило, ОУ работают с напряжениями питания. Амплитудная характеристика ОУ для инвертирующего и неинвертирующего входов имеет вид, показанный на рисунке 5. Из амплитудной характеристики видно, что напряжение на выходе ОУ равно нулю, когда входное напряжение равно нулю. В реальном ОУ наблюдается разбаланс, т. Современные ОУ являются двухкаскадными. Они состоят из сложного входного каскада с повышенным коэффициентом усиления и выходного каскада. АЧХ ОУ аппроксимируют прямыми линиями, изломы которых соответствуют полюсам АЧХ. Такая идеализированная АЧХ называется диаграммой Боде. Двухкаскадный ОУ имеет 2 излома идеализированной амплитудно-частотной характеристики. Фазовый сдвиг выходного сигнала ОУ должен быть меньше , когда коэффициент усиления. При этом для любого коэффициента обратной связи запас по фазе будет составлять не менее. Это требование выполняется коррекцией частотной характеристики ОУ, причем коррекция производится так, чтобы при АЧХ была аналогична характеристике фильтра нижних частот первого порядка. Корректирующие цепи обеспечивают устойчивость схемы ОУ к самовозбуждению. Граничной частотой или частотой единичного усиления ОУ называется частота, при которой коэффициент усиления ОУ без обратной связи становится равным 1 0дБ. Для обеспечения стабильности работы ОУ, расширения его динамического диапазона и получения необходимой рабочей полосы частот в ОУ вводят отрицательную обратную связь. Широко применяются в радиоэлектронной аппаратуре ОУ общего применения КУД6, КУД7, КУД1, КУД17, КУД1, КУД20, КУД1 и другие. Микросхема ОУ КУД20 содержит в корпусе два ОУ, а микросхема КУД1 — четыре ОУ. Набор параметров ОУ содержит около 20 наименований. Эти параметры, приводимые в справочниках, позволяют оценить качество ОУ без его испытания. Коэффициент усиления современных ОУ составляет сотни тысяч. Так ОУ КУД17 имеет коэффициент усиления порядка. Коэффициент ослабления синфазного сигнала достигает значений - ДБ. Частота единичного усиления ОУ может составлять МГц. Величина дифференциального входного сопротивления ОУ на полевых транзисторах составляет величину Ом, а величина выходного сопротивления — десятки Ом. Входной сигнал подается на инвертирующий вход. Фаза усиленного сигнала на выходе ОУ противоположна фазе входного сигнала. Исходя из принципа виртуального замыкания, можно записать:. Последнее выражение является достаточно точным, если собственный коэффициент усиления самого ОУ намного больше требуемого коэффициента усиления ОУ с обратной связью. Например, для получения усилителя с коэффициентом усиления , коэффициент усиления ОУ без обратной связи должен составлять и выше. Это условие легко обеспечивают современные ОУ. Если источник сигналов подключить к неинвертирующему входу, то получим неинвертирующий усилитель, схема которого приведена на рисунке 5. При коэффициент усиления будет равен. Если в цепь отрицательной обратной связи включить конденсатор, как показано на рисунке 5. Ток , протекая через резистор, заряжает конденсатор и создает на нем напряжение, которое является выходным:. В отличие от интегрирующей цепочки происходит линейный заряд конденсатора входным током, величина которого определяется резистором R. Если входной сигнал представляет собой переменное напряжение, изменяющееся по косинусоидальному закону, то есть , то формула напряжения на выходе будет иметь следующий вид:. Как видно из этого выражения, амплитуда выходного сигнала обратно пропорциональна круговой частоте. Амплитудно-частотная характеристика интегратора в логарифмическом масштабе имеет вид прямой с наклоном -6дБ на октаву изменения частоты. То есть выходной сигнал возрастает со временем. Поэтому эта схема пригодна для формирования пилообразного напряжения. Если в схеме интегратора поменять местами резистор и конденсатор, то получим инвертирующий дифференцирующий ОУ, схема которого приведена на рисунке 4. Подставив значение тока в выражение 5. Если к входу подключить генератор синусоидального напряжения , то напряжение на выходе будет равно:. Следует отметить, что данная схема становится неустойчивой на больших частотах из-за дополнительного фазового сдвига в цепи обратной связи. Для уменьшения фазового сдвига в цепи обратной связи последовательно с конденсатором включают резистор. Постоянную времени и, следовательно, граничную частоту выбирают так, чтобы на этой частоте усиление цепи обратной связи составляло 1. Этот усилитель суммирует входные токи на резисторе обратной связи. Напряжение на выходе усилителя пропорционально сумме входных токов и равно:. Такая схема широко применяется в цифро-аналоговых преобразователях для суммирования весовых токов. Если в цепь обратной связи включить нелинейный элемент, то получим схему логарифмирующего усилителя, показанную на рисунке 5. В качестве нелинейного элемента используется полупроводниковый диод. Для положительных входных сигналов ток, протекающий через диод, соответствует прямой ветви вольтамперной характеристики диода и равен:. Это равенство достаточно точное при напряжении на диоде. Из этого выражения видно, что напряжение на выходе операционного усилителя пропорционально логарифму входного напряжения. Для отрицательных входных сигналов необходимо включить диод в обратной полярности. Вместо диода можно использовать биполярный транзистор в диодном включении. Реализация фильтров с индуктивностями в области низких частот затруднительна, так как для низкочастотного диапазона необходимы большие катушки, которые сложны в изготовлении и обладают плохими электрическими характеристиками. Применения катушек индуктивностей для фильтров в области низких частот можно избежать, используя -фильтры совместно с операционными усилителями. Такие фильтры называются активными. Высокое значение входного сопротивления ОУ не нагружает -цепь. Необходимо, чтобы ОУ обеспечивал заданный коэффициент усиления как в полосе пропускания, так и за ее пределами для того, чтобы затухание фильтра за пределами полосы пропускания было не меньше заданного. Фильтр верхних частот является инвертирующим. Его АЧХ определяется дифференцирующей цепью и описывается выражением. Активные фильтры более высоких порядков можно построить из последовательно соединенных фильтров первого, второго, третьего порядков. Политех в Сети Сайт для Учебы. Аналитическая геометрия и линейная алгебра Биофизика Дифференциальные уравнения Математический анализ Механика Молекулярная физика Оптика Основы радиоэлектроники Программирование Радиоэлектроника Теоретическая механика Физика Физика атома Физика ядра Экономическая теория Электричество и магнетизм Электродинамика. Главное меню Главная Предметы Аналитическая геометрия и линейная алгебра Биофизика Дифференциальные уравнения Математический анализ Механика Молекулярная физика Оптика Основы радиоэлектроники Программирование Радиоэлектроника Теоретическая механика Физика Физика атома Физика ядра Экономическая теория Электричество и магнетизм Электродинамика. Войти Логин Пароль Запомнить меня Забыли пароль?


Requires flash перевод
Как выбрать смартфон 4g недорогой но хороший
История игрушек видео про игрушки
Как восстановить языковый панель
Копчение грудинки в домашних условиях в коптильне
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment