Skip to content

Instantly share code, notes, and snippets.

@ABHIINAV12
Created May 29, 2020 04:08
Show Gist options
  • Save ABHIINAV12/fb8820ac4d6a57c3b18205b7a2aade7c to your computer and use it in GitHub Desktop.
Save ABHIINAV12/fb8820ac4d6a57c3b18205b7a2aade7c to your computer and use it in GitHub Desktop.
competitve programming notes on graphs
//dfs - same for directed and undirected
// C++ program to print DFS traversal from
// a given vertex in a given graph
//time complexity -O(m+n) edges plus vertices
#include<iostream>
#include<list>
using namespace std;
// Graph class represents a directed graph
// using adjacency list representation
class Graph
{
int V; // No. of vertices
// Pointer to an array containing
// adjacency lists
list<int> *adj;
// A recursive function used by DFS
void DFSUtil(int v, bool visited[]);
public:
Graph(int V); // Constructor
// function to add an edge to graph
void addEdge(int v, int w);
// DFS traversal of the vertices
// reachable from v
void DFS(int v);
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and
// print it
visited[v] = true;
cout << v << " ";
// Recur for all the vertices adjacent
// to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
// DFS traversal of the vertices reachable from v.
// It uses recursive DFSUtil()
void Graph::DFS(int v)
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Call the recursive helper function
// to print DFS traversal
DFSUtil(v, visited);
}
// Driver code
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
cout << "Following is Depth First Traversal"
" (starting from vertex 2) \n";
g.DFS(2);
return 0;
}
//number of connected components in graph
// C++ program to print connected components in
// an undirected graph
#include<iostream>
#include <list>
using namespace std;
// Graph class represents a undirected graph
// using adjacency list representation
class Graph
{
int V; // No. of vertices
// Pointer to an array containing adjacency lists
list<int> *adj;
// A function used by DFS
void DFSUtil(int v, bool visited[]);
public:
Graph(int V); // Constructor
void addEdge(int v, int w);
void connectedComponents();
};
// Method to print connected components in an
// undirected graph
void Graph::connectedComponents()
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
for(int v = 0; v < V; v++)
visited[v] = false;
for (int v=0; v<V; v++)
{
if (visited[v] == false)
{
// print all reachable vertices
// from v
DFSUtil(v, visited);
cout << "\n";
}
}
}
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and print it
visited[v] = true;
cout << v << " ";
// Recur for all the vertices
// adjacent to this vertex
list<int>::iterator i;
for(i = adj[v].begin(); i != adj[v].end(); ++i)
if(!visited[*i])
DFSUtil(*i, visited);
}
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
// method to add an undirected edge
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v);
}
// Drive program to test above
int main()
{
// Create a graph given in the above diagram
Graph g(5); // 5 vertices numbered from 0 to 4
g.addEdge(1, 0);
g.addEdge(2, 3);
g.addEdge(3, 4);
cout << "Following are connected components \n";
g.connectedComponents();
return 0;
}
//detecting cycle in graph
// A C++ Program to detect cycle in a graph
#include<iostream>
#include <list>
#include <limits.h>
using namespace std;
class Graph
{
int V; // No. of vertices
list<int> *adj; // Pointer to an array containing adjacency lists
bool isCyclicUtil(int v, bool visited[], bool *rs); // used by isCyclic()
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // to add an edge to graph
bool isCyclic(); // returns true if there is a cycle in this graph
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
// This function is a variation of DFSUtil() in https://www.geeksforgeeks.org/archives/18212
bool Graph::isCyclicUtil(int v, bool visited[], bool *recStack)
{
if(visited[v] == false)
{
// Mark the current node as visited and part of recursion stack
visited[v] = true;
recStack[v] = true;
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for(i = adj[v].begin(); i != adj[v].end(); ++i)
{
if ( !visited[*i] && isCyclicUtil(*i, visited, recStack) )
return true;
else if (recStack[*i])
return true;
}
}
recStack[v] = false; // remove the vertex from recursion stack
return false;
}
// Returns true if the graph contains a cycle, else false.
// This function is a variation of DFS() in https://www.geeksforgeeks.org/archives/18212
bool Graph::isCyclic()
{
// Mark all the vertices as not visited and not part of recursion
// stack
bool *visited = new bool[V];
bool *recStack = new bool[V];
for(int i = 0; i < V; i++)
{
visited[i] = false;
recStack[i] = false;
}
// Call the recursive helper function to detect cycle in different
// DFS trees
for(int i = 0; i < V; i++)
if (isCyclicUtil(i, visited, recStack))
return true;
return false;
}
int main()
{
// Create a graph given in the above diagram
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
if(g.isCyclic())
cout << "Graph contains cycle";
else
cout << "Graph doesn't contain cycle";
return 0;
}
//getting diameter of tree
/*The second parameter is to store the height of tree.
Initially, we need to pass a pointer to a location with value
as 0. So, function should be used as follows:
int height = 0;
struct node *root = SomeFunctionToMakeTree();
int diameter = diameterOpt(root, &height); */
int diameterOpt(struct node *root, int* height)
{
/* lh --> Height of left subtree
rh --> Height of right subtree */
int lh = 0, rh = 0;
/* ldiameter --> diameter of left subtree
rdiameter --> Diameter of right subtree */
int ldiameter = 0, rdiameter = 0;
if(root == NULL)
{
*height = 0;
return 0; /* diameter is also 0 */
}
/* Get the heights of left and right subtrees in lh and rh
And store the returned values in ldiameter and ldiameter */
ldiameter = diameterOpt(root->left, &lh);
rdiameter = diameterOpt(root->right, &rh);
/* Height of current node is max of heights of left and
right subtrees plus 1*/
*height = max(lh, rh) + 1;
return max(lh + rh + 1, max(ldiameter, rdiameter));
}
#include <stdio.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node* left, *right;
};
/* function to create a new node of tree and returns pointer */
struct node* newNode(int data);
/* returns max of two integers */
int max(int a, int b);
/* function to Compute height of a tree. */
int height(struct node* node);
/* Function to get diameter of a binary tree */
int diameter(struct node * tree)
{
/* base case where tree is empty */
if (tree == NULL)
return 0;
/* get the height of left and right sub-trees */
int lheight = height(tree->left);
int rheight = height(tree->right);
/* get the diameter of left and right sub-trees */
int ldiameter = diameter(tree->left);
int rdiameter = diameter(tree->right);
/* Return max of following three
1) Diameter of left subtree
2) Diameter of right subtree
3) Height of left subtree + height of right subtree + 1 */
return max(lheight + rheight + 1, max(ldiameter, rdiameter));
}
/* UTILITY FUNCTIONS TO TEST diameter() FUNCTION */
/* The function Compute the "height" of a tree. Height is the
number f nodes along the longest path from the root node
down to the farthest leaf node.*/
int height(struct node* node)
{
/* base case tree is empty */
if(node == NULL)
return 0;
/* If tree is not empty then height = 1 + max of left
height and right heights */
return 1 + max(height(node->left), height(node->right));
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node = (struct node*)
malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return(node);
}
/* returns maximum of two integers */
int max(int a, int b)
{
return (a >= b)? a: b;
}
/* Driver program to test above functions*/
int main()
{
/* Constructed binary tree is
1
/ \
2 3
/ \
4 5
*/
struct node *root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
printf("Diameter of the given binary tree is %d\n", diameter(root));
getchar();
return 0;
}
// A C++ Program to detect cycle in an undirected graph
#include<iostream>
#include <list>
#include <limits.h>
using namespace std;
// Class for an undirected graph
class Graph
{
int V; // No. of vertices
list<int> *adj; // Pointer to an array containing adjacency lists
bool isCyclicUtil(int v, bool visited[], int parent);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // to add an edge to graph
bool isCyclic(); // returns true if there is a cycle
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
adj[w].push_back(v); // Add v to w’s list.
}
// A recursive function that uses visited[] and parent to detect
// cycle in subgraph reachable from vertex v.
bool Graph::isCyclicUtil(int v, bool visited[], int parent)
{
// Mark the current node as visited
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
// If an adjacent is not visited, then recur for that adjacent
if (!visited[*i])
{
if (isCyclicUtil(*i, visited, v))
return true;
}
// If an adjacent is visited and not parent of current vertex,
// then there is a cycle.
else if (*i != parent)
return true;
}
return false;
}
// Returns true if the graph contains a cycle, else false.
bool Graph::isCyclic()
{
// Mark all the vertices as not visited and not part of recursion
// stack
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Call the recursive helper function to detect cycle in different
// DFS trees
for (int u = 0; u < V; u++)
if (!visited[u]) // Don't recur for u if it is already visited
if (isCyclicUtil(u, visited, -1))
return true;
return false;
}
// Driver program to test above functions
int main()
{
Graph g1(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.isCyclic()? cout << "Graph contains cycle\n":
cout << "Graph doesn't contain cycle\n";
Graph g2(3);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.isCyclic()? cout << "Graph contains cycle\n":
cout << "Graph doesn't contain cycle\n";
return 0;
}
void dfs(int r){
vis[r]=1;
int entry=t;
for(auto it: v[r]){
if(!vis[it]){
t++;
dfs(it);
}}}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment