Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/2e27e0d88ed03f2c5375cc8889f62244 to your computer and use it in GitHub Desktop.
Save anonymous/2e27e0d88ed03f2c5375cc8889f62244 to your computer and use it in GitHub Desktop.
Генератор с мостом вина на оу схема

Генератор с мостом вина на оу схема - RC-генераторы гармонических колебаний


Генератор с мостом вина на оу схема



Генератор тестового сигнала с низким уровнем гармоник на мосте Вина
Генераторы синусоидальных колебаний на ОУ
Генератор с мостом Вина
Генератор с мостом Вина
RC-генераторы гармонических колебаний
Генератор с мостом Вина













Генераторами являются такие схемы, которые производят периодические колебания различных форм, например, прямоугольные, треугольные, пилообразные и синусоидальные. В генераторах обычно применяются различные активные компоненты, лампы или кварцевые резонаторы, а так же пассивные - резисторы, конденсаторы, индуктивности. Существует два основных класса генераторов - релаксационные и гармонические. Релаксационные генераторы производят треугольные, пилообразные и другие несинусоидальные сигналы, и в этой статье они не рассматриваются. Синусоидальные генераторы состоят из усилителей со внешними компонентами, или же компоненты могут быть смонтированы на одном кристалле с усилителем. В этой статье рассматриваются генераторы гармонических сигналов, созданные на основе операционных усилителей. Генераторы гармонического сигнала применяются в качестве образцовых или испытательных генераторов во многих схемах. В чистом синусоидальном сигнале присутствует только основная частота - в идеале в нём нет никаких других гармоник. Таким образом, подавая синусоидальный сигнал на вход какого-нибудь устройства, можно измерить уровень гармоник на его выходе, определив таким образом коэффициент нелинейных искажений. В релаксационных генераторах выходной сигнал формируется из синусоидального сигнала, который суммируется для формирования колебаний специальной формы. Генераторы на операционных усилителях являются нестабильными схемами - не в том смысле, что они случайно получились нестабильными - а наоборот, их специально конструируют так, что бы они оставались в нестабильном состоянии или в состоянии генерации. Генераторы бывают полезны для генерации стандартных сигналов, используемых как образцовые для применения в областях, связанных с аудио, в качестве функциональных генераторов, в цифровых системах и в системах связи. Существуют два основных класса генераторов: Синусоидальные состоят из усилителей с RC или LC цепями, с помощью которых можно менять частоту генерации, или кварцев с фиксированной частотой. Релаксационные генераторы генерируют колебания треугольной, пилообразной, прямоугольной, импульсной или экспоненциальной формы и здесь не рассматриваются. Генераторы синусоидального сигнала работают без подачи на них внешнего сигнала. Вместо этого применяется комбинация положительной или отрицательной обратной связи, что бы перевести усилитель в нестабильное состояние, что приводит к цикличному изменению сигнала на выходе от минимального до максимального напряжения питания с постоянным периодом. Частота и амплитуда колебаний определяется набором активных и пассивных компонентов, подключённых к операционному усилителю. Генераторы на операционных усилителях ограничены низкочастотным диапазоном частотного спектра, так как у них отсутствует широкая полоса пропускания, необходимая для достижения низкого фазового сдвига на высоких частотах. Операционные усилители с обратной связью по напряжению ограничены килогерцовым частотным диапазоном, так как доминирующий полюс при разомкнутой цепи обратной связи может находиться на достаточно низкой частоте, например 10 Гц. Новые операционные усилители с токовой связью имеют гораздо большую полосу пропускания, но их очень трудно использовать в генераторных схемах потому что они чувствительны к ёмкостям в цепях обратной связи. Генераторы с кварцевыми резонаторами используются для применения в высокочастотных схемах в диапазоне до сотен мГц. Для демонстрации условий возникновения колебаний используется классическое изображение системы с отрицательной обратной связью. E представляет ошибку, равную сумме коэффициента обратной связи и входного напряжения. Классическая форма изображения системы с положительной или отрицательной обратной связью. Соответствующие классические выражения для системы обратной связи выводятся следующим образом. Уравнение 1 является определяющим уравнением для выходного напряжения; уравнение 2 - для соответствующей ошибки:. Переставляя местами члены равенства, получим уравнение 5 , классическую форму описания обратной связи:. Генераторы не требуют никакого внешнего сигнала для своей работы, вместо этого они используют некоторую часть выходного сигнала, подаваемого обратно на вход через цепь обратной связи. Колебания в генераторах возникают от того, что системе обратной связи не удаётся найти стабильное состояние, потому что условие передаточной функции не может быть выполнено. Это так называемый критерий Баркгаузена. Когда амплитуда выходного напряжения достигает величины какого-либо из питающих напряжений, то активные устройства в усилителях изменяют коэффициент усиления. На данном этапе может произойти одно из трёх событий: Начальные изменения приводят систему в режим насыщение или в режим отсечки и система остаётся в этом состоянии долгое время, прежде чем она становится линейной и выходное напряжение начинает изменяться по направлению к противоположному источнику питания. Система остаётся линейной и меняет направление изменения выходного напряжения в сторону к противоположному источнику питания. Второй вариант даёт сильно искажённые колебания как правило, почти прямоугольной формы , такие генераторы называют релаксационными. Третий вариант производит синусоидальный сигнал. Как и любые правильно сконструированные схемы с обратной связью, генераторы зависят от фазового сдвига, вносимого пассивными компонентами, потому что этот фазовый сдвиг точный и почти без дрейфа. Фазовый сдвиг, вносимый активными компонентами сведён к минимуму, поскольку он зависит от температуры, имеет широкий начальный допуск, и зависит от типов активных элементов. Усилители подобраны таким образом, что бы они вносили минимальный фазовый сдвиг или вообще не вносили никакого фазового сдвига на частоте колебаний. Эти факторы ограничивают рабочий диапазон генераторов на операционных усилителях относительно низкими частотами. Но LC и LR генераторы здесь не рассматриваются, так как низкочастотные индуктивности дороги, тяжелы, громоздки и сильно неидеальны. LC генераторы применяются в высокочастотных схемах, за пределами частотного диапазона операционных усилителей, там где размер, вес и цена индуктивностей менее важны. Когда буферированные RC звенья буфер на операционном усилителе обеспечивает высокое входное и низкое выходное сопротивление включены каскадно, то фазовый сдвиг умножается на количество звеньев, n см. Следовательно, генератор на основе двух последовательно соединённых RC цепей будет иметь плохую стабильность частоты. Рисунок 2 , что даёт в результате улучшение стабильности частоты генератора. Рисунок 2 , таким образом, это даёт наиболее стабильную по частоте схему RC генератора. Резонаторы применяют в высокочастотных схемах, в низкочастотных схемах резонаторы не используют из-за их больших размеров, веса и стоимости. Операционные усилители обычно не используют совместно с кварцевыми или керамическими резонаторами, так как ОУ имеют низкую полосу пропускания. Опыт показывает, что вместо использования низкочастотных резонаторов для низких частот является более экономически эффективным способ, когда используется высокочастотный кварцевый генератор, выходную частоту которого следует поделить в n раз до необходимой рабочей частоты, а затем отфильтровать выходной сигнал. При нормальных условиях схема становится устойчивой в случае, когда усиление превышает единицу, и тогда генерация прекращается. Эта нелинейность становится важной в случае, если выходное напряжение усилителя приближается по величине к одному из питающих напряжений, так как в режиме отсечки или насыщения снижается усиление активных элементов транзисторов. Парадокс здесь в том, что для технологичности на всякий случай закладывают усиление, превышающее единицу, хотя чрезмерное усиление приводит к увеличению искажения синусоидального сигнала. Когда усиление слишком низкое, то условия ухудшаются и колебания прекращаются, а когда усиление слишком большое, то форма выходного сигнала становится больше похожа на меандр, чем на синусоиду. Искажения являются прямым результатом чрезмерного увеличения усиления, перегружающего усилитель; следовательно, усиление должно контролироваться очень тщательно в генераторах с низким коэффициентом искажениями. В генераторах на основе фазосдвигающих цепей тоже имеются искажения, но они снижаются на выходе из-за того, что последовательно соединённые RC цепи работают как RC фильтры, уменьшающие искажения. Кроме того, буферированные генераторы на фазосдвигающих цепях имеют низкий уровень искажений, поскольку усиление контролируется и распределяется между буферами. Большинство схем требуют вспомогательной цепи для регулировки усиления, если нужно получить сигнал с малыми искажениями. Во вспомогательных цепях могут использоваться нелинейные компоненты в цепях обратной связи для автоматической регулировки усиления, или ограничители на резисторах и диодах. Необходимо также уделить внимание изменению коэффициента усиления в результате изменений температуры и допусков компонент, и уровень сложности схем определяется исходя из требуемой стабильности коэффициента усиления. Чем более стабилен коэффициент усиления, тем чище будет синусоидальный сигнал на выходе. Во всех предыдущих рассуждениях предполагалось, что операционный усилитель имеет бесконечно большую полосу пропускания и его выход частотонезависим. В действительности у ОУ имеется несколько полюсов на АЧХ, но их компенсируют таким образом, что бы над ними доминировал один полюс по всей полосе пропускания. На рисунке 3 изображена зависимость частоты от усиления и фазы. Амплитуда и фаза начинают изменяться на одну декаду вниз от этой точки, 0. Чем выше усиление при замкнутой петле ОС, A CL , тем раньше оно начнёт падать. Таким образом, ОУ должен выбираться с коэффициентом усиления на полосе пропускания по крайней мере одну декаду выше частоты генерации, как показано на заштрихованном участке на рисунке 3. На рисунке 4 приведны сравнительные характеристики искажений на разных частотах для операционных усилителей LM, TLVx, и TLC, которые имеют полосу пропускания 0. График иллюстрирует важность выбора подходящего ОУ. Операционный усилитель нужно выбирать с подходящей полосой пропускания, иначе частота генерации будет лежать гораздо ниже, чем требуется. Необходимо соблюдать осторожность при использовании резисторов больших номиналов в цепи обратной связи, потому что они взаимодействуют с входной ёмкостью ОУ и создают полюса с отрицательной обратной связью, а так же полюса и нули с положительной обратной связью. Резисторы больших номиналов могут сдвигать эти полюса и нули ближе к частоте генерации и воздействовать на сдвиг фаз [3]. В заключении обратим внимание на ограничение скорости нарастания сигнала ОУ. При создании генераторов различными способами комбинируют положительную и отрицательную обратные связи. На рисунке 5,а изображена базовая схема усилителя с отрицательной ОС и с добавленной положительной ОС. Когда применяются и положительная, и отрицательная ОС, то их усиления комбинируются в одно общее усиление замкнутой петли ОС. Общий вид операционного усилителя с положительной и отрицательной ОС показан на рисунке 6,а. Первым шагом в анализе будет разрывание петли в каком-нибудь месте, но так, что бы усиление схемы не изменилось. Положительная ОС разорвана в точке, помеченной X. Тестовый сигнал V TEST подаётся в разорванную петлю и выходное напряжение V OUT измеряется с помощью эквивалентной схемы, изображённой на рисунке 6,б. В реальной схеме элементы заменяются для каждого импеданса, и уравнение упрощается. Эти уравнения действительны в случае, если усиление при разомкнутой петле ОС огромно и частота генерации меньше, чем 0. Уравнение 9 применяется для детального анализа этой схемы см. Существует много типов схем генераторов гармонических сигналов и их модификаций, при практической реализации выбор зависит от частоты и желаемой монотонности выходного сигнала. Основное внимание в этой части будет уделено более известным схемам генераторов: Передаточная функция выводится в каждом конкретном случае с помощью методов, описанных в разделе 6 этой статьи, и в ссылках 4, 5 и 6. Генератор на основе моста Вина является одним из наиболее простых и известных, он широко используется в аудио схемах. На рисунке 7 изображена основная схема генератора. Достоинство этой схемы - малое количество применённых деталей и хорошая стабильность частоты. Основным же её недостатком является то, что амплитуда выходного сигнала приближается к величине питающих напряжений, что приводит к насыщению выходных транзисторов операционного усилителя, и как следствие, является причиной искажений выходного сигнала. Укротить эти искажения гораздо сложнее, чем заставить схему генерировать. Существует несколько способов, чтобы минимизировать этот эффект. Они будут рассмотрены позже; сначала схема будет проанализирована для получения передаточной функции. Схема генератора на основе моста Вина имеет форму, детально описанную в части 7 , и передаточная функция для этой схемы выводится с помощью построений, описанных там. Петля разрывается между выходом и Z 1 , напряжение V TEST подаётся на Z 1 , и отсюда рассчитывается V OUT. Уравнение 10 показывает простой делитель напряжения у неинвертирующего входа. Теперь становятся очевидными некоторые интересные отношения. Что бы это условие выполнялось, R F должно быть в два раза больше, чем R G. Операционный усилитель на рисунке 7 использует однополярное питание, так что необходимо использовать опорное напряжение V REF для смещения постоянной составляющей выходного сигнала, что бы его амплитуда была в диапазоне от нуля до напряжения питания и искажения были бы минимальны. Подача V REF на положительный вход ОУ через резистор R 2 ограничивает протекание постоянного тока через отрицательную ОС. Напряжение V REF было установлено равным 0. При использовании двухполярного питания V REF заземляется. В действительности схема генерирует на частоте 1. Более высокое значение рабочей частоты является результатом обрезания выходного сигнала вблизи плюса и минуса источника питания, что приводит к появлению нескольких мощных чётных и нечётных гармоник. На рисунке 9 изображены осциллограммы выходного сигнала. Искажения растут с увеличением насыщения, которое растёт с увеличением сопротивления R F , и генерация прекращается при уменьшении сопротивления R F всего на 0. Подробнее о программе LTspice можно прочитать здесь. Применение нелинейной обратной связи может минимизировать искажения, присущие базовой схеме генератора на основе моста Вина. Нелинейный компонент, такой как лампа накаливания, можно подставить в схему на место резистора R G , как показано на рисунке Сопротивление лампы, R LAMP выбрано равным половине сопротивления обратной связи, R F , при токе, протекающим через лампу, зависящим от R F и R LAMP. В момент подачи питающего напряжения на схему лампа ещё холодная и её сопротивление низкое, так что усиление будет большое больше трёх. По мере протекания тока через нить накала, она нагревается и её сопротивление увеличивается, что приводит к снижению усиления. Нелинейное отношение между протекающим через лампу током и её сопротивлением сохраняет изменение выходного напряжения небольшим - небольшое изменение напряжения означает большое изменение сопротивления. На рисунке 11 изображён выходной сигнал этого генератора с искажениями меньше чем 0. Искажения при таких изменениях значительно снижаются по сравнению с базовой схемой генератора, так как выходной каскад ОУ избегает сильного насыщения. Скачать LTspice модель , а так же библиотеку с лампой накаливания. Сопротивление лампы в основном зависит от температуры. Амплитуда выходного сигнала очень чувствительна к температуре и имеет тенденцию к дрейфу. Поэтому коэффициент усиления должен быть больше трёх, что бы скомпенсировать любые температурные вариации, что приводит к увеличению искажений [4]. Такой тип схемы полезен в случае, если температура изменяется не сильно, или при использовании совместно с со схемой ограничения по амплитуде. Лампа имеет эффективную низкочастотную тепловую постоянную времени, t thermal [5]. При подходе частоты генерации f OSC к t thermal искажения выходного сигнала сильно возрастают. Для уменьшения искажений можно применить последовательное соединение нескольких ламп, что увеличит t thermal. Недостатки этого способа в том, что время, необходимое для стабилизации колебаний увеличивается и амплитуда выходного сигнала уменьшается. Схема с автоматической регулировкой усиления АРУ должна применяться в случае, если ни одна из предыдущих схем не обеспечивает достаточно низкий уровень искажений. Схема типичного генератора с АРУ на мосте Вина изображена на рисунке 12; на рисунке 13 показаны осциллограммы этой схемы. АРУ используется для стабилизации амплитуды выходного синусоидального сигнала до оптимальной величины. Полевой транзистор применён в качестве регулирующего элемента АРУ, обеспечивающего превосходное управление из-за широкого диапазона сопротивления сток-исток, которое зависит от напряжения на затворе. Напряжение на затворе транзистора равно нулю, когда подаётся напряжение питания, и соответственно сопротивление сток-исток R DS будет низкое. По мере роста выходного напряжения отрицательная полуволна сигнала открывает диод, и конденсатор C 1 начинает заряжаться, что обеспечивает постоянное напряжение на затворе транзистора Q1. Резистор R 1 ограничивает ток и устанавливает постоянную времени заряда конденсатора C 1 которая должна быть гораздо больше периода частоты f OSC. Когда коэффициент усиления достигнет трёх, то выходной сигнал стабилизируется. Схема на рисунке 12 имеет смещение V REF для однополярного питания. Последовательно с диодом можно включить стабилитрон, что бы уменьшить амплитуду выходного сигнала и снизить искажения. Можно применить двухполярное питание, для этого надо соединить с общим проводом все проводники, ведущие к V REF. Существует большое разнообразие схем генераторов на основе моста Вина с более точным управлением уровнем выходного сигнала, позволяющих ступенчато переключать частоту генерации или плавно её регулировать. Некоторые схемы используют ограничители на диодах, установленных в качестве нелинейных компонентов обратной связи. Диоды уменьшают искажения выходного сигнала путём мягкого ограничения его напряжения. Генераторы на основе сдвига фаз производят меньше искажений, чем генераторы на основе моста Вина, имея ещё и хорошую стабильность частоты. Такой генератор может быть построен с одним ОУ, как показано на рисунке Применение меньшего количества RC звеньев приводит к высокой частоте колебаний, ограниченной полосой пропускания ОУ. Как правило, считается, что фазосдвигающие цепи являются независимыми друг от друга, что позволяет вывести уравнение Кроме того, коэффициент усиления, требуемый для возникновения генерации, равен 27, а расчётный равен 8. Это расхождение частично возникает из-за разброса параметров компонентов, однако главным фактором является неверное предположение, что RC звенья не нагружают друг друга. Эта схема была очень популярна, когда активные компоненты были большими и дорогими. Но теперь ОУ недороги, малы, и в одном корпусе содержится 4 ОУ, поэтому генератор на основе фазосдвигающей цепи на одном операционном усилители теряет популярность. Буферизованный генератор на основе сдвига фаз намного лучше небуферизованной версии, но платой за это является большее число применённых компонентов. На рисунках 16 и 17 изображён буферизированный генератор на основе сдвига фаз, и соответственно выходной сигнал. Буферы предотвращают RC цепи от нагружения друг друга, поэтому параметры буферизированного генератора на основе сдвига фаз лежат гораздо ближе к расчётным значениям частоты и коэффициенту усиления. Резистор R G , устанавливающий коэффициент усиления, нагружает третье RC звено. Если буферизировать это звено с помощью четвёртого ОУ, то параметры генератора станут идеальными. Синусоидальный сигнал с низкими искажениями может быть получен любым генератором на основе сдвига фаз, но наиболее чистый синус получается на выходе последнего RC звена генератора. Это высокоомный выход, поэтому высокое входное сопротивление нагрузки обязательно для предотвращения перегрузки и как следствия, изменения частоты генерации из-за вариаций параметров нагрузки. Резистор R G всё ещё нагружает последнее RC звено. Добавление буфера между последним RC звеном и выходом V OUT снизит усиление и частоту генерации до расчётных значений. Генератор Буббы, схема которого приведена на рисунке 18, является ещё одним генератором на основе сдвига фаз, но здесь используется выгода от применения счетверённого операционного усилителя, что приносит уникальные преимущества. Уравнение 15 описывает петлю обратной связи. Что бы генерация возникла усиление A должно быть равно 4. Частота колебаний испытательной схемы составляла 1. Форма выходного сигнала показана на рисунке Синусоидальный сигнал с очень низкими искажениями может быть получен из точки соединения резисторов R и R G. Когда сигнал с низким уровнем искажений необходимо снимать со всех выходов, то общее усиление должно быть распределено среди всех ОУ. На неинвертирующий вход усиливающего ОУ подано напряжение смещения 2. Распределение усиления между всеми ОУ требует применение смещения для них, но это никак не воздействует на частоту генерации. Фаза второго интегратора тогда инвертируется и используется как положительная ОС, что приводит к возникновению генрации [6]. Усиление петли обратной связи рассчитывается по уравнению У испытательной схемы колебания возникают на частоте 1. Это расхождение объясняется разбросом параметров компонент. Оба выхода имеют относительно высокие искажения, которые могут быть уменьшены при использовании АРУ. Регулировка усиления может увеличить амплитуду выходного сигнала. Недостатком такого генератора является уменьшенная полоса пропускания. Генераторы на ОУ имеют ограничение по рабочей частоте, так как у них нет необходимой ширины полосы пропускания для получения малого сдвига фаз на высоких частотах. Новые операционные усилители с обратной связью по току имеют гораздо более широкую полосу пропускания, но их очень сложно использовать в схемах генераторов, так как они очень чувствительны к ёмкостям в цепи обратной связи. Операционные усилители с обратной связью по напряжению ограничены рабочим диапазоном до сотен кГц из-за низкой полосы пропускания. Пропускная способность снижается при соединении ОУ каскадно из-за умножения фазовых сдвигов. Генератор на основе моста Вина содержит немного компонентов и имеет хорошую стабильность частоты, но базовая схема имеет высокий коэффициент выходных искажений. Применение АРУ значительно снижает искажения, особенно в нижнем диапазоне частот. Нелинейная обратная связь обеспечивает наилучшие характеристики в средней и верхней частях частотного диапазона. Генератор на основе сдвига фаз имеет высокий уровень искажений, и без буферирования звеньев требует большого коэффициента усиления, что ограничивает его частотный диапазон очень низкой частотой. Снижение цен на операционные усилители и другие компоненты уменьшило популярность таких генераторов. Квадратурный генератор требует для своей работы всего два операционных усилителя, имеет приемлемый уровень нелинейных искажений и с его выходов можно получить синусоидальный и косинусоидальный сигналы. Его недостаток - низкая амплитуда выходного сигнала, которая может быть увеличена путём применения дополнительного каскада усиления, но это приведёт к существенному уменьшению полосы пропускания. Петли положительной и отрицательной ОС. Эквивалентная схема расчёта усиления петли ОС.


Работа поделки своими руками
Готы народ и история в древности
Рассказы про зрелых
Сорта яблонь для тверской области описание
Где кошелек payeer
Ее работа глотать сперму всем мужикам рассказ
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment