Skip to content

Instantly share code, notes, and snippets.

@AE-0h
Created June 8, 2024 00:20
Show Gist options
  • Save AE-0h/c29ef735a42afb34e6f4fb8eaf7b983b to your computer and use it in GitHub Desktop.
Save AE-0h/c29ef735a42afb34e6f4fb8eaf7b983b to your computer and use it in GitHub Desktop.
InverseTrigonometry by solidity-trigonometry. Find it at https://www.cookbook.dev/contracts/solidity-trigonometry-InverseTrigonometry
/*
██████ ██████ ██████ ██ ██ ██████ ██████ ██████ ██ ██ ██████ ███████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██ ██ ██ ██ ██ █████ ██████ ██ ██ ██ ██ █████ ██ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██████ ██████ ██ ██ ██████ ██████ ██████ ██ ██ ██ ██████ ███████ ████
Find any smart contract, and build your project faster: https://www.cookbook.dev
Twitter: https://twitter.com/cookbook_dev
Discord: https://discord.gg/WzsfPcfHrk
Find this contract on Cookbook: https://www.cookbook.dev/contracts/solidity-trigonometry-InverseTrigonometry/?utm=code
*/
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import {PRBMathSD59x18 as P} from "./PRBMathSD59x18.sol";
/**
* @title Arcsine calculator.
* @author Md Abid Sikder
*
* @notice Calculates arcsine. Fuzz testing shows that relative error is always
* smaller than 0.01%. Uses the polynomial approximation functions found in
* https://dsp.stackexchange.com/a/25771, but chooses between them at x=0.4788
* due to differences in the relative errors as can be seen here
* https://www.desmos.com/calculator/wrfwjhythe
*
* @dev See the desmos link for what functions f and g in the code refer to.
*/
library InverseTrigonometry {
using P for int256;
function g(int256 _x) internal pure returns (int256) {
int256 ONE = 1000000000000000000;
int256 TWO = 2000000000000000000;
// 1.5707288
int256 a0 = 1570728800000000000;
// −0.2121144
int256 a1 = -212114400000000000;
// 0.0742610
int256 a2 = 74261000000000000;
// −0.0187293
int256 a3 = -18729300000000000;
int256 HALF_PI = P.pi().div(TWO);
int256 root = P.sqrt(ONE - _x);
return HALF_PI - root.mul(a0 + _x.mul(a1 + _x.mul(a2 + _x.mul(a3))));
}
function f(int256 _x) internal pure returns (int256) {
int256 ONE = 1000000000000000000;
int256 xSq = _x.mul(_x);
// 1/6
// https://www.wolframalpha.com/input?i=1%2F6
// 0.1666666666666666666666666
int256 frac1Div6 = 166666666666666666;
// 3/40
// https://www.wolframalpha.com/input?i=3%2F40
// 0.075
int256 frac3Div40 = 75000000000000000;
// 15/336
// https://www.wolframalpha.com/input?i=15%2F336
// 0.044642857142857142857142857142
int256 frac15Div336= 44642857142857142;
return _x.mul(ONE + xSq.mul(frac1Div6 + xSq.mul(frac3Div40 + xSq.mul(frac15Div336))));
}
/**
* @notice Arcsine function
*
* @param _x A integer with 18 fixed decimal points, where the whole part is bounded inside of [-1,1]
*
* @return The arcsine, with 18 fixed decimal points
*/
function arcsin(int256 _x) internal pure returns (int256) {
int256 DOMAIN_MAX = 1000000000000000000;
int256 DOMAIN_MIN = -DOMAIN_MAX;
require(_x >= DOMAIN_MIN && _x <= DOMAIN_MAX);
// arcsin is an odd function, so arcsin(-x) = -arcsin(x), so we can remove
// the negative here for easier math
bool isNegative = _x < 0;
_x = isNegative ? -_x : _x;
// 0.4788
int256 CHOICE_LINE = 478800000000000000;
int256 result = _x < CHOICE_LINE ? f(_x) : g(_x);
return isNegative ? -result : result;
}
}
/*
██████ ██████ ██████ ██ ██ ██████ ██████ ██████ ██ ██ ██████ ███████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██ ██ ██ ██ ██ █████ ██████ ██ ██ ██ ██ █████ ██ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██████ ██████ ██ ██ ██████ ██████ ██████ ██ ██ ██ ██████ ███████ ████
Find any smart contract, and build your project faster: https://www.cookbook.dev
Twitter: https://twitter.com/cookbook_dev
Discord: https://discord.gg/WzsfPcfHrk
Find this contract on Cookbook: https://www.cookbook.dev/contracts/solidity-trigonometry-InverseTrigonometry/?utm=code
*/
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;
/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);
/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);
/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();
/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);
/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();
/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);
/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();
/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);
/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);
/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);
/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);
/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);
/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);
/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);
/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();
/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);
/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);
/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);
/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);
/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);
/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);
/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);
/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);
/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);
/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);
/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);
/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);
/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
/// STRUCTS ///
struct SD59x18 {
int256 value;
}
struct UD60x18 {
uint256 value;
}
/// STORAGE ///
/// @dev How many trailing decimals can be represented.
uint256 internal constant SCALE = 1e18;
/// @dev Largest power of two divisor of SCALE.
uint256 internal constant SCALE_LPOTD = 262144;
/// @dev SCALE inverted mod 2^256.
uint256 internal constant SCALE_INVERSE =
78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// FUNCTIONS ///
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers.
/// See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
// because the initial result is 2^191 and all magic factors are less than 2^65.
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
// We're doing two things at the same time:
//
// 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
// the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
// rather than 192.
// 2. Convert the result to the unsigned 60.18-decimal fixed-point format.
//
// This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
result *= SCALE;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first one in the binary representation of x.
/// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return msb The index of the most significant bit as an uint256.
function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
if (x >= 2**128) {
x >>= 128;
msb += 128;
}
if (x >= 2**64) {
x >>= 64;
msb += 64;
}
if (x >= 2**32) {
x >>= 32;
msb += 32;
}
if (x >= 2**16) {
x >>= 16;
msb += 16;
}
if (x >= 2**8) {
x >>= 8;
msb += 8;
}
if (x >= 2**4) {
x >>= 4;
msb += 4;
}
if (x >= 2**2) {
x >>= 2;
msb += 2;
}
if (x >= 2**1) {
// No need to shift x any more.
msb += 1;
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Requirements:
/// - The denominator cannot be zero.
/// - The result must fit within uint256.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The multiplicand as an uint256.
/// @param y The multiplier as an uint256.
/// @param denominator The divisor as an uint256.
/// @return result The result as an uint256.
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
result = prod0 / denominator;
}
return result;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath__MulDivOverflow(prod1, denominator);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
unchecked {
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 lpotdod = denominator & (~denominator + 1);
assembly {
// Divide denominator by lpotdod.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * lpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/// @notice Calculates floor(x*y÷1e18) with full precision.
///
/// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
/// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
/// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
///
/// Requirements:
/// - The result must fit within uint256.
///
/// Caveats:
/// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
/// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
/// 1. x * y = type(uint256).max * SCALE
/// 2. (x * y) % SCALE >= SCALE / 2
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 >= SCALE) {
revert PRBMath__MulDivFixedPointOverflow(prod1);
}
uint256 remainder;
uint256 roundUpUnit;
assembly {
remainder := mulmod(x, y, SCALE)
roundUpUnit := gt(remainder, 499999999999999999)
}
if (prod1 == 0) {
unchecked {
result = (prod0 / SCALE) + roundUpUnit;
return result;
}
}
assembly {
result := add(
mul(
or(
div(sub(prod0, remainder), SCALE_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
),
SCALE_INVERSE
),
roundUpUnit
)
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
///
/// Requirements:
/// - None of the inputs can be type(int256).min.
/// - The result must fit within int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
function mulDivSigned(
int256 x,
int256 y,
int256 denominator
) internal pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath__MulDivSignedInputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 ax;
uint256 ay;
uint256 ad;
unchecked {
ax = x < 0 ? uint256(-x) : uint256(x);
ay = y < 0 ? uint256(-y) : uint256(y);
ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
uint256 rAbs = mulDiv(ax, ay, ad);
if (rAbs > uint256(type(int256).max)) {
revert PRBMath__MulDivSignedOverflow(rAbs);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly {
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
// If yes, the result should be negative.
result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as an uint256.
function sqrt(uint256 x) internal pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 0x100000000000000000000000000000000) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 0x10000000000000000) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 0x100000000) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 0x10000) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 0x100) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 0x10) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 0x4) {
result <<= 1;
}
// The operations can never overflow because the result is max 2^127 when it enters this block.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1; // Seven iterations should be enough
uint256 roundedDownResult = x / result;
return result >= roundedDownResult ? roundedDownResult : result;
}
}
}
/*
██████ ██████ ██████ ██ ██ ██████ ██████ ██████ ██ ██ ██████ ███████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██ ██ ██ ██ ██ █████ ██████ ██ ██ ██ ██ █████ ██ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██████ ██████ ██ ██ ██████ ██████ ██████ ██ ██ ██ ██████ ███████ ████
Find any smart contract, and build your project faster: https://www.cookbook.dev
Twitter: https://twitter.com/cookbook_dev
Discord: https://discord.gg/WzsfPcfHrk
Find this contract on Cookbook: https://www.cookbook.dev/contracts/solidity-trigonometry-InverseTrigonometry/?utm=code
*/
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;
import "./PRBMath.sol";
/// @title PRBMathSD59x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18
/// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have
/// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers
/// are bound by the minimum and the maximum values permitted by the Solidity type int256.
library PRBMathSD59x18 {
/// @dev log2(e) as a signed 59.18-decimal fixed-point number.
int256 internal constant LOG2_E = 1_442695040888963407;
/// @dev Half the SCALE number.
int256 internal constant HALF_SCALE = 5e17;
/// @dev The maximum value a signed 59.18-decimal fixed-point number can have.
int256 internal constant MAX_SD59x18 =
57896044618658097711785492504343953926634992332820282019728_792003956564819967;
/// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have.
int256 internal constant MAX_WHOLE_SD59x18 =
57896044618658097711785492504343953926634992332820282019728_000000000000000000;
/// @dev The minimum value a signed 59.18-decimal fixed-point number can have.
int256 internal constant MIN_SD59x18 =
-57896044618658097711785492504343953926634992332820282019728_792003956564819968;
/// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have.
int256 internal constant MIN_WHOLE_SD59x18 =
-57896044618658097711785492504343953926634992332820282019728_000000000000000000;
/// @dev How many trailing decimals can be represented.
int256 internal constant SCALE = 1e18;
/// INTERNAL FUNCTIONS ///
/// @notice Calculate the absolute value of x.
///
/// @dev Requirements:
/// - x must be greater than MIN_SD59x18.
///
/// @param x The number to calculate the absolute value for.
/// @param result The absolute value of x.
function abs(int256 x) internal pure returns (int256 result) {
unchecked {
if (x == MIN_SD59x18) {
revert PRBMathSD59x18__AbsInputTooSmall();
}
result = x < 0 ? -x : x;
}
}
/// @notice Calculates the arithmetic average of x and y, rounding down.
/// @param x The first operand as a signed 59.18-decimal fixed-point number.
/// @param y The second operand as a signed 59.18-decimal fixed-point number.
/// @return result The arithmetic average as a signed 59.18-decimal fixed-point number.
function avg(int256 x, int256 y) internal pure returns (int256 result) {
// The operations can never overflow.
unchecked {
int256 sum = (x >> 1) + (y >> 1);
if (sum < 0) {
// If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the
// right rounds down to infinity.
assembly {
result := add(sum, and(or(x, y), 1))
}
} else {
// If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5
// remainder gets truncated twice.
result = sum + (x & y & 1);
}
}
}
/// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to MAX_WHOLE_SD59x18.
///
/// @param x The signed 59.18-decimal fixed-point number to ceil.
/// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number.
function ceil(int256 x) internal pure returns (int256 result) {
if (x > MAX_WHOLE_SD59x18) {
revert PRBMathSD59x18__CeilOverflow(x);
}
unchecked {
int256 remainder = x % SCALE;
if (remainder == 0) {
result = x;
} else {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
result = x - remainder;
if (x > 0) {
result += SCALE;
}
}
}
}
/// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number.
///
/// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately.
///
/// Requirements:
/// - All from "PRBMath.mulDiv".
/// - None of the inputs can be MIN_SD59x18.
/// - The denominator cannot be zero.
/// - The result must fit within int256.
///
/// Caveats:
/// - All from "PRBMath.mulDiv".
///
/// @param x The numerator as a signed 59.18-decimal fixed-point number.
/// @param y The denominator as a signed 59.18-decimal fixed-point number.
/// @param result The quotient as a signed 59.18-decimal fixed-point number.
function div(int256 x, int256 y) internal pure returns (int256 result) {
if (x == MIN_SD59x18 || y == MIN_SD59x18) {
revert PRBMathSD59x18__DivInputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 ax;
uint256 ay;
unchecked {
ax = x < 0 ? uint256(-x) : uint256(x);
ay = y < 0 ? uint256(-y) : uint256(y);
}
// Compute the absolute value of (x*SCALE)÷y. The result must fit within int256.
uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay);
if (rAbs > uint256(MAX_SD59x18)) {
revert PRBMathSD59x18__DivOverflow(rAbs);
}
// Get the signs of x and y.
uint256 sx;
uint256 sy;
assembly {
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
}
// XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result
// should be positive. Otherwise, it should be negative.
result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs);
}
/// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number.
/// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
function e() internal pure returns (int256 result) {
result = 2_718281828459045235;
}
/// @notice Calculates the natural exponent of x.
///
/// @dev Based on the insight that e^x = 2^(x * log2(e)).
///
/// Requirements:
/// - All from "log2".
/// - x must be less than 133.084258667509499441.
///
/// Caveats:
/// - All from "exp2".
/// - For any x less than -41.446531673892822322, the result is zero.
///
/// @param x The exponent as a signed 59.18-decimal fixed-point number.
/// @return result The result as a signed 59.18-decimal fixed-point number.
function exp(int256 x) internal pure returns (int256 result) {
// Without this check, the value passed to "exp2" would be less than -59.794705707972522261.
if (x < -41_446531673892822322) {
return 0;
}
// Without this check, the value passed to "exp2" would be greater than 192.
if (x >= 133_084258667509499441) {
revert PRBMathSD59x18__ExpInputTooBig(x);
}
// Do the fixed-point multiplication inline to save gas.
unchecked {
int256 doubleScaleProduct = x * LOG2_E;
result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Requirements:
/// - x must be 192 or less.
/// - The result must fit within MAX_SD59x18.
///
/// Caveats:
/// - For any x less than -59.794705707972522261, the result is zero.
///
/// @param x The exponent as a signed 59.18-decimal fixed-point number.
/// @return result The result as a signed 59.18-decimal fixed-point number.
function exp2(int256 x) internal pure returns (int256 result) {
// This works because 2^(-x) = 1/2^x.
if (x < 0) {
// 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero.
if (x < -59_794705707972522261) {
return 0;
}
// Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
unchecked {
result = 1e36 / exp2(-x);
}
} else {
// 2^192 doesn't fit within the 192.64-bit format used internally in this function.
if (x >= 192e18) {
revert PRBMathSD59x18__Exp2InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE);
// Safe to convert the result to int256 directly because the maximum input allowed is 192.
result = int256(PRBMath.exp2(x192x64));
}
}
}
/// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be greater than or equal to MIN_WHOLE_SD59x18.
///
/// @param x The signed 59.18-decimal fixed-point number to floor.
/// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number.
function floor(int256 x) internal pure returns (int256 result) {
if (x < MIN_WHOLE_SD59x18) {
revert PRBMathSD59x18__FloorUnderflow(x);
}
unchecked {
int256 remainder = x % SCALE;
if (remainder == 0) {
result = x;
} else {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
result = x - remainder;
if (x < 0) {
result -= SCALE;
}
}
}
}
/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The signed 59.18-decimal fixed-point number to get the fractional part of.
/// @param result The fractional part of x as a signed 59.18-decimal fixed-point number.
function frac(int256 x) internal pure returns (int256 result) {
unchecked {
result = x % SCALE;
}
}
/// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation.
///
/// @dev Requirements:
/// - x must be greater than or equal to MIN_SD59x18 divided by SCALE.
/// - x must be less than or equal to MAX_SD59x18 divided by SCALE.
///
/// @param x The basic integer to convert.
/// @param result The same number in signed 59.18-decimal fixed-point representation.
function fromInt(int256 x) internal pure returns (int256 result) {
unchecked {
if (x < MIN_SD59x18 / SCALE) {
revert PRBMathSD59x18__FromIntUnderflow(x);
}
if (x > MAX_SD59x18 / SCALE) {
revert PRBMathSD59x18__FromIntOverflow(x);
}
result = x * SCALE;
}
}
/// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
///
/// @dev Requirements:
/// - x * y must fit within MAX_SD59x18, lest it overflows.
/// - x * y cannot be negative.
///
/// @param x The first operand as a signed 59.18-decimal fixed-point number.
/// @param y The second operand as a signed 59.18-decimal fixed-point number.
/// @return result The result as a signed 59.18-decimal fixed-point number.
function gm(int256 x, int256 y) internal pure returns (int256 result) {
if (x == 0) {
return 0;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
int256 xy = x * y;
if (xy / x != y) {
revert PRBMathSD59x18__GmOverflow(x, y);
}
// The product cannot be negative.
if (xy < 0) {
revert PRBMathSD59x18__GmNegativeProduct(x, y);
}
// We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
// during multiplication. See the comments within the "sqrt" function.
result = int256(PRBMath.sqrt(uint256(xy)));
}
}
/// @notice Calculates 1 / x, rounding toward zero.
///
/// @dev Requirements:
/// - x cannot be zero.
///
/// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse.
/// @return result The inverse as a signed 59.18-decimal fixed-point number.
function inv(int256 x) internal pure returns (int256 result) {
unchecked {
// 1e36 is SCALE * SCALE.
result = 1e36 / x;
}
}
/// @notice Calculates the natural logarithm of x.
///
/// @dev Based on the insight that ln(x) = log2(x) / log2(e).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
/// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision.
///
/// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a signed 59.18-decimal fixed-point number.
function ln(int256 x) internal pure returns (int256 result) {
// Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
// can return is 195205294292027477728.
unchecked {
result = (log2(x) * SCALE) / LOG2_E;
}
}
/// @notice Calculates the common logarithm of x.
///
/// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
/// logarithm based on the insight that log10(x) = log2(x) / log2(10).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
///
/// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm.
/// @return result The common logarithm as a signed 59.18-decimal fixed-point number.
function log10(int256 x) internal pure returns (int256 result) {
if (x <= 0) {
revert PRBMathSD59x18__LogInputTooSmall(x);
}
// Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract.
// prettier-ignore
assembly {
switch x
case 1 { result := mul(SCALE, sub(0, 18)) }
case 10 { result := mul(SCALE, sub(1, 18)) }
case 100 { result := mul(SCALE, sub(2, 18)) }
case 1000 { result := mul(SCALE, sub(3, 18)) }
case 10000 { result := mul(SCALE, sub(4, 18)) }
case 100000 { result := mul(SCALE, sub(5, 18)) }
case 1000000 { result := mul(SCALE, sub(6, 18)) }
case 10000000 { result := mul(SCALE, sub(7, 18)) }
case 100000000 { result := mul(SCALE, sub(8, 18)) }
case 1000000000 { result := mul(SCALE, sub(9, 18)) }
case 10000000000 { result := mul(SCALE, sub(10, 18)) }
case 100000000000 { result := mul(SCALE, sub(11, 18)) }
case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := SCALE }
case 100000000000000000000 { result := mul(SCALE, 2) }
case 1000000000000000000000 { result := mul(SCALE, 3) }
case 10000000000000000000000 { result := mul(SCALE, 4) }
case 100000000000000000000000 { result := mul(SCALE, 5) }
case 1000000000000000000000000 { result := mul(SCALE, 6) }
case 10000000000000000000000000 { result := mul(SCALE, 7) }
case 100000000000000000000000000 { result := mul(SCALE, 8) }
case 1000000000000000000000000000 { result := mul(SCALE, 9) }
case 10000000000000000000000000000 { result := mul(SCALE, 10) }
case 100000000000000000000000000000 { result := mul(SCALE, 11) }
case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
default {
result := MAX_SD59x18
}
}
if (result == MAX_SD59x18) {
// Do the fixed-point division inline to save gas. The denominator is log2(10).
unchecked {
result = (log2(x) * SCALE) / 3_321928094887362347;
}
}
}
/// @notice Calculates the binary logarithm of x.
///
/// @dev Based on the iterative approximation algorithm.
/// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Requirements:
/// - x must be greater than zero.
///
/// Caveats:
/// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
///
/// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a signed 59.18-decimal fixed-point number.
function log2(int256 x) internal pure returns (int256 result) {
if (x <= 0) {
revert PRBMathSD59x18__LogInputTooSmall(x);
}
unchecked {
// This works because log2(x) = -log2(1/x).
int256 sign;
if (x >= SCALE) {
sign = 1;
} else {
sign = -1;
// Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
assembly {
x := div(1000000000000000000000000000000000000, x)
}
}
// Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE));
// The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow
// because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1.
result = int256(n) * SCALE;
// This is y = x * 2^(-n).
int256 y = x >> n;
// If y = 1, the fractional part is zero.
if (y == SCALE) {
return result * sign;
}
// Calculate the fractional part via the iterative approximation.
// The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) {
y = (y * y) / SCALE;
// Is y^2 > 2 and so in the range [2,4)?
if (y >= 2 * SCALE) {
// Add the 2^(-m) factor to the logarithm.
result += delta;
// Corresponds to z/2 on Wikipedia.
y >>= 1;
}
}
result *= sign;
}
}
/// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal
/// fixed-point number.
///
/// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is
/// always 1e18.
///
/// Requirements:
/// - All from "PRBMath.mulDivFixedPoint".
/// - None of the inputs can be MIN_SD59x18
/// - The result must fit within MAX_SD59x18.
///
/// Caveats:
/// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
///
/// @param x The multiplicand as a signed 59.18-decimal fixed-point number.
/// @param y The multiplier as a signed 59.18-decimal fixed-point number.
/// @return result The product as a signed 59.18-decimal fixed-point number.
function mul(int256 x, int256 y) internal pure returns (int256 result) {
if (x == MIN_SD59x18 || y == MIN_SD59x18) {
revert PRBMathSD59x18__MulInputTooSmall();
}
unchecked {
uint256 ax;
uint256 ay;
ax = x < 0 ? uint256(-x) : uint256(x);
ay = y < 0 ? uint256(-y) : uint256(y);
uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay);
if (rAbs > uint256(MAX_SD59x18)) {
revert PRBMathSD59x18__MulOverflow(rAbs);
}
uint256 sx;
uint256 sy;
assembly {
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
}
result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs);
}
}
/// @notice Returns PI as a signed 59.18-decimal fixed-point number.
function pi() internal pure returns (int256 result) {
result = 3_141592653589793238;
}
/// @notice Raises x to the power of y.
///
/// @dev Based on the insight that x^y = 2^(log2(x) * y).
///
/// Requirements:
/// - All from "exp2", "log2" and "mul".
/// - z cannot be zero.
///
/// Caveats:
/// - All from "exp2", "log2" and "mul".
/// - Assumes 0^0 is 1.
///
/// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number.
/// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number.
/// @return result x raised to power y, as a signed 59.18-decimal fixed-point number.
function pow(int256 x, int256 y) internal pure returns (int256 result) {
if (x == 0) {
result = y == 0 ? SCALE : int256(0);
} else {
result = exp2(mul(log2(x), y));
}
}
/// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
/// famous algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
///
/// Requirements:
/// - All from "abs" and "PRBMath.mulDivFixedPoint".
/// - The result must fit within MAX_SD59x18.
///
/// Caveats:
/// - All from "PRBMath.mulDivFixedPoint".
/// - Assumes 0^0 is 1.
///
/// @param x The base as a signed 59.18-decimal fixed-point number.
/// @param y The exponent as an uint256.
/// @return result The result as a signed 59.18-decimal fixed-point number.
function powu(int256 x, uint256 y) internal pure returns (int256 result) {
uint256 xAbs = uint256(abs(x));
// Calculate the first iteration of the loop in advance.
uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE);
// Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
uint256 yAux = y;
for (yAux >>= 1; yAux > 0; yAux >>= 1) {
xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs);
// Equivalent to "y % 2 == 1" but faster.
if (yAux & 1 > 0) {
rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs);
}
}
// The result must fit within the 59.18-decimal fixed-point representation.
if (rAbs > uint256(MAX_SD59x18)) {
revert PRBMathSD59x18__PowuOverflow(rAbs);
}
// Is the base negative and the exponent an odd number?
bool isNegative = x < 0 && y & 1 == 1;
result = isNegative ? -int256(rAbs) : int256(rAbs);
}
/// @notice Returns 1 as a signed 59.18-decimal fixed-point number.
function scale() internal pure returns (int256 result) {
result = SCALE;
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Requirements:
/// - x cannot be negative.
/// - x must be less than MAX_SD59x18 / SCALE.
///
/// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root.
/// @return result The result as a signed 59.18-decimal fixed-point .
function sqrt(int256 x) internal pure returns (int256 result) {
unchecked {
if (x < 0) {
revert PRBMathSD59x18__SqrtNegativeInput(x);
}
if (x > MAX_SD59x18 / SCALE) {
revert PRBMathSD59x18__SqrtOverflow(x);
}
// Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed
// 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
result = int256(PRBMath.sqrt(uint256(x * SCALE)));
}
}
/// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process.
/// @param x The signed 59.18-decimal fixed-point number to convert.
/// @return result The same number in basic integer form.
function toInt(int256 x) internal pure returns (int256 result) {
unchecked {
result = x / SCALE;
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment