Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/899f7fed17978ba3ab4711aa03007d18 to your computer and use it in GitHub Desktop.
Save anonymous/899f7fed17978ba3ab4711aa03007d18 to your computer and use it in GitHub Desktop.
Множество проблем существующихвэтой

Множество проблем существующихвэтой



Ссылка на файл: >>>>>> http://file-portal.ru/Множество проблем существующихвэтой/


§ 5. Проблемы теории множеств
Классификация глобальных проблем и их характеристика
Множество - проблема
























В году чешский логик Курт Гёдель доказал теорему, сегодня известную как теорема Гёделя о неполноте, которая навсегда изменила понимание математики. По сути, теорема Гёделя утверждает, что если пользоваться точными и достоверными методами рассуждений, методами, исключающими ошибки, то неизбежно будут существовать математические проблемы, которые никогда нельзя будет решить. Всегда найдутся задачи, решение которых будет не под силу этим методам. До того как Гёдель доказал свою теорему, математики безгранично верили в то, что при достаточном количестве времени, терпения и усилий любая поставленная проблема может быть решена. Например, немецкий математик Давид Гильберт, представивший на Втором Международном математическом конгрессе в Париже в году знаменитый список из 23 проблем, в своем выдающемся докладе предположил, что эти проблемы определят значительную часть математических исследований в течение XX века. Проблемы Гильберта очень сложны, и было ясно, что для нахождения решений потребуются десятки лет, что в будущем и подтвердилось. Например, ответ на десятую проблему в современных терминах: Однако ни Гильберт, ни кто-либо из его коллег в далеком году не сомневались, что рано или поздно будут найдены решения всех проблем. Сам Гильберт выразил эту мысль такими словами: Их он распорядился написать и в своей эпитафии — возможно, в качестве послания будущим поколениям или как посмертный вызов Гёделю Гильберт скончался в году, через 13 лет после того, как Гёдель сформулировал свою теорему. Итак, что именно представляет собой математическая проблема? Что мы хотим сказать, когда утверждаем, что проблемы Гильберта были сложными? Может ли считаться сложной задача: Большинство проблем, которые изучает математическая наука, сформулированы как гипотезы. Гипотеза — это утверждение, которое кажется истинным, но его истинность еще не доказана. Знаменитый пример — так называемая гипотеза Гольдбаха, сформулированная прусским математиком Кристианом Гольдбахом в году:. Простые числа — это те, которые делятся только на единицу и на само себя; число 1 по техническим причинам не считается простым. Проверим, например, что эта гипотеза справедлива для четных чисел, меньших В гипотезе говорится о четных числах больше двух, поэтому само число 2 оказалось вне списка. Если бы нашелся хотя бы один пример, для которого гипотеза не выполнялась бы, то есть контрпример — четное число, которое нельзя записать в виде суммы двух простых чисел,— то гипотеза оказалась бы ложной. Такого контрпримера еще не нашли. На момент написания этих строк с помощью компьютеров было выяснено, что все четные числа до 10 18 единица с 18 нулями могут быть записаны в виде суммы двух простых чисел. Но как можно подтвердить, что гипотеза истинна? Достаточно ли того, что она проверена для четных чисел, меньших 10 18 , для признания ее истинности? И так далее, неважно, сколько эмпирических проверок мы сделаем, мы все равно не сможем проверить все четные числа, поскольку они никогда не заканчиваются и всегда есть бесконечное число новых четных чисел, среди которых может найтись контрпример. Единственный способ проверить истинность гипотезы — это найти доказательство, то есть такие рассуждения, которые демонстрируют справедливость утверждения сразу для всех возможных случаев. Рассмотрим пример такого доказательства естественно, мы не можем привести доказательство гипотезы Гольдбаха, поскольку оно до сих пор не найдено. Это утверждение затрагивает бесконечное число чисел; однако мы можем охватить их все одним и тем же рассуждением. Все простые числа, большие двух, являются нечетными. Но это невозможно, поскольку оно простое, то есть может делиться только на единицу и само на себя. Оно не может быть кратным двум, то есть четным; следовательно, оно нечетное. Мы можем понимать доказательство как рассуждение, которое потенциально включает в себя бесконечное число частных случаев. Все сложные математические проблемы потенциально включают в себя бесконечное количество объектов, будь то числа, уравнения или другие объекты. По этой причине вычисление суммы всех чисел от единицы до миллиона, при всей своей трудоемкости, не является сложной проблемой в том смысле, который придают этому слову математики, поскольку вычисление предполагает вполне определенное количество операций, и их можно совершить за некоторый промежуток времени, имеющий начало и конец. Решение проблемы, сформулированной в гипотезе Гольдбаха или любой другой гипотезе , состоит в том, чтобы найти опровергающий контрпример или доказательство, подтверждающее ее истинность. Если предложено рассуждение, предположительно доказывающее гипотезу, как мы убедимся в том, что оно верно? Если кто-то не убежден в справедливости рассуждения, каковы критерии, позволяющие устранить его сомнения? Прежде чем ответить на эти вопросы, рассмотрим еще один исторический пример. В году французский математик Эмиль Борель дал определение понятию нормального числа. Нет необходимости вникать во все сложности этого определения, достаточно сказать, что число нормальное, когда после запятой его знаки ведут себя так, как если бы выбирались наугад, и это происходит при записи в десятичном как это принято , двоичном, шестнадцатеричном или любом другом виде. Например, ясно, что 0, Борель, помимо того что дал определение нормальным числам, доказал: Однако в его доказательстве были использованы очень косвенные методы; можно сказать, он также доказал, что этого бесконечного количества чисел не может не существовать. Главное в этой истории то, что Борель, как и никто другой, не был способен в году привести ни одного примера нормального числа. Некоторые числа включая приведенные выше подходили под определение нормальных, но нельзя было утверждать это точно. То есть Борель доказал, что существует бесконечное количество чисел определенного типа, но не смог привести ни одного из них. Допустима ли такая ситуация? Можем ли мы вести разговор о числах, ни имея ни одного их примера? В начале XX века многие математики начали выказывать недоверие доказательствам, включавшим ряды, образованные бесконечным количеством чисел такими как ряд нормальных чисел. Они сомневались, допустимо ли работать с ними, пользуясь теми же правилами, что и для конечных рядов то есть не расширяющихся до неопределенности. Это недоверие было подкреплено тем, что в году британский философ и математик Бертран Рассел нашел логические противоречия, связанные с рассуждениями такого типа. В начале XX века вопрос о том, как определить справедливость математического рассуждения, был совершенно неясен. Среди математиков бурлили споры и дискуссии. И только почти через четверть века, в году, ученые пришли к соглашению о четких и конкретных критериях, которым должно соответствовать доказательство, чтобы его приняли как верное. Эти критерии, установленные объективно, состояли в том, чтобы рассуждения были проверены компьютером — беспристрастным судьей, который ограничивается вычислениями, не оперируя лингвистическими конструкциями. Естественно, это современный вариант соглашения, раньше он формулировался по-другому, поскольку в году еще не было компьютеров. Но именно в том месте и в то время, когда математики собрались, чтобы прийти к согласию о надежных методах рассуждений, Курт Гёдель поднял руку и попросил слова, чтобы рассказать о своей теореме о неполноте: Мы можем иметь потенциальную способность решать проблемы без уверенности в том, что решение правильное , но никогда не сможем одновременно иметь уверенность в своих методах и возможность решить все проблемы. Гёдель представил две теоремы о неполноте, первая из которых также известна как теорема Гёделя, а вторая получила название второй теоремы Гёделя. Эта книга — об истории открытия Гёделя и его следствиях для философии математики. В главе 1 описаны исторический процесс, приведший к полемике о методах доказательства в математике, и роль, которую сыграла в этой полемике теорема Гёделя. В главе 2 приведены сама теорема и объяснение ее доказательства. Но как на том историческом этапе, когда почти все методы математического доказательства были поставлены под сомнение, Гёделю удалось убедить всех в своей правоте? Ответ на этот вопрос проанализирован в главе 3, в то время как глава 4 посвящена другим работам математика, среди которых — исследования в теории относительности. В последней главе обсуждаются некоторые философские следствия теорем Гёделя, связанные с природой математической истины. У него был только один старший брат, которого, как и отца, звали Рудольфом. Эта болезнь стала катализатором его ипохондрии как доминирующей черты личности. Здесь Гёдель познакомился с дебатами вокруг теории доказательства и решил посвятить себя математической логике. На пленарном заседании 7 сентября Гёдель впервые провозгласил свою теорему о неполноте. Совершил серию поездок в США, где читал различные курсы и лекции. В Европу они так больше и не вернулись. В начале XX столетия математика переживала один из самых глубоких кризисов. Первая треть века была наполнена спорами о том, какие методы рассуждения считать подходящими и нужно ли допускать существование бесконечности. Курту Гёделю было предназначено решительно проявить себя в данной ситуации. Но как назрел этот спор? Почему математики начали сомневаться в своей науке после более чем лет ее развития? Все люди, даже самые великие, когда-то были детьми. Это прописная истина, но все же любопытно думать, что был день, когда Моцарт не знал даже названий музыкальных нот, было время, когда Леонардо да Винчи еще не смешивал краски Пусть знания будущего ученого тогда были невелики, но стремление к интеллектуальному поиску было присуще ему с самого детства. Его отец, Рудольф, родился в Вене и рано оставил учебу, занявшись коммерцией, в которой добился больших успехов. В году, когда родился Курт, Рудольф Гёдель был управляющим и совладельцем одной из самых крупных текстильных фабрик в Брюнне — важном промышленном центре Австро- Венгерской империи, который славился своим текстильным производством. У Рудольфа было два сына: Ни один из них не пошел по его стопам. Рудольф-младший стал известным врачом и руководителем клиники в Вене. Курт, в свою очередь, считается самым влиятельным логиком современности вторым после Аристотеля и одним из знаменитых мыслителей XX века. Их мать Марианна, немка по национальности, изучала литературу Австро-Венгрии и Франции. В отличие от супруга она была тонкой, художественно восприимчивой натурой, и, возможно, поэтому стеснительный и замкнутый Курт был очень привязан к ней. Многие биографы говорят, что когда матери не было дома, мальчик чувствовал себя немного потерянным. Стеснительность и погруженность в себя сохранились в нем на всю жизнь. Гёдель никогда не был душой компании, никто не хохотал над его шутками, но ему это и не было нужно. Самые яркие умы XX века обратили на него внимание благодаря не его шуткам, но идеям, которые изменили видение математики и, возможно, всей науки. В своей жизни он дружил с немногими, но очень интересными людьми — одним из самых близких его друзей стал Альберт Эйнштейн. В школе Курт был блестящим учеником. Естественно, он преуспевал в математике и языках. Даже сегодня многие из тех, кто живет в Восточной Европе, хотя бы знают немного языки своих соседей: Гёдель, считавший немецкий язык родным, не был исключением, но даже в этой многоязычной среде его страсть и способность к языкам были выдающимися. С юности он в совершенстве говорил и писал по-английски и по-французски, а в последующие годы в его библиотеке всегда было большое количество словарей и грамматик различных языков. Когда Гёделю было шесть лет, он перенес ревматическую лихорадку, из-за которой несколько дней провел в постели. Физически он полностью выздоровел, однако через некоторое время природное любопытство побудило его почитать о перенесенной болезни, и мальчик узнал, что она может вызывать в качестве осложнения хроническую слабость сердца. Гёдель всю свою жизнь был убежден в том, что это случилось и с ним, хотя врачи неоднократно уверяли его в обратном. Более того, без каких-либо рациональных оснований всю оставшуюся жизнь он был уверен, что если его сердце охладится, то он умрет, и даже в самые жаркие дни ученый ходил в теплой одежде. Через много лет брат Рудольф говорил, что этот кризис стал причиной глубокой ипохондрии — одной из самых заметных черт личности Курта. Возможно, именно страх перед болезнями всю жизнь вызывал у Гёделя многочисленные недомогания, из-за которых он неделями находился в угнетенном состоянии и вынужден был прерывать любую интеллектуальную деятельность. В году, когда шестилетний Курт, еще ничего не знавший о логике, переживал первую серьезную болезнь, математика как наука также находилась в кризисе. И хотя на тот момент Гёдель еще даже не подозревал об этом, ему было предназначено решительно проявить себя в решении этой проблемы. Кризис, в котором находилась математика в году, известный сегодня как кризис оснований, начался в м, за четыре года до рождения Гёделя, с очень короткого письма Бертрана Рассела своему коллеге немцу Готлобу Фреге. Если не знать исторического контекста, невозможно понять, как письмо, уместившееся на одной странице, развязало спор, который длился потом более 25 лет. На самом деле письмо Рассела к Фреге было лишь камешком, который вызвал сход лавины, ждавшей в течение десятилетий. Исторический процесс, который привел к этому моменту, начался с эпохи Аристотеля, с появления понятия бесконечности — одного из самых странных, сложных и чудесных, созданных человеческой мыслью. Что мы хотим сказать, когда утверждаем, что последовательность 1, 2, 3, 4, В IV веке до н. Аристотель утверждал, что мы можем ответить на этот вопрос двумя разными способами. Чтобы представить себе первый способ, вообразим народ, которому было дано задание, передаваемое из поколения в поколение, — считать и записывать все числа последовательности 1,2,3,4, Смогут ли они когда-нибудь завершить эту работу? Нет, даже если посвятят этому заданию годы, десятилетия или тысячи миллионов веков. Каким бы ни было число, до которого дойдет счет, всегда можно дописать еще одно. Если они дошли до , есть , если дошли до — есть , если дошли до квинтиллиона — есть квинтиллион плюс один. Они никогда не достигнут последнего числа, просто потому, что его не существует. Однако заметим, что записи этого гипотетического народа никогда не будут содержать бесконечного количества чисел. Сначала они составят несколько сотен, потом — несколько тысяч, еще позже — несколько миллионов и триллионов чисел, но их количество всегда будет конечным поскольку при наличии достаточного времени записанные числа можно будет полностью просмотреть от начала до конца. Бесконечность последовательности проявляется в непостижимой характеристике: Такой способ рассмотрения бесконечности Аристотель назвал потенциальной бесконечностью, или бесконечностью в возможности. Второй способ представления бесконечности состоит в том, чтобы рассматривать ее как особенность, присутствующую в действительности. В этом случае мы должны думать не о народе, записывающем числа из поколения в поколение, а о сверхъестественном существе, которое записало их все — абсолютно все — в почти божественном акте доброй воли при этом неправильно говорить, что оно записало их от начала до конца, потому что конца нет. Очень сложно, если не невозможно, постичь это. Способны ли мы представить себе нечто, что присутствует целиком, но никогда, абсолютно никогда не заканчивается? Невозможно показать реальные ситуации, в которых появляется бесконечность. Вся жизнь Вселенной, начиная с момента Большого взрыва, имеет только потенциально бесконечное количество секунд. Вселенная в целом включает конечное количество субатомных частиц. То ли потому что бесконечность действительно невообразима, то ли потому что ее не существует в физической реальности, то ли по другим философским причинам Аристотель утверждал: Существует понятие, искажающее и обесценивающее другие. Речь идет не о Зле, чьи владения ограничены этикой; речь идет о бесконечности. В течение столетий, до самого XIX века, этот отказ от актуальной бесконечности единодушно поддерживался западными философскими и математическими догмами. В Средние века схоластическая мысль усилила этот отказ, добавив к нему религиозное измерение. Актуальная или категорематическая бесконечность, согласно схоластикам, приписывается исключительно Божеству, и претендовать на то, что человеческий ум способен охватить или понять ее целиком, — ересь. Приведем три случая, когда проявлялся отказ от актуальной бесконечности. Первый краток и ужасен: В рассуждении, известном как парадокс Галилея, говорится так: В ней содержится другая последовательность, образованная квадратными числами, то есть теми, которые получаются умножением числа само на себя: На основе аристотелевского принципа о том, что целое больше любой его части, мы должны сделать вывод, что чисел больше, чем квадратных чисел, поскольку они составляют лишь часть. Но, говорил Галилей, если бы последовательности 1, 2, 3, 4, Числу 1 соответствовало бы число 1, числу , числу и так далее. В III веке до н. Эта работа состоит из 13 книг, из них седьмая, восьмая и девятая посвящены арифметике. В суждении 20 девятой книги провозглашается, что существует бесконечное число простых чисел. Интересно отметить, как выражено это утверждение: То есть в утверждении Евклида речь идет о потенциальной, а не об актуальной бесконечности. Каждое число первой последовательности точно соответствовало бы другому числу второй, при этом не было бы ни недостатка, ни избытка ни с одной из сторон. Если можно идеально установить пары, это означает, что существует столько же квадратных чисел, сколько и чисел всего, а это противоречит сказанному: Актуальная бесконечность, заключил Галилей, это абсурд. Почти через лет немецкий математик Георг Кантор столкнулся с той же самой проблемой, но его вывод был абсолютно противоположным. Третий пример — отрывок из письма года немецкого математика Карла Фридриха Гаусса Гаусс говорил, что бесконечность — это только величина всегда конечная , которой позволено расти без ограничений, и ее нельзя понимать как нечто завершенное. Снова мы наблюдаем отказ от актуальной бесконечности. Это только три примера из многих, о которых можно было бы упомянуть. Однако всего через 40 лет после этого письма Георг Кантор вынужден был ввести в математику и философию монстра, много раз отвергнутого, — актуальную бесконечность. По различным упоминаниям было известно, что в нем описывались физические рассуждения, которые позволили предположить геометрические теоремы, затем доказанные со всей логической строгостью в других книгах автора. Однако точное содержание работы не было известно до года, когда, к всеобщему удивлению, совершенно случайно в Стамбуле была обнаружена ее копия. Это был палимпсест, то есть рукопись, нанесенная на пергамент поверх другого текста. К счастью, первоначальный слой стерли не полностью, и оригинальную работу частично удалось восстановить. Часть их открытий означает, что Архимед работал с актуальной бесконечностью. Согласно полученным данным, чтобы сравнить объем двух тел, Архимед представлял их разрезанными на бесконечное количество полосок бесконечно малой ширины и делал вывод о том, что оба тела равны, если можно установить пары между полосками, образующими эти тела. Это предполагает не только работу с актуальной бесконечностью, но и допущение сравнения между двумя бесконечностями посредством установления пар между их компонентами, что сделал Кантор в конце XIX века. Если эти открытия подтвердятся, придется переписать часть истории бесконечности и признать, что Архимед ранее Кантора использовал актуальную бесконечность. С по год Кантор в Берлине проводил свои первые исследования под руководством Леопольда Кронекера спустя несколько лет они стали врагами. В то время Берлин был одним из самых мощных математических центров в мире наряду с Геттингеном и Парижем. Первые исследовательские работы Кантора не слишком впечатлили его преподавателей, которые даже считали, что он никогда не станет выдающимся математиком. В году Кантору пришлось переехать из центра науки, Берлина, на периферию. Молодой и неизвестный ученый начал собственные исследования в Галльском университете. Когда математик проводит исследование, его цель — решить определенную проблему. Даже сегодня, если спросить у математика, над чем он работает, его ответ наверняка будет состоять в формулировке задачи, которую он пытается решить. Чтобы понять задачу, занимавшую Кантора в году, нам нужно кратко рассказать о рядах Фурье. В начале XIX века французский математик Жозеф Фурье разработал метод, позволяющий разложить любую периодическую функцию на сумму определенных элементарных функций каждая из которых меняет амплитуду, частоту или фазу исходной функции. Фурье успешно применил его для изучения таких волновых явлений, как распространение тепла или колебания пружины. Так как эти суммы обычно затрагивают бесконечное теоретически число функций, а в математике результат сложения бесконечного числа величин называют рядом, этот метод получил название рядов Фурье. Сегодня он является важным инструментом во многих отраслях науки, таких как физика и инженерное дело. В х годах, также в Галле, немецкий математик Эдуард Гейне работал над проблемой определения того, всегда ли разложение периодической функции на сумму элементарных волн является единственным. Вопрос о единственности разложения часто встречается в математике. Возьмем натуральные числа то есть образующие вышеупомянутую последовательность 1, 2, 3, Вспомним, что простые числа — это числа, которые делятся только на единицу и на самих себя например, 2, 3, 5 и 11 — простые числа, в то время как 9 таковым не является, поскольку делится на 3. Уже много тысячелетий известно об этом знал и Евклид в III веке до н. Французский математик Жан Батист Жозеф Фурье в начале XIX века установил, что любая периодическая функция — это результат сложения бесконечного числа синусоидальных волн. На рисунке 1 представлена периодическая функция со скачками, или разрывами, во всех целых нечетных числах положительных и отрицательных , в то время как на рисунке 2 показана основная синусоидальная волна. Функция на рисунке 1 — это результат сложения бесконечного количества волн, изменяющих различными способами основную волну на рисунке 2. Например, мы можем сжать или растянуть ее вертикально или горизонтально. На рисунках 3 и 4 показано, соответственно, вертикальное растяжение волны с рисунка 2 и ее сжатие. На рисунке 5 показано горизонтальное сжатие волны с рисунка 2. Волны также могут перемещаться по вертикали или горизонтали: Единица — особый случай, который по техническим причинам рассматривается отдельно: Есть ли другой способ записать число 12 как произведение простых чисел? Или вариант 2 х 2 х 3 единственно возможный? Разложение на простые числа всегда единственное, и эта единственность создает более сильную связь между числами и их простыми множителями. Благодаря этому свойства разложения или факторизации на простые числа становятся сильнее. Эдуард Гейне задался вопросом, существует ли подобная связь между периодической функцией и элементарными волнами. Единственное ли это разложение, как это установлено для разложения на простые числа? В х годах Гейне удалось доказать, что некоторые типы периодических функций например, не имеющие скачков, то есть непрерывные можно разложить на элементарные волны единственным образом. Однако он не нашел общего доказательства для всех возможных ситуаций, а также не смог доказать единственности в случае, когда в каждом периоде у функции бесконечное теоретически число разрывов. Так что когда Кантор приехал в Галле в году, Гейне предложил ему поработать над этим вопросом: Кантор принялся изучать проблему и в году получил первый результат: То есть для гарантии единственности точки появления скачков должны удовлетворять некоторым специфическим условиям. Но ученый столкнулся со сложностями при выражении этих требований точно и элегантно. Он явно имел интуитивную догадку о том, какие особенности хотел выразить, но у него не получалось ясно сформулировать это. В и годах Кантор постепенно понял, что для четкой формулировки условий следует рассматривать точки разрывов как множества, бесконечные в действительности. Более того, требовалось сравнить между собой различные бесконечные множества, подобно тому как лет назад Галилей сравнил натуральные числа с квадратными это, в свою очередь, привело к отбрасыванию аристотелевского принципа о том, что целое больше его частей. Кантор также открыл, что такое сравнение приводит к выводу о существовании бесконечных множеств, больших, чем другие бесконечные множества. Эти идеи были настолько революционными и так противоречили тысячелетиям исследований, что Кантору понадобилось целых десять лет на то, чтобы полностью принять их и признать: Кантор начал свою статью, почти прося прощения за это решение:. Теория множеств, которую упоминает Кантор, была его способом обозначения изучения бесконечных совокупностей как отдельных объектов. Он предложил сделать эту теорию основой математики. Числа, операции с ними и все математические понятия могут быть определены, согласно Кантору, на базе понятий теории множеств. Например, числа 1, 2, 3, 4, 5, Числа — это элементы, или члены этой совокупности, и множество становится отдельным объектом, доступным для изучения. Мы можем также задумать множество, образованное только числом один, или днями недели, или людьми, родившимися 20 июля года. Следовательно, теория множеств — это изучение взаимных свойств и отношений множеств, или совокупностей. Теория [бесконечных] множеств — это область, в которой ничто не очевидно; истинные высказывания ее часто парадоксальны, а предполагаемые высказывания ложны. Предложение Кантора заключалось в том, чтобы определить числа и операции с ними на основе множеств. Например, число 0 может быть определено как количество элементов пустого множества то есть множества, у которого нет членов. С другой стороны, в теории множеств существует операция под названием объединение. Если задано два множества, объединение состоит в том, чтобы собрать в новом множестве элементы их обоих. Например, объединение множества, содержащего в качестве элемента город Париж, и множества, содержащего город Рим, — это множество, содержащее оба города одновременно. Сумму чисел можно определить, согласно предложению Кантора, на основе этой операции теории множеств. Как можно было ожидать и, вероятно, как предвидел сам Кантор, теория множеств вызвала большое сопротивление. Его бывший учитель Леопольд Кронекер назвал Кантора совратителем молодежи и воспользовался своим немалым влиянием на немецкие научные журналы, чтобы те не публиковали его работы. Однако со временем теория множеств и актуальная бесконечность получили признание. Может быть, Кантору удалось убедить Кронекера? Чтобы ответить на эти вопросы, стоит вспомнить утверждение Планка: Когда Планк писал эти слова, он думал о квантовой механике, но этот принцип можно применить и к теории множеств. В конце XIX века новое поколение математиков, среди которых был Давид Гильберт, начало видеть в теории Кантора важный вклад в науку. Обычно молодежь расположена разрушать традиции, так что, возможно, новое поколение было готово разбить аристотелевское видение бесконечности. В м, за год до смерти Кронекера, Кантор был выбран председателем недавно созданного Немецкого математического общества, и его идея считать теорию множеств базой и основанием математики начинала набирать сторонников. Одним из них был немецкий логик Готлоб Фреге. Готлоб Фреге родился в году, то есть он принадлежал к тому же поколению, что и Кантор. Фреге принял теорию множеств с самого начала и стал одним из защитников идеи о том, что эта теория должна стать базой для остальной математики. Как мы можем увидеть на изображении справа, символизм Фреге приближается скорее к линейному рисунку, чем к написанному тексту. Хотя Фреге был согласен с Кантором в целом, у него было много формальных критических замечаний. По мнению Фреге, статьи Кантора были написаны недостаточно научным языком, без четкого разграничения аксиом утверждений, которые принимаются без доказательств и теорем утверждений, которые доказываются на основе аксиом. Кантор все время взывал к интуиции читателя, что Фреге критиковал и называл психологизмом. Математика, по его мнению, должна пользоваться строгим языком со специально созданными символами. Все рассуждения должны быть выражены ясно, лишены двусмысленностей и взывания к интуиции. Фреге посвятил почти всю свою жизнь развитию этой идеи. Это вызывало сложности в понимании и у современников ученого, и даже сегодня. Возможно, Фреге намеренно хотел дистанцировать символическую запись от естественного языка, но стратегически это было ошибкой, поскольку затруднило понимание работы широкой аудиторией. Письмо занимало одну страницу, однако этого было достаточно для того, чтобы развязать кризис оснований. Рассел начал с похвалы работы Фреге и выразил свою абсолютную поддержку автору. Этой небольшой сложностью была одна из аксиом, на которых Фреге основывал теорию множеств, — так называемая аксиома выделения. В ней говорится, что каждому свойству назначается множество множество объектов, которые обладают этим свойством. На первый взгляд эта аксиома кажется абсолютно невинным утверждением, неспособным породить какую-либо проблему. Множества образованы членами также существует пустое множество, не имеющее членов, но мы можем оставить его за рамками нашего анализа. Например, множество планет Солнечной системы состоит из насколько мы знаем восьми членов: Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана и Нептуна. Каждый из членов этого множества — наоборот, конкретная планета, а не абстракция. Множество планет Солнечной системы не входит в список самих членов: Рассел выражал эту идею следующим образом: Но некоторые множества действительно являются членами самих себя. Например, подумаем о множестве всех абстрактных сущностей. Оно само является абстрактной сущностью и, следовательно, членом самого себя. Теперь вернемся к аксиоме выделения. Пусть множество R образовано всеми множествами, не являющимися членами самого себя. Если R является членом самого себя, то выполняется свойство, определяющее R. По нему R не является членом самого себя. Но если R не является членом самого себя, то не выполняется свойство, определяющее R. Следовательно, если не выполняется свойство, R все-таки является членом самого себя. То есть R не может быть членом самого себя, но также не может и не быть им. Множество R существование которого обусловлено аксиомой выделения не может существовать, потому что это порождает логическое противоречие. Итак, аксиома выделения, которая казалась такой невинной, на самом деле противоречит самой себе. Это открытие сегодня известно как парадокс Рассела. Открытие противоречивости теории множеств развязало кризис оснований математики. Положение осложнялось тем, что теория Кантора уже проникла в основные области математики, такие как анализ и топология. В году британский философ и математик Бертран Рассел представил популярную версию своего парадокса. Он предложил представить себе, что в некой деревне есть только один брадобрей, бреющий всех мужчин, которые не бреются сами. Но бреет ли он сам себя? Ответ в том, что брадобрей не может бриться сам, но также не может и не делать этого. Из-за открытия Рассела математики задались вопросом о справедливости всех математических открытий по меньшей мере за 30 предыдущих лет. Они начали сомневаться в справедливости любого рассуждения, включающего в себя бесконечность, и даже задавали вопросы о смысле и значении математики. Каков конкретно объект изучения математики? Какие критерии подтверждают справедливость ее рассуждений? Сам Фреге почувствовал, что открытие Рассела разрушает всю его работу. Сразу после этого Фреге оставил борьбу и сдался. Он прожил до года, но никогда больше не вернулся к теме оснований. Какую реакцию вызвало открытие парадокса Рассела? С самого начала было предложено два решения. Рассел говорил, что любой парадокс возникает от наличия самореференции. Он рождается из-за анализа фразы, в которой говорится о ней же. Сам парадокс Рассела возникает из вопроса о том, выполняет ли некое множество свойство, определяющее само множество. Во избежание этих ситуаций логицизм предлагает радикальное изменение логического языка с помощью теории типов. Общая идея заключается в том, чтобы назначить языку математики строгую иерархию, в которой каждое утверждение может относиться только к сущностям или утверждениям, расположенным на более низких уровнях. Таким образом, сама структура языка избегает самореференций и, следовательно, парадоксов. На нулевом уровне иерархии находятся индивиды; на уровне 1 — утверждения, в которых говорится об индивидах; на уровне 2 — утверждения, в которых говорится об утверждениях типа 1, и так далее. Однако по техническим причинам Рассел был вынужден усложнить свою стратификацию и ввести произвольные и неинтуитивные правила. Вследствие этого система потеряла убедительность, и Рассел в итоге оставил ее. Хотя некоторые элементы, введенные логицизмом, дошли до наших дней, к году влияние этой школы практически исчезло. Второе решение стало известно как интуиционизм, или конструктивизм, и его лидером был нидерландский математик Лёйтзен Эгберт Ян Брауэр Решение задач, которые до этого времени окружали математическую бесконечность, — возможно, самое большое из достижений, которыми может гордиться наша эпоха. Интуиционисты утверждали, что появление парадоксов напрямую обязано введению понятия актуальной бесконечности и это понятие, как утверждали еще Аристотель и Галилей, противоречиво само по себе. Вся теория Кантора не имеет смысла и должна быть оставлена, а математика — в том, что касается бесконечности, — должна вернуться к положению, существовавшему до года. Основой математики должны быть натуральные числа и операции с ними — сложение и умножение. Эти числа не нуждаются в определении, поскольку понятие о них априори заложено в нашем сознании. Числа должны пониматься не как законченная бесконечная совокупность, а как результат непрерывного процесса упомянутый ранее пример с народом , который начинался с числа 1 и продолжался неопределенное время за счет применения понятия последующего элемента 1 — первый элемент, 2 — элемент, следующий за 1, 3 — элемент, следующий за 2, и так далее. Для утверждения о том, что существует математический объект, отличный от натуральных чисел, необходимо, чтобы его можно было построить за конечное число шагов на основе натуральных чисел с помощью строго определенной процедуры. Объекта, который невозможно построить таким образом, просто не существует. В некотором смысле интуиционисты возвращались к идее, содержащейся в сентенции Леопольда Кронекера: Лёйтзен Эгберт Ян Брауэр родился в Роттердаме, Голландия, 27 февраля года, за два года до публикации статьи Кантора, в которой впервые была введена в математику актуальная бесконечность. В году, сразу после окончания университета, Брауэр доказал несколько оригинальных результатов о непрерывном движении в четырех измерениях, которые были опубликованы Амстердамской королевской академией наук. В его докторской диссертации, опубликованной в году, речь шла о проблеме оснований математики. В этой работе он ввел первые понятия об интуиционизме. Также ученый внес значительный вклад в топологию, где доказал знаменитую теорему о неподвижной точке, носящую его имя. Что любопытно, доказательство этой теоремы не выполняет интуиционистских стандартов. В году Брауэр занялся политикой и практически отдалился от математических исследований, хотя в том же году основал журнал Compositio Mathematica и продолжал деятельность в качестве его издателя. Брауэр скончался 2 декабря года в Бларикюме Голландия в результате автокатастрофы. С другой стороны, согласно интуиционистам, для того чтобы определение свойства было справедливым, должна существовать механическая процедура которую можно реализовать на компьютере, поскольку алгоритм — это не что иное, как последовательность действий , и с ее помощью можно проверить, выполняется ли свойство. Чтобы узнать, является ли число простым, достаточно разделить его на все числа, меньшие его. Если во всех случаях деления есть остаток, то число простое. Процедура, которую мы описали, не самая лучшая есть более быстрые методы , но она всегда дает правильный ответ за конечное количество шагов. Число р определяется следующим образом: Если никогда не появятся 15 нулей подряд, то р равно 0. Существует ли число р? В году Гильберт написал, что если мы определим математический объект и это определение не противоречит само себе, то мы можем утверждать, что объект существует. Почти любой современный математик ответит, что р существует. Более того, все они согласятся, что хотя мы не знаем точно, чему оно равно, можно утверждать: Более того, если в будущем эти 15 нулей кто-то найдет, в тот же момент р начнет существовать. Сегодня р не существует, но, возможно, оно появится в будущем. То же самое мы могли бы сказать о еще не написанном романе любого современного писателя. В этом сравнении нет ничего странного, поскольку для интуиционистов математика — это динамический, творческий процесс, подобный литературе, хотя он и управляется более строгими правилами. Математика создается при соблюдении определенных правил , а не открывается. Последующие поколения будут рассматривать теорию [бесконечных] множеств как болезнь, от которой мы излечились. Поскольку сейчас р не существует, у него нет значения. Следовательно, ошибочно говорить, что оно находится в пределах от 0 до 9. Любое утверждение относительно р не имеет смысла. Интуиционисты также задавались вопросом о статусе иррациональных чисел. Эти числа рассматривались только как никогда не достижимый результат последовательных приближений. Между и годами Брауэр формулировал глобальную программу для математики на основе этих идей. В течение этих лет он писал статьи и книги, в которых объяснял, как осуществить его подход на практике. Постепенно эта программа начала обретать последователей среди самых видных математиков того времени, таких как Анри Пуанкаре К году теория Кантора скончавшегося в году подвергалась серьезному риску быть забытой. Но за интуиционизм выступали не все математики. Одним из них был Давид Гильберт, который быстро принял теорию бесконечности. В году он поддержал кандидатуру Кантора на пост председателя Немецкого математического общества. Кроме того, ученые дружили и вели интенсивную переписку. Марианна, Курт, Рудольф- старший и Рудольф- младший. Немецкий математик Георг Кантор, которому приписывается создание теории множеств. Гёдель в Вене в первой половине х годов, когда он доказал свою первую теорему о неполноте. Давид Гильберт родился 23 января года в Кёнигсберге, Германия сегодня Калининград, Россия , и в году стал доктором математики в университете того же города. Через десять лет ему предложили должность в Гёттингене одном из двух самых важных исследовательских центров в Германии наряду с Берлином , которую он потом занимал до конца карьеры. В числе прочего ученый внес значительный вклад в алгебру, геометрию, анализ и основания математики. И конечно, знаковым является доклад Гильберта на Втором Международном математическом конгрессе, прошедшем в Париже в году. Одна фраза из доклада стала бессмертной. В ней ученый выразил убежденность в том, что неразрешимых математических проблем не существует: Гильберт скончался в Гёттингене 14 февраля года. В году Гильберту было предложено прочитать инаугурационный доклад на Втором Международном математическом конгрессе в Париже. Это была почетная задача, которая говорила о признании, которое ученый заслужил своей блистательной карьерой. До сих пор, даже век спустя, доклад Гильберта широко известен, и его полный текст можно найти в интернете. Анализу этого выступления были посвящены целые книги. В своем докладе Гильберт представил 23 нерешенные математические проблемы, принадлежащие к разным областям этой науки, решение которых, как он думал, определит направление математических исследований XX века. Первая проблема связана с теорией Кантора и известна как континуум-гипотеза. Она была впервые поставлена самим Кантором в х годах, причем сам ученый так и не решил ее. Позже мы вернемся к этой проблеме, поскольку Гёдель в году нашел частичное решение, которое затем было дополнено Полом Коэном. Решение поместить континуум-гипотезу на первое место в списке следует трактовать как открытую поддержку Гильбертом теории множеств Кантора. В первые годы полемики об основаниях математики Гильберт держался в стороне, возможно надеясь на то, что интуиционистская точка зрения падет под тяжестью собственного веса. Но к году логицизм начал приходить в упадок, а интуиционизм набирал все больше сторонников. Именно поэтому в итоге Гильберт решил выступить лично. Для этого он предложил третье решение проблемы, поставленной парадоксом Рассела. Оно было направлено на то, чтобы привлечь внимание сторонников интуиционизма и одновременно оставить нетронутой теорию Кантора. Привлечь интуиционистов, но в то же время спасти теорию Кантора? Казалось, это невозможная задача, поскольку интуиционисты открыто отвергали актуальную бесконечность как абсурдное понятие. Но Гильберт был Гильбертом, и с помощью своего ума, ловкости и хитрости он добился своей цели. В году Курту Гёделю было 14 лет, и в своем родном городе Брно он, возможно, мечтал о научной карьере. В то же время в Геттингене летний Давид Гильберт начал примирение интуиционистов с актуальной бесконечностью. Эта работа займет десять лет. Как уже было сказано, интуиционистская мысль находилась полностью во власти идеи конечности. Они считали, что существуют только объекты, которые можно построить механически на основе натуральных чисел за конечное количество шагов. Предложение Гильберта, по сути, заключалось в том, чтобы привести требование конечности математических объектов к математическим рассуждениям. Мы можем перефразировать его мысль следующим образом. Установим такие методы рассуждения, чтобы правильность нашей аргументации можно было проверить алгоритмически за конечное количество шагов алгоритм — это механический процесс, выполнимый компьютером. Как только мы достигнем этой цели, в наших теориях можно будет говорить о любом объекте, даже об актуальной бесконечности. В программе Гильберта, которую также называют формальной программой, утверждается, что любая математическая теория должна быть основана на аксиомах, то есть на некоторых базовых утверждениях, принятых в качестве истинных. Любое другое утверждение должно быть доказано на основе этих аксиом с помощью рассуждений, справедливость которых можно будет проверить механически за конечное число шагов. Кроме того, непротиворечивость этих аксиом то, что они никогда не приведут нас к парадоксу, как это произошло с Фреге также должна быть проверена тем же механическим, или алгоритмическим, способом. Для начала целью Гильберта была разработка такой программы для арифметики — теории, относящейся к свойствам сложения и умножения натуральных чисел в ней идет речь о самых простых числах и самых простых операциях. Гильберт, как и интуиционисты, поддерживал идею о том, что основой всей математики должна быть арифметика, а не теория множеств. Если установить прочную базу для арифметики, будет легко добиться таких же прочных оснований для всех остальных теорий. Эти приближения, в свою очередь, должны быть вычислены по определенным, четким правилам. Одна из самых древних и в то же время самых простых формул была известна Герону Александрийскому уже в I веке. Если на первом шаге мы выбрали 5, в первый раз получим 2,7. Подставив 2,7 в формулу, получим 1, Проблема нахождения системы аксиом для арифметики была представлена Гильбертом в докладе года вторая проблема в списке , хотя в ее формулировку не было включено существование механической проверки рассуждений. Зато вопрос алгоритма появлялся в десятой проблеме, в которой спрашивалось, всегда ли возможно механически определить, имеет ли решение особый тип уравнений, называемых диофантовыми. Как мы видим, в докладе ученого появились, хотя и по отдельности, две центральные идеи формальной программы. Иногда говорят, что Гильберт считал, будто работа математика должна сводиться к механическому процессу: Но это не так. Механический характер носит только проверка справедливости аргументов, использованных математиком, а не открытие самих аргументов. Чтобы подчеркнуть эту разницу, Гильберт говорил о двух науках: Объектом второй науки, механической и связанной с конечностью, была бы проверка методов первой. Давид Гильберт в качестве одной из кардинальных проблем представил нахождение множества аксиом арифметики, которые позволили бы доказать все истины теории не упоминая необходимости механической проверки правильности использованных рассуждений. В своем докладе Гильберт не указал на существующие работы по этой теме. Это упущение вызвало недовольство Джузеппе Пеано — итальянского математика, присутствовавшего на лекции Гильберта. В году он предложил аксиомы арифметики, считая, что они позволят вывести все истинные арифметические высказывания. S x никогда не равно 1, то есть 1 не является последующим членом ни для какого числа. Последняя аксиома, также называемая схемой индукции, выражает тот факт, что все натуральные числа получаются на основе единицы повторяющимся применением функции последующего элемента. Если свойство справедливо для числа 1 и мы можем быть уверены, что оно будет распространяться на каждое число, выраженное последующим элементом, то это свойство будет справедливо для всех натуральных чисел. Следствие из теоремы Гёделя состоит в том, что если учитывать условие алгоритмической проверки всех рассуждений, то будут существовать арифметические истины, недоказуемые на основе этих аксиом. Таким образом, арифметика будет неполной. С по год Гильберт опубликовал ряд статей, в которых постепенно излагал свою программу и показывал, как ее можно осуществить на практике. Другие математики увлеклись этой идеей и внесли значительный вклад в ее осуществление. Сам Гёдель в году, защищая докторскую диссертацию, показал, что можно установить методы рассуждения, правильность которых может быть проверена алгоритмически. В том же году польский математик Мойжеш Пресбургер представил ряд аксиом, непротиворечивость которых можно было проверить алгоритмически. Они позволяли доказать хотя и не все арифметические истины, но их значительную часть. Это были две важные победы формальной программы. В то же время интуиционизм терял авторитет среди математиков. Многие из тех, кто симпатизировал общим идеям Брауэра, начинали чувствовать, что их реализация на практике, предполагавшая отказ от рассуждений из области теории множеств, принесет больше потерь, чем преимуществ. Формальная программа, в свою очередь, предлагала альтернативу, которая была допустима с философской точки зрения и осуществима на практике. К году стало ясно, что Гильберт победил. Оставалось только помочь интуиционистам сохранить лицо и достойно сдаться. В Кёнигсберге, родном городе Гильберта выбор, конечно, не случаен , был организован конгресс, посвященный основаниям математики. Он проводился с пятницы 5 сентября по воскресенье 7 сентября; на понедельник было назначено награждение Гильберта званием почетного гражданина Кёнигсберга. Все было готово к великой победе учителя. В пятницу представляли свои работы менее значимые, неизвестные математики. В субботу выступали более значимые, среди них был Ханс Хан, руководитель докторской диссертации Гёделя. Брауэр, который враждовал с Гильбертом по причинам, выходившим далеко за рамки академической науки, не присутствовал; интуиционистскую точку зрения излагал Аренд Гейтинг. Гильберт, имевший проблемы со здоровьем, также отсутствовал, и его главным представителем был его ученик Джон фон Нейман. На конгрессе присутствовал и представитель логицизма, философ Рудольф Карнап. В воскресенье конгресс закрылся пленарным заседанием, на котором были подведены итоги точек зрения интуиционизма, формализма и логицизма. Завершая выступление, он сказал, что отношения между интуиционизмом и формализмом наконец-то прояснились и больше нет необходимости продолжать борьбу между этими школами: Какое значение могут иметь жалкие остатки, немногочисленные, неполные, не связанные друг с другом единичные результаты, которые были выработаны интуиционистами, по сравнению с могущественным размахом современной математики. Все очевидцы говорят, что именно в этот момент неизвестный молодой математик скромно поднял руку, прося слова. Он был худым, носил очки и, похоже, очень нервничал. Этот молодой человек, Курт Гёдель, объявил, что доказал следующую теорему: Сегодня это утверждение известно как первая теорема Гёделя о неполноте. Более того, если предложенные аксиомы позволяют доказать довольно обширную часть арифметических истин, то невозможно проверить их непротиворечивость механическими методами. Это вторая теорема Гёделя о неполноте. Другими словами, программа Гильберта абсолютно нереализуема. Мы можем представить себе сцену, которой на самом деле не было, но которая отражает состояние духа формалистов в тот воскресный вечер. Представим себе, что Гильберт звонит по телефону Джону фон Нейману, чтобы спросить его, как все прошло, и тот отвечает: Хорошая — интуиционисты сдались. Как Гёделю удалось доказать свою теорему? Как можно доказать, что, независимо от предлагаемых аксиом, всегда будет существовать утверждение истинное, но недоказуемое на их основе? Доказательство Гёделя, один из самых больших интеллектуальных подвигов XX века, будет центральной темой следующей главы. В первой теореме Гёделя о неполноте говорится, что при любом заданном множестве аксиом арифметики всегда будет существовать истинное арифметическое высказывание, которое невозможно доказать на основе этих аксиом, если пользоваться только теми методами доказательства, которые удовлетворяют программе Гильберта. Доказательство этой теоремы, по сути, состоит в том, чтобы получить самореферентное высказывание, которое говорит о себе: После окончания Первой мировой войны Австро-Венгерская империя была разделена на части. Некоторые из них, такие как Австрия, Венгрия, Югославия и Чехословакия, стали отдельными странами. Другие вошли в состав уже существовавших государств, таких как Италия или Румыния. После этого раздела город Брно, в котором жила семья Гёделя, был присоединен к Чехословакии. Курт вспоминал, что с этого момента его отец всегда чувствовал себя австрийцем в изгнании. Возможно, это ощущение в какой-то степени повлияло на решение послать обоих сыновей учиться в Венский университет, чтобы они хотя бы таким образом могли вернуться на родину. Гёдель поступил в Венский университет в году с намерением изучать физику. Можно предположить, что врожденное любопытство с самого раннего детства привело его к вопросам о том, почему вещи, подброшенные вверх, падают, или почему некоторые предметы плавают, а другие нет, или почему светит Солнце, — все они связаны с физикой. Однако основная причина, по которой он решил посвятить себя этой науке, по- видимому, сформировалась, когда Гёделю было 15 лет, после того как он прочитал о теории цвета Гёте и о противостоянии подходу Ньютона. Очень мало известно о личной жизни Гёделя в студенческие годы. Он едва не женился на женщине, которая была на десять лет его старше, но родители воспротивились, и Курт отказался от своего намерения. Нет информации о других личных отношениях или близкой дружбе. По-видимому, юноша посвящал большую часть времени учебе. Но в университете его намерение посвятить себя физике вскоре пропало. В те годы в Вене преподавал Филипп Фуртвенглер, немецкий математик, специализировавшийся на высшей арифметике. Он родился в году в Эльце Германия , в м защитил докторскую диссертацию в Геттингене под руководством Феликса Клейна, одного из самых выдающихся математиков конца XIX века. Занятия Филиппа Фуртвенглера отличались блеском и ясностью. Число студентов, которые записывались на его курс, было таким большим оно доходило до человек одновременно , что ученики были вынуждены делиться на две группы, и урок проводился дважды, для каждой из них. У Фуртвенглера был поперечный паралич, и он со своего кресла на колесах диктовал помощнику, что тот должен написать на доске. Иоганн Вольфганг фон Гёте — немецкий романист, драматург и поэт, один из главных представителей романтизма. Помимо литературного творчества, Гёте также занимался наукой и стал автором работ по физике, зоологии и ботанике. Многие его идеи вызвали споры, некоторые из них разрешились в последующие десятилетия. Например, его классификация растений и понятия о морфологии животных были использованы Чарльзом Дарвином и другими натуралистами XIX века. Для Гёте оптика Ньютона была неполной и представляла собой только частный случай в рамках его собственной теории. Идеи Гёте о свете не заинтересовали физиков его времени; обычно они даже не включаются в работы по истории науки. Однако сегодня признано, что Гёте был прав, различая оптический аспект в том виде, как его изучал Ньютон, и более широкое явление — восприятие цветов человеком. На юного Курта так подействовали занятия Фуртвенглера, что он оставил решение изучать физику и обратился к математике. Это, без сомнения, выдающийся пример того, как преподаватель может повлиять на жизнь ученика. Только через 25 лет в Принстоне у Гёделя появится возможность вспомнить о своей любви к физике. В и годах он опубликовал две важные работы по теории относительности — эти труды Гёделя, единственные не связанные с математической логикой, безусловно, стали результатом его бесед с Эйнштейном. Филипп Фуртвенглер закончил обучение в Геттингене в году и оставался там до го, когда переехал в Венский университет. Между тем в году в Геттинген прибыл Давид Гильберт, считавшийся молодой надеждой немецкой математики. Узнал ли когда-нибудь Фуртвенглер, что именно он вдохновил Гёделя посвятить себя математике? Вернемся к Гёделю и его университетским годам. В то время, в начале х годов, интеллектуальная жизнь Вены протекала более или менее неформально, в виде кружков Kreise. Такие группы которых, вероятно, были десятки, и многие из них назывались одинаково собирались еженедельно в городских кафе, чтобы обсуждать различные темы, касающиеся философии, политики или психоанализа в те годы в Вене жил и работал Фрейд. Самый важный кружок был основан в году Морицем Шликом, который, кроме того, преподавал Гёделю философию науки. В состав группы входили, среди прочих, философы Рудольф Карнап и Людвиг Витгенштейн, а также философ и математик Ханс Хан который руководил докторской диссертацией Гёделя. Карл Поппер также участвовал в некоторых дискуссиях. Вступить в группу можно было строго по приглашению; Гёдель получил его от Шлика в году и регулярно ходил на встречи до года — только как слушатель. Когда Гёдель получил приглашение присоединиться к кружку, он был еще студентом, и это много говорит об авторитете, который он имел среди преподавателей. Темы обсуждений в Венском кружке касались философии науки в целом и языка науки в частности. Также обсуждали математику, в особенности решения проблемы кризиса оснований, предложенные Расселом, Брауэром и Гильбертом. Явно именно там Гёдель приобрел первые глубокие знания о формальной программе. Участие Гёделя в Венском кружке привело его в году к окончательному решению посвятить себя математической логике. На следующий год он закончил свою докторскую диссертацию о проблеме, связанной с программой Гильберта хотя речь еще не шла о знаменитой теореме о неполноте, которую он представил в сентябре года на конгрессе в Кёнигсберге. Мориц Шлик — немецкий философ, родился в году. Однако Шлинк посвятил свою жизнь не физике, а философии. Через некоторое время Шлинк переключил свое внимание на эпистемологию и философию. В году он занял кафедру философии в Венском университете и в это же время основал Венский кружок как центр для обсуждения новых философских горизонтов, далеких от метафизики и сосредоточенных на эмпиризме. Встречи кружка прекратились в году, с убийством Морица Шлика студентом университета некоторые историки утверждают, что студент был психически нездоров, другие — будто он был сторонником нацистов, хотя обе версии не исключают друг друга. Гёдель представил свою диссертацию в Венском университете 6 февраля года. В том же году он опубликовал ее в виде статьи. Теорема, которая в ней доказана, сегодня известна как теорема Гёделя о полноте. В то время она была воспринята как знак выполнимости программы Гильберта. Чтобы понять теорему Гёделя о полноте, мы должны прежде углубиться в теорию математического доказательства по программе Гильберта. Напомним, что согласно ей нужно найти множество аксиом, которые позволили бы доказать все арифметические истины с помощью рассуждений, проверяемых алгоритмически. Но что точно представляет собой арифметика? Каковы истины, которые мы хотим доказать? Цель моей теории — установить раз и навсегда определенность математических методов. Арифметика — это область математики, в которой говорится о свойствах сложения и умножения натуральных чисел: Аксиомы, которые искал Гильберт, были бы множеством базовых истин, из которых можно вывести, при уже изложенных условиях, все остальные истинные арифметические утверждения, в том числе упомянутые выше. С другой стороны, что означает алгоритмическая проверка справедливости рассуждений, доказывающих эти истины? Это означает, что по крайней мере в начале должно быть возможным так запрограммировать компьютер, чтобы за конечное количество шагов он мог определить, является ли доказательство справедливым. В соответствии с этой идеей мы вводим доказательство в машину, она обрабатывает его по предварительно написанной программе и через некоторое время возможно, долгое, но в любом случае конечное говорит нам, справедливо рассуждение или в нем содержится ошибка. В целом проверка правильности математического доказательства — непростая работа, иногда даже для специалистов. Например, когда в году Эндрю Уайлс представил свое доказательство последней теоремы Ферма, которому он посвятил семь лет, специалисты, его проверявшие, нашли логический пробел — шаг, который, насколько они понимали, не был должным образом обоснован. Уайлс, естественно, этой ошибки не заметил, и ему потребовался год на ее исправление. В конце концов в году он представил полное доказательство. Продемонстрируем менее сложный пример. Пусть а и b — два числа, которые мы считаем равными и при этом отличными от нуля. Очевидно, что это рассуждение неверно, но где ошибка? Она находится в переходе от шага 5 к шагу 6. Но как мы можем научить компьютер обнаруживать ошибки такого типа? Компьютер — это только машина; он не рассуждает, а слепо следует программе, записанной в его памяти. Для того чтобы компьютер мог проверить правильность математического рассуждения, необходимо перевести это рассуждение в последовательность высказываний, каждое из которых либо аксиома, либо выводится из предыдущих высказываний посредством применения точных и заранее установленных логических правил. Рассмотрим пример математического доказательства, выраженного таким образом. Для начала нам нужны некоторые аксиомы, которые будут служить нам отправной точкой. В году, задолго до открытия парадокса Рассела, итальянский математик Джузеппе Пеано предложил набор аксиом, которые как он предполагал позволяют доказать все арифметические истины. Пеано понимал, что последовательность натуральных чисел получается на основе числа 1 посредством повторного применения функции последующего элемента. В первой аксиоме говорится, что последующий элемент числа х всегда получается прибавлением к нему 1. Стрелки показывают применения правил вывода. Разве это не очевидный факт? Хотя это действительно очевидно, по программе Гильберта любое истинное утверждение, не являющееся аксиомой, должно доказываться на их основе. За исключением высказываний, которые явно указаны как аксиомы, нет других утверждений, которые сами по себе считаются истинными. Добавим несколько комментариев, чтобы мы, люди, могли следить за идеей см. Нужна ли такая точность для доказательства того, что два плюс два равно четыре? Да, это необходимо, если мы хотим, чтобы компьютер был способен проверять правильность рассуждений. Компьютер не думает; следовательно, мы должны вести его за руку, шаг за шагом показывая ему, используя заранее установленные правила, что именно мы сделали на каждом этапе рассуждений. Действительный мир есть мир, постоянно изменяющийся. Что будет делать компьютер, чтобы проверить, правильно ли наше доказательство? Для начала он возьмет первое высказывание и проверит, является ли оно аксиомой. Эта проверка происходит от символа к символу, точно так же как текстовый редактор проверяет орфографию, буква за буквой сверяя слова со словарем, загруженным в память компьютера. Вспомним, что каждое высказывание должно либо быть аксиомой, либо выводиться из предыдущих высказываний. В нашем примере машина убедилась бы, что первое высказывание — это одна из аксиом в списке первое высказывание должно быть аксиомой, его нельзя вывести из предыдущих высказываний, просто потому что их нет. Компьютер, конечно же, не понимает значения аксиомы, он только проверяет, что первое высказывание присутствует в списке, предварительно в него загруженном. Тогда это второе высказывание должно сводиться к первому с помощью какого-либо логического правила. Чтобы осуществить эту проверку, в память компьютера должен быть загружен список правил логики, то есть правил, которые показывают, какие выводы можно сделать из определенных предпосылок см. В нашем примере буква х заменена числом 2, а у — числом 1. Эти логические правила находятся вне арифметики, они справедливы для любой области математики, поэтому выражающие их высказывания называются универсально справедливыми высказываниями или логическими аксиомами, поскольку они выражают правила логических рассуждений. Мы уже упомянули одно из этих правил. Именно это — последнее — правило оправдывает переход от шага 2 к шагу 3, где S 1 заменяется на 2. Но когда существует потенциально бесконечное число универсально справедливых высказываний, как мы можем загрузить их все в память компьютера? Если это нельзя сделать, то компьютер неспособен проверить справедливость любого рассуждения, и, следовательно, программа Гильберта оказывается неосуществимой. При этом ни один компьютер не способен содержать бесконечное число высказываний. Как программа Гильберта, так и доказательство Гёделя предполагают, что все арифметические высказывания написаны на формальном языке с помощью заранее установленных символов. Существуют возможные варианты символов, один из наборов которых следующий. Указывает, что обозначаемое свойство справедливо для любого числа. В некоторых представлениях предпочитается брать в качестве первого элемента 0, но это не является существенным. При использовании символов, которые мы привели, число 2 записывается как S 1 , то есть следующий за 1. Число 3 записывается как S[S 1 ], то есть следующий за следующим за 1. К счастью, в теореме о полноте Гёдель доказал, что хотя количество логических правил потенциально бесконечно, любое рассуждение можно осуществить, используя только 12 из них. Если загрузить в память компьютера эти 12 правил, он будет способен проверить правильность любого доказательства. Когда в начале года эта теорема была опубликована, казалось, что необходимая логическая основа для программы Гильберта обеспечена: Проблема, которую оставалось решить, состояла в том, чтобы найти множество аксиом, которое на основе этих 12 правил позволило бы доказать все арифметические истины. Теорема о полноте не произвела на математический мир большого эффекта. Считалось, что Гёдель просто подробно описал доказательство того, что все и так считали верным, — такой большой была вера в успешную реализацию программы Гильберта. Оставалась только проблема нахождения аксиом арифметики. Когда была установлена логическая база, дававшая возможность осуществлять доказательства, проверяемые алгоритмически, оставалось только найти аксиомы, которые позволили бы доказать все арифметические истины. К несчастью для программы Гильберта, эта цель недостижима. Теорема, в которой изложена эта невозможность, известна как первая теорема Гёделя о неполноте, или просто теорема Гёделя:. Гёдель доказал эту теорему в году и, как мы уже знаем, впервые открыто изложил ее на конгрессе в Кёнигсберге 7 сентября того же года. Значение этой публикации для логики сравнимо только с "Метафизикой" Аристотеля. Изложение доказательства было таким ясным и прозрачным, что не вызвало ни малейшей полемики. В своей докторской диссертации, представленной в году, Гёдель доказал, что любое рассуждение, которое можно проверить алгоритмически, может быть построено всего на 12 логических правилах, которые мы приводим ниже. Если справедливо" x P x ", то справедливо "Р n ", где n — любое число. Если справедливо Р х для произвольного х, то справедливо" x P х ". В целом первые десять правил представлены как универсально справедливые высказывания, в то время как два последних представлены отдельно как правила вывода. Это разграничение чисто техническое и не имеет значения для наших целей. Но как можно доказать факт такого масштаба? Как можно доказать, что каким бы ни было множество выбранных аксиом если рассуждения проверяются алгоритмически , то всегда найдется истина, недоказуемая на их основе? Сейчас мы перейдем к объяснению доказательства и для этого рассмотрим, шаг за шагом, основные моменты рассуждений Гёделя. Ханс Хан, руководитель докторской диссертации Гёделя. Этот австрийский философ и математик внес значительный вклад в формирование Венского кружка. Курт Гёдель в году, через пять лет после защиты докторской диссертации в Венском университете. Предположим, что в качестве аксиом были выбраны некоторые истинные арифметические высказывания. Это гарантирует, что ни одно доказываемое высказывание не будет ложным, однако это ни в коем случае не означает, что все истины доказуемы. Действительно, наша цель — доказать, что существует истинное арифметическое высказывание, которое не может быть доказано на основе этих аксиом если мы будем придерживаться методов доказательства программы Гильберта. Главная идея доказательства состоит в том, чтобы получить высказывание G, в котором будет говориться: Другими словами, G может быть записано так: Высказывание G самореферентно и говорит о самом себе, что оно недоказуемо в дальнейшем слово "доказуемый" всегда должно пониматься как "доказуемый на основе предложенных аксиом". Докажем, что это высказывание G является недоказуемой истиной. Для начала заметим, что G либо истинно, либо ложно. Если бы G было ложно, в связи с тем, что в G говорится о самом себе, можно было бы сделать вывод, что G доказуемо. Следовательно, G было бы одновременно ложным и доказуемым, но это невозможно ведь мы сказали, что исходя из истинных аксиом можно доказать только истинные высказывания. Следовательно, G не может быть ложным. Следовательно, G истинно, и согласно тому, что оно говорит о самом себе, оно недоказуемо. Так мы делаем вывод, что G — истинное и недоказуемое высказывание см. Предыдущая идея, хотя и правильная в целом, имеет одну проблему: G должно быть арифметическим утверждением. Но арифметические высказывания относятся к свойствам натуральных чисел, в них не говорится о других высказываниях и тем более о самих себе. Как мы можем преодолеть это ограничение и сделать так, чтобы арифметическое высказывание относилось к другому высказыванию? Если в высказываниях говорится о числах, а нам надо, чтобы в них говорилось о других утверждениях, то нужно приравнять числа к утверждениям:. Требуется связать с каждым арифметическим высказыванием какое-нибудь натуральное число так, чтобы замечание об этом числе было равносильно замечанию о соответствующем утверждении. Например, если бы утверждению соответствовало число , мы могли бы считать, что в любом высказывании, в котором речь идет о , одновременно речь идет о Р. Теперь каждому арифметическому высказыванию назначим число, которое назовем числом Гёделя, или его кодом. Назначение чисел Гёделя происходит специфическим способом, который можно запрограммировать для компьютера, однако для того, чтобы в общих чертах понять идею доказательства теоремы о неполноте, нет необходимости углубляться в технические детали. Примеры, которые мы приведем далее, чисто гипотетические и служат только для того, чтобы проиллюстрировать общее понятие. Напротив, существует алгоритм, который при заданном высказывании позволяет точно вычислить его код. Также существует обратный алгоритм, который при заданном коде может восстановить высказывание, которому он соответствует. Более того, в действительности коды, если их правильно вычислить, могут содержать десятки цифр. Заметим, что в нашем примере два последних высказывания ложны. Это показывает, что числа Гёделя назначаются всем высказываниям, как истинным, так и ложным. С технической целью числа Гёделя также назначаются общим выражениям, таким как "х — четное число" или "х делится на 18". Они относятся не к конкретному числу, а к переменному числу х. Эти выражения Бертран Рассел называл пропозициональными функциями. Сами по себе пропозициональные функции не являются высказываниями, поскольку высказывание по определению должно быть истинным или ложным, в то время как истинность или ложность фразы "х — четное число" зависит от значения х. Каждый раз, когда мы заменяем х конкретным числом, мы получаем высказывание, которое будет истинным или ложным в зависимости от выбранного числа. Например, если в "х — четное число" заменить х числом 8, то мы получим истинное высказывание "8 — четное число". Наоборот, если заменить х числом 3, мы получим ложное высказывание "3 — четное число". Мы уже сказали, что каждой пропозициональной функции также назначается число Гёделя как и для высказываний, эти коды вычисляются с помощью установленного алгоритма. Например, мы можем представить, что:. Заметим, что "х — четное число" назначается код , в то время как высказыванию "2 — четное число" соответствует код Коды разные, и это правильно, поскольку речь идет о разных лингвистических объектах. Точно так же "1 — четное число", "3 — четное число", "4 — четное число" имеют разные числа Гёделя. Наконец, число Гёделя также назначается каждой конечной последовательности высказываний которое вычисляется на основе кодов высказываний, образующих последовательность. Идея этого назначения в том, чтобы гарантировать, что каждое доказательство также можно будет идентифицировать по его коду. Как в действительности определяется нумерация Гёделя? Чтобы определить ее, каждое высказывание и каждая пропозициональная функция должны быть выражены с помощью символов формального языка. Ученый назначил каждому символу этого языка нечетное число. Количество переменных потенциально бесконечно. Оставшимся х 4 , х 5 , Гёдель назначил коды высказываний и пропозициональных функций. Для большей ясности объясним метод на конкретном примере. Шаги для его вычисления следующие. Сначала остановимся на кодах символов, образующих высказывание: Поскольку есть три символа, теперь возьмем по порядку три первых простых числа: Заметьте, что простые числа — это основания степеней, а коды символов — показатели степеней. Для вычисления числа Гёделя конечной последовательности высказываний поступают похожим образом, только на шаге 1 берутся по порядку коды высказываний, образующих последовательность, а на последнем шаге они становятся показателями степеней простых чисел. Конечно же, как и в предыдущих случаях, должен существовать механический способ, указывающий, как вычислить код последовательности высказываний, и другой, обратный способ, который при заданном коде позволил бы восстановить последовательность соответствующих ему высказываний. Наше правило вычисления кода последовательности как произведения индивидуальных кодов неверно, потому что игнорируется порядок высказываний при перестановке высказываний местами код конечной последовательности остается тем же самым, но этого не должно происходить, так как при перестановке на самом деле получается другая последовательность. Однако, поскольку речь идет только о гипотетическом примере, мы не будем останавливаться на этом вопросе. Коды, или числа Гёделя, приводят не только к тому, что арифметическое высказывание можно связать с другим высказыванием, но и к возможности говорить о доказуемости этого высказывания. Например, при заданном утверждении Р мы можем записать арифметическое высказывание, в котором говорилось бы, что "Р недоказуемо". Посмотрим, как достичь этой цели. Как только выбрано множество аксиом, можно без ошибки определить, какие высказывания доказуемы, а какие нет хотя это может быть и очень сложно на практике. Каждому доказуемому высказыванию, в свою очередь, соответствует число Гёделя. Итак, у нас есть множество чисел, образованное кодами доказуемых высказываний. Гёдель доказал, что оно характеризуется четко определенным арифметическим свойством. Другими словами, "быть кодом доказуемого высказывания" — свойство, выраженное на языке арифметики который использует в качестве базовых элементов сложение, умножение и логические операции. Другими словами, свойство "х — это код доказуемого высказывания" может сводиться к числовому свойству, выраженному в терминах сумм, произведений и логических операций. Как обычно говорят, понятие доказуемости можно выразить. Если бы были разрешены другие методы рассуждения поговорим о них в следующей главе , то не было бы возможности гарантировать, что свойство "х — это код доказуемого высказывания" может быть выражено в арифметических терминах. Как Гёдель доказал, что понятие доказуемости можно выразить? Для начала он доказал, что любое числовое свойство, проверяемое алгоритмически например, "быть простым числом", "быть четным" или "делиться на 9" , всегда можно выразить с помощью сумм, произведений и логических операций. Итак, то, что высказывание Р доказуемо, означает, что существует доказательство принимаемое программой Гильберта , в котором Р — это конечное высказывание. Вспомним, что этому доказательству, с учетом последовательности высказываний, соответствует число Гёделя Теория доказательства ставит две проблемы, которые хоть и схожи, но не должны смешиваться. Первая заключается в том, чтобы при данном высказывании Р найти его доказательство или доказать, что его не существует. Вторая — в том, чтобы определить, верно ли предложенное доказательство. Вторая проблема может быть сложной, но первая намного сложнее. Если методы доказательства подходящие, то вторая проблема может быть решена алгоритмически. Проблема нахождения доказательства, наоборот, неразрешима таким образом. Ферма уверял, что у него есть доказательство этого факта, но так и не привел его. Проблема нахождения доказательства последней теоремы Ферма стала широко известной и в конце концов была решена Эндрю Уайлсом в году он представил первое доказательство в году, но выяснилось, что в нем содержится ошибка, которая была исправлена почти через год. Определение правильности доказательства Уайлса потребовало несколько дней усилий; но для нахождения доказательства понадобилось более лет. Следовательно, при заданных х и у свойство "у — это код доказательства, которое заканчивается высказыванием с кодом х" также является свойством, проверяемым алгоритмически, поскольку к предыдущей процедуре надо добавить только проверку того, что последовательность заканчивается высказыванием, соответствующим числу Гёделя х. Поскольку свойство проверяется алгоритмически, пропозициональную функцию "у — это код доказательства, которое заканчивается высказыванием с кодом х" можно выразить в терминах сумм, произведений и логических операций. Наконец, делаем вывод, что выражение "существует некое у у являющееся кодом доказательства, заканчивающегося высказыванием с кодом х" также можно выразить арифметическими терминами. Фактически в этом утверждении говорится, что существует некое доказательство высказывания с кодом х у другими словами — что высказывание с кодом х доказуемо. Так мы приходим к выводу, что пропозициональную функцию "х — это код доказуемого высказывания" можно выразить арифметическими терминами. Обычно этот арифметический перевод так сложен, что его явная структура может занять десятки страниц. Поэтому, чтобы понять идею доказательства Гёделя, предположим в качестве гипотетического примера, что свойство, характеризующее коды доказуемых высказываний, — это свойство "быть простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Тогда мы допускаем, что "х — это код доказуемого высказывания" равносильно "х — это простое число, которое может быть записано как сумма или разность трех последовательных простых чисел". Прежде чем продолжить, разберем это свойство. Простые числа — это числа, которые делятся только на единицу и на самих себя. Существует бесконечное число простых чисел: В нашем примере мы можем убедиться, что 23 — это код доказуемого высказывания. Наоборот, — это простое число, которое не может быть записано как сумма или разность трех последовательных простых чисел. Но в нашем гипотетическом примере — это код высказывания "4 — нечетное число". Следовательно, говорить, что " не является простым числом, которое можно записать как сумму или разность трех последовательных простых чисел" равносильно тому, чтобы сказать: Повторим это понятие, поскольку это сердце доказательства Гёделя. Но используя нумерацию Гёделя, этому же высказыванию мы можем приписать значение:. Существует два уровня прочтения " не является простым числом, которое можно записать как сумму или разность трех последовательных простых чисел". С одной стороны, чисто арифметически это дословный уровень, на котором мы истолковываем высказывание, выражая свойства числа С другой стороны, у нас есть высший уровень прочтения, метаматематический, зависящий от нумерации Гёделя, и на нем мы истолковываем высказывание, говоря, что утверждение "4 — нечетное число" недоказуемо. Мы увидели, что с помощью нумерации Гёделя можно получить арифметические высказывания, в которых идет речь о других арифметических высказываниях. Теперь посмотрим, как мы можем сформулировать высказывание, в котором речь идет о самом себе. Предположим, что — это код некоего высказывания Q. При таком предположении высказывание " — нечетное число" относится к Q и означает "код высказывания Q нечетный". Теперь представим себе, что мы ищем, какому высказыванию соответствует код то есть задаемся вопросом, что такое Q , и выясняем, что — это число Гёделя для " — нечетное число". В этом случае " — нечетное число" действительно относится к самому себе и может быть переведено как "мой код — нечетное число". Да, так и есть, можно построить высказывание, относящееся к его собственному коду. В своей статье Гёдель изложил систематический метод, позволяющий записать арифметические высказывания, относящиеся к собственному коду. Если Р — это любое арифметическое свойство такое, как "быть четным числом" или "быть простым числом" , то этот метод — метод самореференции — объясняет, как записать высказывание, которое может означать "мой код выполняет свойство Р". Основной инструмент этого метода — функция d x , которую Гёдель назвал диагональной. Функция — это правило, которое каждому числу х ставит в соответствие другое число. Оно может совпадать с х или отличаться, но вычисляется однозначно одному и тому же х не могут соответствовать два разных числа. Правилами могут быть "умножить число х само на себя" или "прибавить 3 к числу х". Для числа 2 первая функция даст значение 4, а вторая — 5. В частности, нас интересуют функции, которые могут быть выражены в терминах сумм, произведений и логических операций. Пропозициональные функции получили это название, потому что они похожи на функции, но ставят в соответствие не числа, а высказывания. Например, пропозициональная функция "х — четное число" сопоставляет числу 2 высказывание "2 — четное число". В запись пропозициональных функций мы можем ввести числовые функции, если только они могут быть выражены в терминах сумм, произведений и логических операций. Так, мы можем записать: Теперь рассмотрим определение функции d x , которая на самом деле вычисляется только для чисел, являющихся кодами пропозициональных функций. Поясним определение на примере. Возьмем код пропозициональной функции, например , который, как мы предположили, является числом Гёделя выражения "х — четное число". Далее в этой пропозициональной функции заменим х числом Мы получим высказывание " — четное число". Код этого высказывания — d , число, которое диагональная функция назначает числу В первых примерах мы указали, что " — четное число" имеет код, равный Диагональная функция сопоставляет числу значение Все шаги, определяющие диагональную функцию, могут быть вычислены алгоритмически, следовательно, ее определение можно выразить с помощью сумм, произведений и логических операций. Таким образом мы можем рассмотреть выражение "d x — четное". Предположим, что "d x — четное" соответствует код , и применим эту процедуру для вычисления d Возьмем любое натуральное число, например На его основе построим последовательность чисел, называемую последовательностью Гудстейна для числа 25 названа в честь Рубена Луиса Гудстейна , английского математика, который впервые ее определил. Второе число последовательности Гудстейна для числа 25 — это Чтобы получить четвертое число, заменим каждое 4 на 5 и вычтем 1. Результат последнего вычисления состоит из более чем цифр. Для получения следующего числа заменим каждое 5 на 6 и вычтем 1, и так далее. Кажется, что последовательность растет до бесконечности. Однако в теореме Гудстейна, доказанной им около года, утверждается, что вне зависимости от исходного числа последовательность всегда за конечное количество шагов достигнет 0. В доказательстве Гудстейна были использованы понятия теории множеств и оставалась открытой возможность того, что оно неосуществимо на основе аксиом Пеано. Это было подтверждено в году Лори Кирби и Джеффом Пэрисом, которые доказали, что теорема Гудстейна действительно недоказуема на основе аксиом Пеано с помощью рассуждений, проверяемых алгоритмически. Посмотрим внимательно на последний шаг: То есть "d — четное число" может читаться как самореферентное высказывание, говорящее о своем собственном коде следующее: Если бы у "d — четное число" кодом было , то высказывание можно было бы записать как " — четное число" и в нем бы ложно утверждалось, что его собственный код — четное число. Метод самореференции говорит, что эта процедура может применяться к любому арифметическому свойству Р Возьмем пропозициональную функцию "х выполняет свойство Р" и трансформируем ее в "d x выполняет свойство Р". Если код последнего выражения — число я, то "d n выполняет свойство Р" может быть прочитано посредством кодификации Гёделя как самореферентное высказывание, гласящее: Теперь посмотрим, как этот метод приведет нас в итоге к искомому высказыванию G. Мы уже сказали, что "быть кодом доказуемого высказывания" — это свойство, которое можно выразить в терминах сумм, произведений и логических операций. Очевидно, что то же самое происходит и с его отрицанием. Следовательно, мы можем записать пропозициональную функцию:. Если его код — число т, то:. Другими словами, в G говорится:. Как мы видели в начале доказательства, это высказывание является истинным и одновременно недоказуемым вспомним, что "доказуемый" всегда означает "доказуемый на основе предложенных аксиом". Мы доказали, что существует высказывание G, являющееся истинным и недоказуемым, и описали шаги, необходимые для того, чтобы записать его. Этим завершается доказательство первой теоремы Гёделя о неполноте. Один из самых древних известных парадоксов — это так называемый парадокс лжеца. Он возникает, если поставить вопрос, является ли утверждение "это предложение ложное" истинным или ложным. Если утверждение истинно, то, судя по его смыслу, оно оказывается ложным. Но если оно ложно, то оно получается истинным. Так мы сталкиваемся с бессмыслицей, порочным кругом, который снова и снова приводит нас от истинности к ложности и от ложности к истинности. В своей статье года Гёдель объяснил, что его доказательство найдено под влиянием парадокса лжеца, только вместо того чтобы написать высказывание, говорящее о собственной ложности, Гёдель написал высказывание, говорящее о собственной недоказуемости. Высказывание "это предложение ложно" — парадоксальная бессмыслица. Но высказывание "это предложение недоказуемо на основе предложенных аксиом" — недоказуемая истина. Это только введение, полезное для понимания основных идей, но не объясняющее специфических деталей того, как эти идеи применяются на практике. Если читателя заинтересовали детали, он может углубиться в технические работы по математической логике. Как выглядело бы высказывание G в нашем гипотетическом примере? Вспомним, что в этом примере свойство, характеризующее коды доказуемых высказываний, — это "быть простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Возьмем пропозициональную функцию "х не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел" и трансформируем ее в "d x не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Предположим, что последнему выражению соответствует число Как уже было указано раньше, G имеет два уровня прочтения. На элементарном уровне это выражение арифметического свойства числа Только когда мы смотрим на него через призму кодификации Гёделя, оно превращается в самореферентное и может читаться как говорящее о самом себе, что оно недоказуемо. Во второй главе мы увидим, что это замечание о различных уровнях прочтения позволяет преодолеть видимый парадокс, который возникает из анализа второй теоремы Гёделя. В связи с первой теоремой о неполноте обычно возникает вопрос: Ответ заключается в том, что "доказуемый" — относительное понятие. Если задано множество аксиом Л, существует истинное высказывание G, которое недоказуемо на основе этих аксиом с использованием методов доказательства, принятых в программе Гильберта. Но ничто не мешает G быть доказуемым на основе других аксиом или с помощью других методов. Хотя это пока точно не известно, последняя теорема Ферма может быть примером истины, недоказуемой на основе аксиом Пеано. В этой теореме, впервые предложенной Пьером. После многочисленных попыток теорема наконец была доказана Эндрю Уайлсом в году. Однако доказательство Уайлса во многом выходит за пределы обычных методов или аксиом арифметики. Последняя теорема Ферма истинна Уайлс доказал это , но доказуема ли она, например, на основе аксиом Пеано с помощью методов программы Гильберта? Сегодня ответ на этот вопрос неизвестен, но наиболее разумное предположение заключается в том, что последняя теорема Ферма недоказуема на основе аксиом Пеано посредством рассуждений, проверяемых алгоритмически. Мы можем добавить новую аксиому в А", но тогда существует недоказуемое G"" И так до бесконечности Добавляя аксиомы по одной, никогда не удастся достигнуть полноты то есть возможности доказать все истины. Но можно ли добиться этого другими средствами? Обратимся к этому вопросу в следующей главе. Гильберт потратил десять лет на разработку своей программы, и этот период был полон борьбы. После всех усилий, когда первая теорема Гёделя о неполноте показала, что программа неосуществима, сдался ли Гильберт? Не искал ли он неточности в доказательстве Гёделя? Неужели даже не протестовал? В этой главе мы проанализируем, как Гёделю удалось представить доказательство своей теоремы о неполноте таким образом, чтобы никто — даже Гильберт — не мог усомниться в ее справедливости. Публикация первой теоремы Гёделя о неполноте в году сделала его международной знаменитостью в мире математики. Его имя зазвучало на всех встречах и конгрессах, а его доказательство стало и остается до сих пор классикой математического рассуждения. Однако Гёдель не смог сразу же насладиться славой, поскольку по завершении этой работы пережил сильный нервный срыв и вынужден был отказаться от публичной деятельности на несколько месяцев. Почти наверняка это было результатом стресса, вызванного представлением его теоремы. На самом деле в статье года Гёдель представил две теоремы. Одна из них — уже упомянутая первая теорема о неполноте, также известная как теорема Гёделя. Именно ее мы доказали в предыдущей главе и вернемся к ней еще. В теореме говорится, что если выбрать в качестве арифметических аксиом любое множество истинных высказываний и принимать только доказательства, проверяемые алгоритмически, то всегда найдется истинное высказывание, недоказуемое на основе этих аксиом. Другая теорема, которую Гёдель представил в этой статье года, сегодня известна как вторая теорема о неполноте, или вторая теорема Гёделя. В ней говорится о невозможности алгоритмически проверить истинность множества арифметических аксиом. Мы обсудим эту теорему чуть позже. Следует сказать, что в статье не содержалось ее детального доказательства. Гёдель ограничился лишь тем, что в общих чертах изложил идею и отметил, что собирается написать вторую часть статьи с полным доказательством. Однако болезнь помешала ему сделать это в ближайшие месяцы, а после выздоровления выяснилось, что доказательства обеих теорем даже второй, о которой ученый только намекнул получили всеобщее признание. В этой ситуации Гёдель не счел нужным публиковать дополнительные пояснения, поэтому вторая часть статьи так и не была написана. Оригинальное название статьи на немецком языке заканчивается римской цифрой I: В переводах на испанский, английский и другие языки ее обычно опускают. Преодолев нервный кризис, Гёдель в году начал работу в Венском университете в качестве приват-доцента. В то время в университетах Центральной Европы с должности приват-доцента обычно начинали карьеру преподавателя. Кроме того, как мы уже сказали, Гёдель превратился в международную знаменитость и в том же году был приглашен в США прочитать лекцию на ежегодном собрании Американского математического общества. Во время этой первой поездки в США Гёдель познакомился с Альбертом Эйнштейном, который эмигрировал туда в году. Между ними сразу зародилась теплая дружба, которая длилась до самой смерти Эйнштейна в году. В последующие два года, и , Гёдель снова ездил в США, уже по приглашению Института перспективных исследований в Принстоне. В этом учреждении он прочитал несколько курсов и лекций, не только по своим теоремам о неполноте, но и по темам, затронутым в последующих исследованиях. Среди них, например, такая проблема: Гёдель получил несколько частичных решений, а полностью проблема была решена в году американским логиком Алонзо Чёрчем, который доказал, что алгоритма с такими. Эта проблема, как и другие, поставленные самим Гёделем или другими логиками, вдохновленными его исследованиями, положила начало теории вычислимости, то есть изучению того, при каких условиях математическая проблема решаема алгоритмически. Институт перспективных исследований в Принстоне Нью-Джерси, США , основанный в году, имел целью собрать международную научно-исследовательскую элиту. И действительно, в нем трудились такие прославленные ученые, как Курт Гёдель, Альберт Эйнштейн, Джулиус Роберт Оппенгеймер американский физик-теоретик, научный руководитель Манхэттенского проекта , Джон фон Нейман, Оскар Моргенштерн последние двое — создатели теории игр и Герман Вейль выдающийся немецкий физик и математик. Во время поездок в США Гёдель продемонстрировал свои методы, идеи и поставленные им проблемы, и это дало импульс развитию американской школы математической логики, где блистали Уиллард ван Орман Куайн, Стивен Коул Клини и уже упомянутый Алонзо Чёрч. Также работы Гёделя дали толчок развитию математической логики в целом; по сравнению с другими ученый публиковал очень мало научных работ, но каждая из них открывала новую отрасль в логике и вводила методы и идеи, актуальные до сих пор. Алонзо Чёрч был одним из главных представителей американской школы математической логики, которая образовалась практически сразу после прочтения Гёделем курсов и лекций в США в х годах. Чёрч родился в Вашингтоне 14 июня года и изучал математику в Принстонском университете, где защитил докторскую диссертацию в году. Его научным руководителем был Освальд Веблен который помогал в организации Института перспективных исследований в Принстоне и пригласил Гёделя прочитать там свои первые лекции. Чёрч внес вклад в логику первого порядка, теорию вычислимости которая исследует, какие математические проблемы могут быть решены алгоритмически, а какие нет и теоретическую информатику. Он также создал лямбда-исчисление, которое до сих пор является важным инструментом в изучении теории алгоритмов. Ученый скончался в США в году. В то время как Гёдель наслаждался плодами растущего академического престижа, политическая ситуация в Вене становилась всё более сложной. После того как Адольф Гитлер пришел к власти, он объявил о своем намерении сделать Австрию частью Германии. С этой целью он начал политическое и военное давление на соседнюю страну. В году он потребовал, чтобы нацистская партия, которая в Австрии была запрещена, получила признание и вошла в состав правительства. Однако на выборах в Австрии в апреле года нацисты не одержали ожидаемой победы, так что перешли в оппозицию и прибегли к террористическим методам. Произошла серия терактов, убийств высокопоставленных лиц и попыток государственного переворота, которые к году привели Австрию к угрозе гражданской войны. Насколько известно, первые годы этой бурной политической жизни особо не затронули Гёделя, который без перерывов продолжал свои исследования и поездки в США. Но 22 июня года Мориц Шлик, один из его наставников и основатель Венского кружка, был убит. Когда Гёдель узнал об этом, у него случился новый нервный срыв, на восстановление после которого потребовалось несколько месяцев. В том году ученый снова должен был отправиться в США, но поездку пришлось отменить. Гёдель не смог возобновить научную работу до года. В феврале года Гитлер выдвинул ультиматум: Австрия должна добровольно присоединиться к Третьему рейху, или ее присоединят силой. После многочисленных споров, во время которых дважды сменилось правительство, в марте был проведен референдум о присоединении к Германии. Голосование не было секретным; бюллетень с отметкой принимал офицер СС, который и помещал его в урну. Нацисты сразу же реформировали австрийскую университетскую систему, после чего некоторые интеллектуалы, включая Гёделя, остались без работы. Однако это не помешало ему в сентябре года заключить брак с Адель Поркерт, разведенной танцовщицей на шесть лет старше его, с которой Гёдель познакомился в году. Возможно, брак был первым шагом, необходимым для эмиграции, о которой Гёдель уже думал. Адель и Курт были очень крепкой, любящей парой, хотя они и не демонстрировали публично нежность друг к другу. Важно искать непротиворечивые доказательства, хотя любое непротиворечивое доказательство относительно в том смысле, что мы не можем доверять ему больше, чем доверяем той логической системе, в рамках которой развивается это непротиворечивое доказательство. В и годах Гёдель вновь посетил Институт перспективных исследований, где, кроме проведения обычных курсов и лекций, постарался завязать необходимые контакты, чтобы подготовиться к вступлению в должность профессора этого института, если ему придется покинуть Австрию. После второй поездки в Вене на него напала группа ультраправых студентов, которых, как говорится в популярной истории, его супруга отогнала ударами зонтика. Давление на Гёделя усиливалось, этот независимый интеллектуал раздражал нацистов, и в конце концов в октябре года он был включен в черный список. Это официально подчеркивало статус безработного, а при нацистском режиме безработные почти автоматически призывались в армию. Действительно, через некоторое время Гёдель получил приказ о призыве. Единственно возможным выходом для Курта и Адели стало бегство в США как и для многих европейских ученых того времени, включая Альберта Эйнштейна и Джона фон Неймана. Война между Германией, Францией и Англией к тому времени уже началась, так что Гёделю и его супруге пришлось ехать в США самым долгим путем, через Россию, Японию и Тихий океан. Гёдель прибыл в Институт перспективных исследований в году и благодаря заранее установленным контактам сразу вступил в должность приглашенного профессора. В году он вошел в состав ученых института на постоянной основе, а в м — получил американское гражданство. Ученый так и не вернулся ни в Австрию, ни в Чехословакию. Годы спустя Венский университет предлагал ему должности и почести, но он не принял их. Г итлер приветствует жителей Вены в связи с присоединением Австрии к нацистской Германии, март года. Немецкий математик Давид Гильберт в е годы. Созданная им программа стремилась поставить математику на прочные логические основания. Прежде чем последовать за Гёделем в Принстон, вернемся в сентябрь года и восстановим образ юноши, который скромно поднял руку на конгрессе в Кёнигсберге, чтобы провозгласить первую теорему о неполноте. Естественный вопрос, который мы еще не формулировали, состоит в следующем: Не пытался ли он оспорить рассуждения Гёделя? Правда состоит в том, что доказательство Гёделя было принято мгновенно и единодушно всеми, включая Гильберта, поскольку Гёдель не только очень хорошо продумал доказательство, но и был очень осторожен в способе его представления. Как мы уже сказали, в программе Гильберта принимались только те доказательства, которые можно проверить алгоритмически, и к сентябрю года это ограничение принимали все математики, включая интуиционистов, которые, по словам Аренда Гейтинга, "примут с распростертыми объятиями" бесконечность, если только доказательства будут соответствовать этому критерию. И так же, как Гильберт в свое время внес предложение с расчетом на то, чтобы убедить интуиционистов, Гёдель изложил доказательство первой теоремы о неполноте так, чтобы было очевидно, что ее правильность можно проверить алгоритмически и что она удовлетворяет условиям программы Гильберта. Даже Гильберт не смог выразить сомнений по этому поводу. Как хорошо известно, прогресс математики в отношении каждый раз все большей точности привел к [ Как Гёдель сделал очевидным, что доказательство его теоремы проверяется компьютером? Он прибегнул к "семантикосинтаксическому дуализму". В математической логике понятие, связанное с последовательностью символов, считается синтаксическим, если оно зависит только от символов, образующих эту последовательность, при этом неважно его значение, если оно вообще существует. Например, если мы утверждаем, что последовательность букв Кипа mbwa nyekundu образована 18 символами считая пробелы , мы говорим о синтаксическом понятии. Действительно, нашу правоту легко проверить с помощью простого подсчета символов, и нас не интересует, есть ли в этом ряду букв какой- то смысл. Другие примеры синтаксических понятий: Наоборот, если понятие семантическое, оно зависит от значения, которое передает последовательность. Например, если мы говорим, что Кипа mbwa nyekundu истинно, то ясно, что мы говорим о семантическом понятии, потому что не можем сказать, является оно "истинным" или "ложным", если предварительно не узнаем, какое значение заложено в этой последовательности букв если оно там есть. На самом деле смысл в высказывании есть: Кипа mbwa nyekundu на суахили означает "бывают красные собаки" см. Теперь мы можем задаться вопросом, истинно предложение или ложно, но все равно ответ дать непросто. Ведь что такое красная собака? Она должна была родиться со шкурой такого цвета или ее могли покрасить позже? Уж не говоря о том, что люди воспринимают цвета по-разному. Целью всех этих рассуждений является пояснение: В соответствии с этой идеей основная предпосылка программы Гильберта состояла в требовании того, чтобы справедливость семантических аспектов математики контролировалась синтаксическими методами. Синтаксис, ясный и не вызывающий сомнений, должен был ограничивать семантику, грозящую парадоксами. Свойство, относящееся к предложению, называют синтаксическим, если оно зависит только от самих символов, независимо от их значения например, количество букв в предложении. Оно является семантическим, если зависит от значения например, утверждение об истинности или ложности предложения. Синтаксические свойства проверяются механически; семантические — нет. Итак, Курт Гёдель представил доказательство первой теоремы о неполноте таким образом, что всем было очевидно: Он изложил свое высказывание и каждый шаг доказательства теоремы, апеллируя только к синтаксическим понятиям. В предыдущей главе мы сформулировали первую теорему Гёделя о неполноте теорему Гёделя следующим образом. Если выбрать в качестве аксиом любое множество истинных арифметических высказываний и требовать, чтобы доказательства, которые получены на их основе, могли быть проверены алгоритмически, то будет по крайней мере одно истинное высказывание, которое не может быть доказано на основе этих аксиом. В этой формулировке теоремы появляется семантическое понятие истинности. Поэтому Гёдель представил его в статье года не в такой форме. Формулировка Гёделя аналогична, но записана с помощью только синтаксических понятий. Определим синтаксические понятия, которыми пользовался Гёдель, и переформулируем первую теорему о неполноте. Для начала скажем, что "являться доказательством, соответствующим требованиям программы Гильберта" — это синтаксическое свойство, поскольку его можно проверить с помощью компьютера посимвольно. Следовательно, идея "доказуемого высказывания" также синтаксическая, поскольку высказывание Р доказуемо, если существует доказательство, заканчивающееся этим высказыванием. Даже понятие "высказывание" может быть определено синтаксически. Для начала, в аристотелевском определении говорится, что высказывание — это выражение, которому можно назначить значение истинности истинно или ложно. И напротив, из двух высказываний:. Итак, это семантическое понятие может быть сформулировано синтаксически: Является выражение высказыванием или нет — это условие можно проверить посимвольно, при этом нет необходимости рассматривать значение выражений. Итак, "высказывание" и "доказуемое высказывание" — два синтаксических понятия, которые Гёдель мог использовать при формулировании своей теоремы. В своей работе Principia Mathematica "Принципы математики" Бертран Рассел утверждал, что все известные парадоксы всегда порождаются самореференцией. То есть они возникают из-за того, что в высказываниях прямо или косвенно говорится о них самих. Способ избежать любого парадокса, говорил Рассел, — исключить из языка любой намек на самореференцию. В семантическом самореферентном высказывании говорится о семантической характеристике как таковой. Таков случай "это предложение ложно", то есть утверждение, вызывающее парадокс лжеца. В синтаксической самореференции, наоборот, в самореферентном высказывании говорится о синтаксической характеристике как таковой. Семантическая самореференция, как говорил Рассел, всегда опасна и подводит нас к границе парадокса. Синтаксическая самореференция, наоборот, не несет в себе никакого риска. Потому что синтаксическая самореференция иллюзорна; кажется, что в предложении говорится о нем самом, но на самом деле здесь раздвоение: Мы говорим о символах, а не о смысле, так что нет риска получить парадокс. В высказывании Гёделя G утверждается, что оно недоказуемо, то есть речь идет о синтаксической характеристике себя самого. Так как самореференция синтаксическая, рассуждения на основе G никогда не приведут нас к парадоксу. Другое важное понятие для синтаксической формулировки первой теоремы о неполноте — это понятие непротиворечивости. Множество аксиом является непротиворечивым, если не существует ни одного высказывания Р такого, чтобы Р и не-Р были одновременно доказуемы на основе этих аксиом с синтаксической точки зрения не-Р получается простым размещением слева от Р символа, обозначающего отрицание. Хотя далее мы увидим, какая связь существует между тем, чтобы быть "непротиворечивым" и быть "истинным", очевидно, что непротиворечивость — это чисто синтаксическое понятие поскольку зависит от синтаксического понятия доказуемости. Если все аксиомы — истинные высказывания, то множество аксиом непротиворечиво. Действительно, из истинных предпосылок получаются только истинные выводы. Тогда только одно из высказываний Р и не-Р ложно; следовательно, если все аксиомы истинны, невозможно, чтобы Р и не-Р были доказуемы одновременно ложное не будет доказуемым. Значит ли это, что выражение "непротиворечивое множество аксиом" равносильно "множеству истинных аксиом"? Это тонкий вопрос, который заслуживает тщательного анализа. Начнем с вопроса, является ли высказывание "2 — простое число" истинным. Почти любой человек сразу же скажет, что его истинность очевидна. Однако более правильным ответом будет "когда как". Это зависит от Вселенной, в контексте которой мы сейчас работаем. Если подразумевается, что речь идет о натуральных числах, то высказывание действительно истинно, но в другом контексте оно может быть ложным. Вспомним, что число отличное от единицы является простым, если делится только на единицу и само на себя. Можно выразить это понятие по-другому: В мире натуральных чисел — да. Но существуют и другие миры. Высказывание "2 — простое число" верно среди натуральных чисел, но ложно в мире, который мы определили по-другому см. Какова связь между непротиворечивостью и истинностью? Ответ дан теоремой Лёвенгейма — Скулема доказанной в году Леопольдом Лёвенгеймом для частного случая и в году Туральфом Скулемом для общего случая: Следовательно, множество, образованное двумя аксиомами:. С синтаксической точки зрения это означает, что не существует такого высказывания Р, что Р и не-Р доказуемы на основе этих двух предпосылок одновременно. Но можем ли мы принять "2 не является простым числом" за аксиому? Не должны ли аксиомы быть очевидными сами по себе? В чисто синтаксическом мире, в котором истинности и ложности не существует, нет смысла говорить об очевидных высказываниях. Любое из них может быть взято за аксиому. Почему основополагающей является непротиворечивость? Что произойдет, если множество аксиом будет противоречивым? С семантической точки зрения это означает, что нет ни одного возможного мира, в котором все высказывания одновременно истинны. Но у противоречивости системы аксиом есть и синтаксическое следствие, поскольку если множество аксиом противоречиво, то на его основе можно доказать любое высказывание. Предположим, что существует некое высказывание Р такое, что множество аксиом позволяет доказать как Р, так и не-Р, и возьмем любое высказывание Q. Мы хотим доказать, что Q доказуемо. Для этого вспомним несколько правил логики:. Заметим, что все они сформулированы синтаксически и апеллируют к форме высказываний, а не к их значению. Предположим, как мы сказали, что Р и не-Р доказуемы. Поскольку Q было произвольным высказыванием, можно сделать вывод, что любое высказывание доказуемо на основе аксиом. То есть любое высказывание доказуемо на основе противоречивого множества аксиом. Заметим, что проделанные нами рассуждения чисто синтаксические и не затрагивают ни значения Р или Q, ни таких семантических понятий, как "истинно" или "ложно". Мы основывались только на синтаксических правилах логики и на виде высказываний. Таким типом аргументов Гёдель воспользовался для изложения доказательства своей теоремы. Бертран Рассел в своем парадоксе на самом деле показал, что система аксиом, которую предложил Фреге, противоречива. Рассмотрим эту идею более подробно. Вспомним, что Рассел определил множество R, образованное всеми множествами, не являющимися членами самих себя. Если R является членом самого себя, то выводится, что оно им не является. Это противоречие, которое возникает от предположения, что R — член самого себя, дает основание допустить: R не является членом самого себя. Но если предположить это, то логическим путем можно прийти к выводу, что все-таки является. Тогда получается, что R является членом самого себя. Парадокс Рассела на самом деле демонстрирует: Другими словами, как уже говорилось, это демонстрирует противоречивость аксиом Фреге. Как-то раз, читая лекцию для широкой публики, Бертран Рассел упомянул, что если множество аксиом противоречиво, то любое утверждение доказуемо на их основе. Рассел объявил об этом в семантическом виде, говоря, что исходя из ложной предпосылки можно доказать любую вещь. Теперь подумаем о множестве, образованном Смитом и Папой. То есть Смит и Папа — это одно и то же лицо. На основе противоречивого множества аксиом доказуемо что угодно. В связи с этим возникает новое синтаксическое понятие полноты. Множество аксиом является полным, если для любого высказывания либо оно, либо его отрицание по крайней мере одно из них доказуемо. Тогда мы можем утверждать, что любое противоречивое множество аксиом является полным, поскольку при любом высказывании Р как Р, так и не-Р доказуемы. Но речь идет о тривиальной полноте, которая не дает никакой информации, поскольку абсолютно все доказуемо, даже те высказывания, которые противоречат сами себе, например "для любого х справедливо то, что х отличается сам от себя". Более интересно рассмотреть множество аксиом, являющееся одновременно полным и непротиворечивым. Множество аксиом с такой характеристикой приблизилось бы к выполнению цели программы Гильберта. Действительно, если система непротиворечива, то ее высказывания истинны в каком-нибудь мире, а если она полна, то все истины, относящиеся к этому миру, доказуемы см. Но в программе Гильберта искали аксиомы для арифметики, а не произвольного мира. Есть ли какой-нибудь синтаксический способ сформулировать эту цель? Да, такой способ есть. Существуют некоторые арифметические высказывания, истинность или ложность которых можно проверить алгоритмически за конечное количество шагов, — интуиционисты могли бы считать их истинными или ложными без споров, в основном потому что они не затрагивают идею бесконечности даже в потенциальном значении. Высказывание "Любое четное число, большее 2, является суммой двух простых чисел" не является финитным, поскольку предполагает бесконечное число случаев. Действительно, это равносильно "4 — сумма двух простых чисел, и 6 — сумма двух простых чисел, и 8 — сумма двух простых чисел и так далее ". Заметим, что "36 — сумма двух простых чисел" является финитным высказыванием. Действительно, если 36 — сумма двух простых чисел, то они обязательно меньше Существует всего 11 простых чисел, меньших 36 это 2,3,5, 7,11,13,17,19, 23, 29, 31 , и 55 пар, которые из них можно образовать. Чтобы посмотреть, истинно ли высказывание, достаточно проверить одну за другой эти 55 пар и убедиться, даст ли какая-нибудь в сумме Напротив, для высказывания "43 является суммой или разностью трех последовательных простых чисел" тот факт, что мы говорим о сумме или разности, предполагает: Поиск простых чисел потенциально бесконечен, поэтому высказывание не финитное. Утверждение о том, что любое четное число является суммой двух простых, известно как гипотеза Гольдбаха. Он сформулировал ее в году в письме знаменитому швейцарскому математику Леонарду Эйлеру До сих пор неизвестно, верна ли эта гипотеза. Она выполняется для большого числа четных чисел, но до сих пор никто не нашел доказательства для всех возможных случаев, так же как и не нашли примера, при котором гипотеза была бы ложной. Итак, если мы предложим множество аксиом арифметики, то наименьшее, чего мы можем от него требовать — это способности доказать все финитные истинные высказывания. В этом ограниченном контексте "истинное" и "ложное" становятся синтаксическими условиями, поскольку они проверяются механически за конечное число шагов. С точки зрения синтаксиса программа Гильберта предполагала нахождение непротиворечивого и полного множества аксиом арифметики, которое было бы способно доказать все финитные истинные высказывания. В первой теореме Гёделя о неполноте доказывается как раз то, что эта цель недостижима. Мы все время помним, что допускаются только доказательства, проверяемые алгоритмически. В этой версии теоремы появляются только синтаксические понятия "непротиворечивый", "неполный", "высказывание" и "доказуемый". Понятие "истинность" связано с финитными высказываниями, то есть появляется в более ограниченной, синтаксической версии. Эту синтаксическую формулировку Гёдель представил в своей статье года, и синтаксическими также были аргументы, которые он использовал для доказательства. Далее вспомним рассмотренное в предыдущей главе доказательство и посмотрим, как его можно реализовать на основе исключительно синтаксических аргументов. Предположим, что у нас есть непротиворечивое множество арифметических аксиом, позволяющих доказать все финитные истинные высказывания мы не указываем на то, что это истинные высказывания, поскольку апеллируем только к синтаксическим понятиям. Нам нужно доказать, что существует такое высказывание G, что ни Gy ни не-G недоказуемы. Как мы увидели в предыдущей главе, каждому высказыванию и каждой пропозициональной функции назначается код или число Гёделя , но сейчас мы должны подчеркнуть, что назначение происходит чисто синтаксически, на основе символов, образующих высказывание или функцию, вне зависимости от того, каково их значение. Точно так же, синтаксически, назначается код каждой последовательности высказываний и, в частности, каждому доказательству. Кроме того, он доказал, что какими бы ни были числа n и r, высказывание. Гёдель определил диагональную функцию. Если n — код пропозициональной функции Р х , то d n — код Р n. Следовательно, определение диагональной функции, которое основывается на механизме назначения кодов, синтаксическое. На основе шагов 3 и 4 метод самореференции позволил Гёделю записать высказывание G:. Теперь докажем синтаксически, что G недоказуемо. Предположим, от противного, что G доказуемо. Тогда существует доказательство G, и ему соответствует код, к примеру k. Так как оно финитное и истинное, то, по гипотезе, высказывание доказуемо. Тогда одно из правил логики позволяет нам сделать вывод, что также доказуемо высказывание. Мы исходим из предположения, что G доказуемо. Стрелки показывают последовательные выводы, которые получаются из этого предположения, пока мы не приходим к заключению, что отрицание G также доказуемо. Это содержит противоречие, следовательно G не может быть доказуемо. Если сравнить последнее высказывание с тем, как мы формулировали G, оказывается ясным, что оно соответствует не-G. Получается, мы говорим, что G и не-G одновременно доказуемы. Мы пришли к противоречию. Оно возникает из предположения, что G доказуемо, следовательно делаем вывод:


Маринованные шампиньоны белые
Приказ об утверждении субсидии
Проблемы современных двигателей
Математические аспекты изучаемой проблемы
Упало стекло на машину что делать
События мартав истории россии
Восстановление организма после геморрагического инсульта
Теория множеств
Устройство чтения смарт карт acr38u h1
Игра где отвечаешь на вопросы
У интуиции есть своя логика. Гёдель. Теоремы о неполноте. (fb2)
Спб пикалево расписание автобусов обводный
Общая характеристика поражающих факторов чс
Спойлер на рено сандеро
Проблема множественности разумных миров и изучение НЛО
Понятие числав начальной школе
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment