Created
April 13, 2022 05:10
-
-
Save Abusheik008/1f1457668be37b8e94dc92ab65ea6a0b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import cv2 | |
import shutil | |
from tqdm import tqdm | |
import numpy as np | |
import os | |
#Add the path of cropped folder in which all the classes folder presents | |
cropped_folder_path = r"D:\Abu\My Learnings\Classes Validation\DataBox\Classes Validation\cropped_images" | |
#Add the path of error folder in which the error classes will be stored | |
error_folder_path = r"D:\Abu\My Learnings\Classes Validation\DataBox\Classes Validation\Error" | |
folder_dic, master_dic_full, master_dic, Images_to_compare, Title, Original_Title = {}, {}, {}, [], [], [] | |
percentage_of_similarity, Percentage_of_Non_similarity = 0, 0 | |
#By using swift and flann we will find the image similarity | |
sift = cv2.SIFT_create() | |
index_params = dict(algorithm=0, trees=1) | |
search_params = dict() | |
#In this loop we will be taking the count or no of folders which presents inside the cropped folder | |
for count, folder in enumerate(os.listdir(cropped_folder_path)): | |
folder_dic[folder] = count | |
if not os.path.exists(os.path.join(error_folder_path, folder)): | |
os.mkdir((os.path.join(error_folder_path, folder))) | |
#In these loops we will be matching one class with all other classes and move the images to the error folder | |
for main_folder, index in folder_dic.items(): | |
time.sleep(1) | |
print("Main Folder ->", main_folder) | |
for master_images_path in os.listdir(os.path.join(cropped_folder_path, main_folder)): | |
master_images = cv2.imread(cropped_folder_path + "/" + main_folder + "/" + master_images_path) | |
for check_folder in os.listdir(cropped_folder_path): | |
if folder_dic[check_folder] > index: | |
time.sleep(2) | |
for check_image_path in tqdm(os.listdir(os.path.join(cropped_folder_path, check_folder))): | |
check_image = cv2.imread(cropped_folder_path + "/" + check_folder + "/" + check_image_path) | |
if master_images.shape == check_image.shape: | |
difference = cv2.subtract(master_images, check_image) | |
b, g, r = cv2.split(difference) | |
if cv2.countNonZero(b) == 0 and cv2.countNonZero(g) == 0 and cv2.countNonZero(r) == 0: | |
print("Similarity: 100%") | |
flann = cv2.FlannBasedMatcher() | |
kp_1, desc_1 = sift.detectAndCompute(master_images, None) | |
kp_2, desc_2 = sift.detectAndCompute(check_image, None) | |
matches = flann.knnMatch(desc_1, desc_2, k=2) | |
similar_images, Non_similar_images = [], [] | |
for m, n in matches: | |
if m.distance < 0.75 * n.distance: | |
similar_images.append([m]) | |
else: | |
Non_similar_images.append([m]) | |
number_key_points = 0 | |
if len(kp_1) <= len(kp_2): | |
number_key_points = len(kp_1) | |
else: | |
number_key_points = len(kp_2) | |
percentage_of_similarity = len(similar_images) / number_key_points * 100 | |
Percentage_of_Non_similarity = len(Non_similar_images) / number_key_points * 100 | |
if percentage_of_similarity > Percentage_of_Non_similarity: | |
print("Title: " + os.path.join(cropped_folder_path, master_images_path), | |
file=open("output.txt", "a")) | |
print("Original Title: " + os.path.join(cropped_folder_path, check_folder), | |
file=open(error_folder_path + "/" + check_folder + "/output.txt", "a")) | |
print("similarity:" + str(int(percentage_of_similarity)) + "%\n", | |
file=open(error_folder_path + "/" + check_folder + "/output.txt", "a")) | |
print("Non_similarity:" + str(int(Percentage_of_Non_similarity)) + "%\n", | |
file=open(error_folder_path + "/" + check_folder + "/output.txt", "a")) | |
print("Same classes occurred", | |
file=open(error_folder_path + "/" + check_folder + "/output.txt", "a")) | |
error_save_variable = error_folder_path + "/" + check_folder | |
if os.path.exists(os.path.join(error_save_variable, check_image_path)): | |
os.remove(os.path.join(error_save_variable, check_image_path)) | |
else: | |
shutil.move((cropped_folder_path + "/" + check_folder + "/" + check_image_path), | |
error_save_variable) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment