Skip to content

Instantly share code, notes, and snippets.

@5S
Last active February 2, 2017 13:47
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save 5S/296f05879f3dc9ded3f913e87961a6b9 to your computer and use it in GitHub Desktop.
Save 5S/296f05879f3dc9ded3f913e87961a6b9 to your computer and use it in GitHub Desktop.
パケットを復号化したり暗号化したりするやつ
import base64
import json
import msgpack
import os
import rijndael
def new_key():
return base64.b64encode(os.urandom(24))
def clean_udid(s):
return "".join(chr(ord(c) - 10) for c in s[6::4][:int(s[:4], 16)]).replace("-", "").encode("ascii")
def decrypt_cbc(s, iv, key):
p = b"".join(rijndael.decrypt(key, bytes(s[i:i + len(iv)])) for i in range(0, len(s), len(iv)))
return bytes((iv + s)[i] ^ p[i] for i in range(len(p)))
def encrypt_cbc(s, iv, key):
if len(s) % 32:
s += b"\x00" * (32 - (len(s) % 32))
out = [iv]
for i in range(0, len(s), 32):
blk = bytes(s[i + j] ^ out[-1][j] for j in range(32))
out.append(rijndael.encrypt(key, blk))
return b"".join(out[1:])
def unpack(data, udid):
iv = clean_udid(udid)
reply = base64.b64decode(data)
crypted_payload = reply[:-32]
key = reply[-32:]
plain = decrypt_cbc(crypted_payload, iv, key).rstrip(b"\x00")
payload = msgpack.unpackb(base64.b64decode(plain), encoding="utf8")
return payload
def pack(data, udid, key=None):
iv = clean_udid(udid)
if key is None:
key = new_key()
payload_mp = base64.b64encode(msgpack.packb(data))
crypted_payload = base64.b64encode(encrypt_cbc(payload_mp, iv, key) + key)
return crypted_payload
mode = input("Which do you want to do? [D/E]: ")
if mode.lower() == "d":
udid = input("UDID > ")
b64 = input("BASE64 > ")
res = unpack(b64, udid)
json = json.dumps(res, indent=4, separators=(',', ': '))
print(json)
elif mode.lower() == "e":
udid = input("UDID > ")
json = input("JSON > ")
res = pack(json, udid)
print(res)
# Authors:
# Bram Cohen - main author
# Trevor Perrin - minor changes for Python compatibility
#
# See the LICENSE file for legal information regarding use of this file.
# Also see Bram Cohen's statement below
################ RIJNDAEL ###
# Trevor edited below code for python 3, and ease of packaging
"""
A pure python (slow) implementation of rijndael with a decent interface
To include -
from rijndael import rijndael
To do a key setup -
r = rijndael(key, block_size = 16)
key must be a string of length 16, 24, or 32
blocksize must be 16, 24, or 32. Default is 16
To use -
ciphertext = r.encrypt(plaintext)
plaintext = r.decrypt(ciphertext)
If any strings are of the wrong length a ValueError is thrown
"""
# ported from the Java reference code by Bram Cohen, bram@gawth.com, April 2001
# this code is public domain, unless someone makes
# an intellectual property claim against the reference
# code, in which case it can be made public domain by
# deleting all the comments and renaming all the variables
import copy
#TREV 2011 - is this still needed? seems not
#-----------------------
#TREV - ADDED BECAUSE THERE'S WARNINGS ABOUT INT OVERFLOW BEHAVIOR CHANGING IN
#2.4.....
#import os
#if os.name != "java":
# import exceptions
# if hasattr(exceptions, "FutureWarning"):
# import warnings
# warnings.filterwarnings("ignore", category=FutureWarning, append=1)
#-----------------------
shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]],
[[0, 0], [1, 5], [2, 4], [3, 3]],
[[0, 0], [1, 7], [3, 5], [4, 4]]]
# [keysize][block_size]
num_rounds = {16: {16: 10, 24: 12, 32: 14},
24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}}
A = [[1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 1, 1],
[1, 1, 1, 1, 0, 0, 0, 1]]
# produce log and alog tables, needed for multiplying in the
# field GF(2^m) (generator = 3)
alog = [1]
for i in range(255):
j = (alog[-1] << 1) ^ alog[-1]
if j & 0x100 != 0:
j ^= 0x11B
alog.append(j)
log = [0] * 256
for i in range(1, 255):
log[alog[i]] = i
# multiply two elements of GF(2^m)
def mul(a, b):
if a == 0 or b == 0:
return 0
return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]
# substitution box based on F^{-1}(x)
box = [[0] * 8 for i in range(256)]
box[1][7] = 1
for i in range(2, 256):
j = alog[255 - log[i]]
for t in range(8):
box[i][t] = (j >> (7 - t)) & 0x01
B = [0, 1, 1, 0, 0, 0, 1, 1]
# affine transform: box[i] <- B + A*box[i]
cox = [[0] * 8 for i in range(256)]
for i in range(256):
for t in range(8):
cox[i][t] = B[t]
for j in range(8):
cox[i][t] ^= A[t][j] * box[i][j]
# S-boxes and inverse S-boxes
S = [0] * 256
Si = [0] * 256
for i in range(256):
S[i] = cox[i][0] << 7
for t in range(1, 8):
S[i] ^= cox[i][t] << (7-t)
Si[S[i] & 0xFF] = i
# T-boxes
G = [[2, 1, 1, 3],
[3, 2, 1, 1],
[1, 3, 2, 1],
[1, 1, 3, 2]]
AA = [[0] * 8 for i in range(4)]
for i in range(4):
for j in range(4):
AA[i][j] = G[i][j]
AA[i][i+4] = 1
for i in range(4):
pivot = AA[i][i]
if pivot == 0:
t = i + 1
while AA[t][i] == 0 and t < 4:
t += 1
assert t != 4, 'G matrix must be invertible'
for j in range(8):
AA[i][j], AA[t][j] = AA[t][j], AA[i][j]
pivot = AA[i][i]
for j in range(8):
if AA[i][j] != 0:
AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]
for t in range(4):
if i != t:
for j in range(i+1, 8):
AA[t][j] ^= mul(AA[i][j], AA[t][i])
AA[t][i] = 0
iG = [[0] * 4 for i in range(4)]
for i in range(4):
for j in range(4):
iG[i][j] = AA[i][j + 4]
def mul4(a, bs):
if a == 0:
return 0
r = 0
for b in bs:
r <<= 8
if b != 0:
r = r | mul(a, b)
return r
T1 = []
T2 = []
T3 = []
T4 = []
T5 = []
T6 = []
T7 = []
T8 = []
U1 = []
U2 = []
U3 = []
U4 = []
for t in range(256):
s = S[t]
T1.append(mul4(s, G[0]))
T2.append(mul4(s, G[1]))
T3.append(mul4(s, G[2]))
T4.append(mul4(s, G[3]))
s = Si[t]
T5.append(mul4(s, iG[0]))
T6.append(mul4(s, iG[1]))
T7.append(mul4(s, iG[2]))
T8.append(mul4(s, iG[3]))
U1.append(mul4(t, iG[0]))
U2.append(mul4(t, iG[1]))
U3.append(mul4(t, iG[2]))
U4.append(mul4(t, iG[3]))
# round constants
rcon = [1]
r = 1
for t in range(1, 30):
r = mul(2, r)
rcon.append(r)
del A
del AA
del pivot
del B
del G
del box
del log
del alog
del i
del j
del r
del s
del t
del mul
del mul4
del cox
del iG
class rijndael:
def __init__(self, key, block_size = 16):
if block_size != 16 and block_size != 24 and block_size != 32:
raise ValueError('Invalid block size: ' + str(block_size))
if len(key) != 16 and len(key) != 24 and len(key) != 32:
raise ValueError('Invalid key size: ' + str(len(key)))
self.block_size = block_size
ROUNDS = num_rounds[len(key)][block_size]
BC = block_size // 4
# encryption round keys
Ke = [[0] * BC for i in range(ROUNDS + 1)]
# decryption round keys
Kd = [[0] * BC for i in range(ROUNDS + 1)]
ROUND_KEY_COUNT = (ROUNDS + 1) * BC
KC = len(key) // 4
# copy user material bytes into temporary ints
tk = []
for i in range(0, KC):
tk.append((key[i * 4] << 24) | (key[i * 4 + 1] << 16) |
(key[i * 4 + 2]) << 8 | key[i * 4 + 3])
# copy values into round key arrays
t = 0
j = 0
while j < KC and t < ROUND_KEY_COUNT:
Ke[t // BC][t % BC] = tk[j]
Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
j += 1
t += 1
tt = 0
rconpointer = 0
while t < ROUND_KEY_COUNT:
# extrapolate using phi (the round key evolution function)
tt = tk[KC - 1]
tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^ \
(S[(tt >> 8) & 0xFF] & 0xFF) << 16 ^ \
(S[ tt & 0xFF] & 0xFF) << 8 ^ \
(S[(tt >> 24) & 0xFF] & 0xFF) ^ \
(rcon[rconpointer] & 0xFF) << 24
rconpointer += 1
if KC != 8:
for i in range(1, KC):
tk[i] ^= tk[i-1]
else:
for i in range(1, KC // 2):
tk[i] ^= tk[i-1]
tt = tk[KC // 2 - 1]
tk[KC // 2] ^= (S[ tt & 0xFF] & 0xFF) ^ \
(S[(tt >> 8) & 0xFF] & 0xFF) << 8 ^ \
(S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \
(S[(tt >> 24) & 0xFF] & 0xFF) << 24
for i in range(KC // 2 + 1, KC):
tk[i] ^= tk[i-1]
# copy values into round key arrays
j = 0
while j < KC and t < ROUND_KEY_COUNT:
Ke[t // BC][t % BC] = tk[j]
Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
j += 1
t += 1
# inverse MixColumn where needed
for r in range(1, ROUNDS):
for j in range(BC):
tt = Kd[r][j]
Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \
U2[(tt >> 16) & 0xFF] ^ \
U3[(tt >> 8) & 0xFF] ^ \
U4[ tt & 0xFF]
self.Ke = Ke
self.Kd = Kd
def encrypt(self, plaintext):
if len(plaintext) != self.block_size:
raise ValueError('wrong block length, expected ' +
str(self.block_size) + ' got ' + str(len(plaintext)))
Ke = self.Ke
BC = self.block_size // 4
ROUNDS = len(Ke) - 1
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
SC = 2
s1 = shifts[SC][1][0]
s2 = shifts[SC][2][0]
s3 = shifts[SC][3][0]
a = [0] * BC
# temporary work array
t = []
# plaintext to ints + key
for i in range(BC):
t.append((plaintext[i * 4 ] << 24 |
plaintext[i * 4 + 1] << 16 |
plaintext[i * 4 + 2] << 8 |
plaintext[i * 4 + 3] ) ^ Ke[0][i])
# apply round transforms
for r in range(1, ROUNDS):
for i in range(BC):
a[i] = (T1[(t[ i ] >> 24) & 0xFF] ^
T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T3[(t[(i + s2) % BC] >> 8) & 0xFF] ^
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]
t = copy.copy(a)
# last round is special
result = []
for i in range(BC):
tt = Ke[ROUNDS][i]
result.append((S[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
result.append((S[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
result.append((S[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
return bytearray(result)
def decrypt(self, ciphertext):
if len(ciphertext) != self.block_size:
raise ValueError('wrong block length, expected ' +
str(self.block_size) + ' got ' + str(len(ciphertext)))
Kd = self.Kd
BC = self.block_size // 4
ROUNDS = len(Kd) - 1
if BC == 4:
SC = 0
elif BC == 6:
SC = 1
else:
SC = 2
s1 = shifts[SC][1][1]
s2 = shifts[SC][2][1]
s3 = shifts[SC][3][1]
a = [0] * BC
# temporary work array
t = [0] * BC
# ciphertext to ints + key
for i in range(BC):
t[i] = (ciphertext[i * 4 ] << 24 |
ciphertext[i * 4 + 1] << 16 |
ciphertext[i * 4 + 2] << 8 |
ciphertext[i * 4 + 3] ) ^ Kd[0][i]
# apply round transforms
for r in range(1, ROUNDS):
for i in range(BC):
a[i] = (T5[(t[ i ] >> 24) & 0xFF] ^
T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
T7[(t[(i + s2) % BC] >> 8) & 0xFF] ^
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]
t = copy.copy(a)
# last round is special
result = []
for i in range(BC):
tt = Kd[ROUNDS][i]
result.append((Si[(t[ i ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
result.append((Si[(t[(i + s2) % BC] >> 8) & 0xFF] ^ (tt >> 8)) & 0xFF)
result.append((Si[ t[(i + s3) % BC] & 0xFF] ^ tt ) & 0xFF)
return bytearray(result)
def encrypt(key, block):
return rijndael(key, len(block)).encrypt(block)
def decrypt(key, block):
return rijndael(key, len(block)).decrypt(block)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment