-
-
Save 4rtemi5/607909e6ac1ef3cfb54d5b85111f92b9 to your computer and use it in GitHub Desktop.
Implementation of Sharpened Cosine Distance as an alternative for 2D convolution.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
class CosSimConv2D(tf.keras.layers.Layer): | |
def __init__(self, units=32): | |
super(CosSimConv2D, self).__init__() | |
self.units = units | |
self.kernel_size = 3 | |
def build(self, input_shape): | |
self.in_shape = input_shape | |
self.flat_size = self.in_shape[1] * self.in_shape[2] | |
self.channels = self.in_shape[3] | |
self.w = self.add_weight( | |
shape=(1, self.channels * tf.square(self.kernel_size), self.units), | |
initializer="glorot_uniform", | |
trainable=True, | |
) | |
self.b = self.add_weight( | |
shape=(self.units,), initializer="zeros", trainable=True) | |
self.p = self.add_weight( | |
shape=(self.units,), initializer='ones', trainable=True) | |
self.q = self.add_weight( | |
shape=(1,), initializer='zeros', trainable=True) | |
def l2_normal(self, x, axis=None, epsilon=1e-12): | |
square_sum = tf.reduce_sum(tf.square(x), axis, keepdims=True) | |
x_inv_norm = tf.sqrt(tf.maximum(square_sum, epsilon)) | |
return x_inv_norm | |
def stack3x3(self, image): | |
stack = tf.stack( | |
[ | |
tf.pad(image[:, :-1, :-1, :], tf.constant([[0,0], [1,0], [1,0], [0,0]])), # top row | |
tf.pad(image[:, :-1, :, :], tf.constant([[0,0], [1,0], [0,0], [0,0]])), | |
tf.pad(image[:, :-1, 1:, :], tf.constant([[0,0], [1,0], [0,1], [0,0]])), | |
tf.pad(image[:, :, :-1, :], tf.constant([[0,0], [0,0], [1,0], [0,0]])), # middle row | |
image, | |
tf.pad(image[:, :, 1:, :], tf.constant([[0,0], [0,0], [0,1], [0,0]])), | |
tf.pad(image[:, 1:, :-1, :], tf.constant([[0,0], [0,1], [1,0], [0,0]])), # bottom row | |
tf.pad(image[:, 1:, :, :], tf.constant([[0,0], [0,1], [0,0], [0,0]])), | |
tf.pad(image[:, 1:, 1:, :], tf.constant([[0,0], [0,1], [0,1], [0,0]])) | |
], axis=3) | |
return stack | |
def call(self, inputs, training=None): | |
x = self.stack3x3(inputs) | |
x = tf.reshape(x, (-1, self.flat_size, self.channels * tf.square(self.kernel_size))) | |
q = tf.square(self.q) | |
x_norm = self.l2_normal(x, axis=2) + q | |
w_norm = self.l2_normal(self.w, axis=1) + q | |
sign = tf.sign(tf.matmul(x, self.w)) | |
x = tf.matmul(x / x_norm, self.w / w_norm) | |
x = tf.abs(x) + 1e-12 | |
x = tf.pow(x, tf.square(self.p)) | |
x = sign * x + self.b | |
x = tf.reshape(x, (-1, self.in_shape[1], self.in_shape[2], self.units)) | |
return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment