This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# zeros(shape) | |
a = np.zeros(5) | |
# a → array([0., 0., 0., 0., 0.]) | |
A = np.zeros((2, 3)) | |
# A → array([[0., 0., 0.], | |
# [0., 0., 0.]]) | |
my_shape = (2, 2) | |
B = np.zeros(my_shape) | |
# B → array([[0., 0.], | |
# [0., 0.]]) | |
# zeros()悪い例 | |
C = np.zeros(2, 3) | |
# TypeError: data type not understood | |
# ones(shape) | |
a = np.ones(5) | |
# a → array([1., 1., 1., 1., 1.]) | |
A = np.ones((2, 3)) | |
# A → array([[1., 1., 1.], | |
# [1., 1., 1.]]) | |
my_shape = (2, 2) | |
B = np.ones(my_shape) | |
# B → array([[1., 1.], | |
# [1., 1.]]) | |
# ones()悪い例 | |
C = np.ones(2, 3) | |
# TypeError: data type not understood | |
# full(shape) | |
a = np.full(5, 3) | |
# a → array([3, 3, 3, 3, 3]) | |
A = np.full((2, 3), 0.1) | |
# A → array([[0.1, 0.1, 0.1], | |
# [0.1, 0.1, 0.1]]) | |
my_shape = (2, 2) | |
B = np.full(my_shape, -2) | |
# B → array([[-2, -2], | |
# [-2, -2]]) | |
# ones vs full | |
val = 0.1 | |
X = np.ones(3)*val | |
# X → array([0.1, 0.1, 0.1]) | |
# 2.4 µs ± 21.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) | |
Y = np.full(3, val) | |
# Y → array([0.1, 0.1, 0.1]) | |
# 1.85 µs ± 36.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) | |
# full()悪い例 | |
C = np.ones(2, 3, 0.5) | |
# TypeError: data type not understood | |
# empty(shape) | |
a = np.empty(3) | |
# a → array([6.95216240e-310, 1.07193797e-311, 6.95218871e-310]) | |
A = np.empty((2, 2)) | |
# A → array([[4.67296746e-307, 1.69121096e-306], | |
# [7.56597770e-307, 1.89146896e-307]]) | |
# zerso vs empty | |
X = np.zeros(3) | |
# X → array([0., 0., 0.]) | |
# 570 ns ± 17.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) | |
Y = np.empty(3) | |
# Y → array([ 6.95216299e-310, 5.55977121e-312, -0.00000000e+000]) | |
# 555 ns ± 0.951 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) | |
# zeros_like | |
A = np.zeros((2,2)) | |
# A → array([[0., 0.], | |
# [0., 0.]]) | |
B = np.zeros_like(A) | |
# B → array([[0., 0.], | |
# [0., 0.]]) | |
# ones_like | |
A = np.zeros((2,2)) | |
# A → array([[0., 0.], | |
# [0., 0.]]) | |
B = np.ones_like(A) | |
# B → array([[1., 1.], | |
# [1., 1.]]) | |
# full_like | |
A = np.zeros((2,2)) | |
# A → array([[0., 0.], | |
# [0., 0.]]) | |
B = np.full_like(A, 0.5) | |
# B → array([[0.5, 0.5], | |
# [0.5, 0.5]]) | |
# empty_like | |
A = np.zeros((2,2)) | |
# A → array([[0., 0.], | |
# [0., 0.]]) | |
B = np.empty_like(A) | |
# B → array([[2.23754644e-312, 2.05210913e-307], | |
# [3.32653424e-111, 1.13477778e+118]]) | |
# 真偽値の配列 | |
mask = np.zeros((2,2), dtype=bool) | |
# mask → array([[False, False], | |
# [False, False]]) | |
mask = np.ones((2,2), dtype=bool) | |
# mask → array([[ True, True], | |
# [ True, True]]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment