Quantitatively check the quality of a compressed image by calculating the Structural Similarity Index (SSIM) and Mean Square Errors (MSE) between two images.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
from skimage.metrics import structural_similarity as ssim | |
import numpy as np | |
import cv2 | |
import argparse | |
def options(): | |
parser = argparse.ArgumentParser(description="Read image metadata") | |
parser.add_argument("-o", "--first", help="Input image file.", required=True) | |
parser.add_argument("-c", "--second", help="Input image file.", required=True) | |
args = parser.parse_args() | |
return args | |
def mse(imageA, imageB): | |
# the 'Mean Squared Error' between the two images is the sum of the squared difference between the two images | |
mse_error = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) | |
mse_error /= float(imageA.shape[0] * imageA.shape[1]) | |
# return the MSE. The lower the error, the more "similar" the two images are. | |
return mse_error | |
def compare(imageA, imageB): | |
# Calculate the MSE and SSIM | |
m = mse(imageA, imageB) | |
s = ssim(imageA, imageB) | |
# Return the SSIM. The higher the value, the more "similar" the two images are. | |
return s | |
def main(): | |
# Get options | |
args = options() | |
# Import images | |
image1 = cv2.imread(args.first) | |
image2 = cv2.imread(args.second, 1) | |
# Convert the images to grayscale | |
gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) | |
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) | |
# Check for same size and ratio and report accordingly | |
ho, wo, _ = image1.shape | |
hc, wc, _ = image2.shape | |
ratio_orig = ho/wo | |
ratio_comp = hc/wc | |
dim = (wc, hc) | |
if round(ratio_orig, 2) != round(ratio_comp, 2): | |
print("\nImages not of the same dimension. Check input.") | |
exit() | |
# Resize first image if the second image is smaller | |
elif ho > hc and wo > wc: | |
print("\nResizing original image for analysis...") | |
gray1 = cv2.resize(gray1, dim) | |
elif ho < hc and wo < wc: | |
print("\nCompressed image has a larger dimension than the original. Check input.") | |
exit() | |
if round(ratio_orig, 2) == round(ratio_comp, 2): | |
mse_value = mse(gray1, gray2) | |
ssim_value = compare(gray1, gray2) | |
print("MSE:", mse_value) | |
print("SSIM:", ssim_value) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment