Skip to content

Instantly share code, notes, and snippets.

@Alemusica
Forked from natowi/MeshroomColab.ipynb
Created April 14, 2020 16:14

Revisions

  1. @natowi natowi renamed this gist Mar 28, 2020. 1 changed file with 0 additions and 0 deletions.
    File renamed without changes.
  2. @natowi natowi revised this gist Dec 3, 2019. 1 changed file with 116 additions and 8 deletions.
    124 changes: 116 additions & 8 deletions MeshroomCollab.ipynb
    Original file line number Diff line number Diff line change
    @@ -25,7 +25,114 @@
    "**Meshroom for GoogleColab**\n",
    "\n",
    "This is an example on how to use Meshroom in GoogleColab with uploaded images to generate a textured mesh (OBJ) that can be downloaded.\n",
    "\n"
    ]
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "3wBFjbjIz9ZX",
    "colab_type": "text"
    },
    "source": [
    "**0. Connect to Google Drive (optional)**\n",
    "\n",
    "Paste your authorisation code and resume with Enter\n"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "NB2T3gnb1GY4",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "from google.colab import drive\n",
    "drive.mount('/content/drive')"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "Ubwkqcdb5NG_",
    "colab_type": "text"
    },
    "source": [
    "Navigate to the root folder of your Google Drive"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "HIsZd9i70xVT",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "%cd drive/My Drive"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "ps9PVfiK5WDl",
    "colab_type": "text"
    },
    "source": [
    "Now you can open an existing project folder **or** create a new one"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "h19HySRO4fC3",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "# open existing\n",
    "%cd YOUR/PROJECT/FOLDER"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "o0sl70x46PdQ",
    "colab_type": "text"
    },
    "source": [
    "**or**"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "WIQjlbAP4ncy",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "# create new (replace test with your new folder name)\n",
    "!mkdir test\n",
    "%cd test"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "7kShJYbj6GS6",
    "colab_type": "text"
    },
    "source": [
    "**1. Download Meshroom 2019.2**"
    ]
    },
    @@ -51,8 +158,7 @@
    "colab_type": "text"
    },
    "source": [
    "\n",
    "Create folder for image upload\n"
    "Create folder for image upload (§ can be skipped when using Google Drive)\n"
    ]
    },
    {
    @@ -75,7 +181,7 @@
    "colab_type": "text"
    },
    "source": [
    "Change dir before upload"
    "Change dir before upload (§)"
    ]
    },
    {
    @@ -98,7 +204,7 @@
    "colab_type": "text"
    },
    "source": [
    "Test directory"
    "Test directory (§)"
    ]
    },
    {
    @@ -121,7 +227,7 @@
    "colab_type": "text"
    },
    "source": [
    "**2. Upload images**\n",
    "**2. Upload images** (§)\n",
    "\n",
    "(It is possible to link to a GoogleDrive folder instead. Might be added in the future to this notepad)"
    ]
    @@ -153,7 +259,7 @@
    "colab_type": "text"
    },
    "source": [
    "List uploaded images"
    "List uploaded images (§)"
    ]
    },
    {
    @@ -176,7 +282,7 @@
    "colab_type": "text"
    },
    "source": [
    "Navigate back to content folder"
    "Navigate back to content folder (§)"
    ]
    },
    {
    @@ -205,7 +311,9 @@
    "\n",
    "The node temp files are stored in the **temp** folder, the **out** is only for the final result.\n",
    "\n",
    "(It is possible to use a Meshroom graph file (.mg) with costumized parameters and nodes instead of the following default pipeline. Might be added to this notepad in the future)"
    "(It is possible to use a Meshroom graph file (.mg) with costumized parameters and nodes instead of the following default pipeline. Might be added to this notepad in the future)\n",
    "\n",
    "When using Google Drive, provide the path to your image folder: --input YOUR/IMAGEs/FOLDER/PATH (the easiest solution is to create a input folder in ./yourprojectfolder/meshroom/Meshroom-2019.2.0/meshroom_photogrammetry with all your images)"
    ]
    },
    {
  3. @natowi natowi revised this gist Nov 26, 2019. 1 changed file with 142 additions and 24 deletions.
    166 changes: 142 additions & 24 deletions MeshroomCollab.ipynb
    Original file line number Diff line number Diff line change
    @@ -22,9 +22,11 @@
    },
    "source": [
    "\n",
    "Setup\n",
    "**Meshroom for GoogleColab**\n",
    "\n",
    "Download Meshroom\n"
    "This is an example on how to use Meshroom in GoogleColab with uploaded images to generate a textured mesh (OBJ) that can be downloaded.\n",
    "\n",
    "**1. Download Meshroom 2019.2**"
    ]
    },
    {
    @@ -35,9 +37,9 @@
    "colab": {}
    },
    "source": [
    "!wget -N https://github.com/alicevision/meshroom/releases/download/v2019.1.0/Meshroom-2019.1.0-linux.tar.gz\n",
    "!wget -N https://github.com/alicevision/meshroom/releases/download/v2019.2.0/Meshroom-2019.2.0-linux.tar.gz\n",
    "!mkdir meshroom\n",
    "!tar xzf Meshroom-2019.1.0-linux.tar.gz -C ./meshroom"
    "!tar xzf Meshroom-2019.2.0-linux.tar.gz -C ./meshroom"
    ],
    "execution_count": 0,
    "outputs": []
    @@ -50,9 +52,7 @@
    },
    "source": [
    "\n",
    "Upload data\n",
    "\n",
    "Optional upload of pipline file and image source files\n"
    "Create folder for image upload\n"
    ]
    },
    {
    @@ -114,6 +114,18 @@
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "zUd42W__QE2p",
    "colab_type": "text"
    },
    "source": [
    "**2. Upload images**\n",
    "\n",
    "(It is possible to link to a GoogleDrive folder instead. Might be added in the future to this notepad)"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    @@ -141,7 +153,7 @@
    "colab_type": "text"
    },
    "source": [
    "List Input contents"
    "List uploaded images"
    ]
    },
    {
    @@ -189,10 +201,11 @@
    },
    "source": [
    "\n",
    "Meshing\n",
    "**3. Run Meshroom**\n",
    "\n",
    "The node temp files are stored in the **temp** folder, the **out** is only for the final result.\n",
    "\n",
    "use the --pipeline argument to provide a path to the meshfile you created/uploaded\n",
    "Note: the node temp files are stored in the temp folder out is only for the final result"
    "(It is possible to use a Meshroom graph file (.mg) with costumized parameters and nodes instead of the following default pipeline. Might be added to this notepad in the future)"
    ]
    },
    {
    @@ -204,7 +217,122 @@
    },
    "source": [
    "!mkdir ./out\n",
    "!./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./input --output ./out\n"
    "!./meshroom/Meshroom-2019.2.0/meshroom_photogrammetry --input ./input --output ./out\n"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "49aKN-I0Oddu",
    "colab_type": "text"
    },
    "source": [
    "**4. Preview Mesh using Trimesh (optional)** \n",
    "\n",
    "This is experimental and not optimized"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "uY7p1hKj81Uq",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!pip install numpy"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "JjZ84tdLRi9b",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!pip install trimesh"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "exhdh1bu_8VY",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!ls"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "9SwOo0WCRtmw",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "%cd out"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "kTYgiJauVF26",
    "colab_type": "text"
    },
    "source": [
    "Start preview"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "fWi3nrpn8_ZT",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "import numpy as np\n",
    "import trimesh\n",
    "mesh = trimesh.load_mesh('texturedMesh.obj')\n",
    "mesh.show()"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "dV3uF6ZmCX-x",
    "colab_type": "text"
    },
    "source": [
    "Read https://trimsh.org/examples/quick_start.html for details\n",
    "\n",
    "**Before downloading, change back to the contents folder:**"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "-6dc2xQ8SJYT",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "%cd ../"
    ],
    "execution_count": 0,
    "outputs": []
    @@ -217,9 +345,9 @@
    },
    "source": [
    "\n",
    "Download\n",
    "**5. Download**\n",
    "\n",
    "Use the prefered download format\n"
    "Use the prefered download format (tar.gz or zip)\n"
    ]
    },
    {
    @@ -252,16 +380,6 @@
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "NNzXTKPYwwl3",
    "colab_type": "text"
    },
    "source": [
    ""
    ]
    }
    ]
    }
  4. @natowi natowi revised this gist Nov 6, 2019. 1 changed file with 153 additions and 44 deletions.
    197 changes: 153 additions & 44 deletions MeshroomCollab.ipynb
    Original file line number Diff line number Diff line change
    @@ -3,9 +3,9 @@
    "nbformat_minor": 0,
    "metadata": {
    "colab": {
    "name": "meshroom_test.ipynb",
    "version": "0.3.2",
    "provenance": []
    "name": "MR2.ipynb",
    "provenance": [],
    "collapsed_sections": []
    },
    "kernelspec": {
    "name": "python3",
    @@ -17,23 +17,24 @@
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "RD3eZSm6d6NZ",
    "id": "TZh8CZsjwfD1",
    "colab_type": "text"
    },
    "source": [
    "#Setup\n",
    "Download Meshroom and Data\n"
    "\n",
    "Setup\n",
    "\n",
    "Download Meshroom\n"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "cQgXdvk-qUvi",
    "id": "b4HH_r8CwZXa",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!git clone https://github.com/alicevision/dataset_buddha\n",
    "!wget -N https://github.com/alicevision/meshroom/releases/download/v2019.1.0/Meshroom-2019.1.0-linux.tar.gz\n",
    "!mkdir meshroom\n",
    "!tar xzf Meshroom-2019.1.0-linux.tar.gz -C ./meshroom"
    @@ -44,114 +45,222 @@
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "zTI6AlUXd-_M",
    "id": "mmSZ5le1wl1r",
    "colab_type": "text"
    },
    "source": [
    "#Upload data\n",
    "\n",
    "Upload data\n",
    "\n",
    "Optional upload of pipline file and image source files\n"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "9_BfARNUdd_a",
    "id": "BP3p_lGEq69X",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!mkdir input"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "bnYMYBQlrL0u",
    "colab_type": "text"
    },
    "source": [
    "Change dir before upload"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "d9NW_koxq-wj",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "%cd input"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "GqxXyUJYrdV5",
    "colab_type": "text"
    },
    "source": [
    "Test directory"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "KI9G_jvtrgOm",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!ls"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "MpXT0L6ywoSa",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "from google.colab import files\n",
    "\n",
    "# optional upload for the meshfile\n",
    "# optional upload for the images\n",
    "\n",
    "uploaded = files.upload()\n",
    "\n",
    "for fn in uploaded.keys():\n",
    " print('User uploaded file \"{name}\" with length {length} bytes'.format( name=fn, length=len(uploaded[fn])))\n"
    " print('User uploaded file \"{name}\" with length {length} bytes'.format( name=fn, length=len(uploaded[fn])))"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "xA_XKpKqdoqb",
    "id": "Pc_52Wh9ruQF",
    "colab_type": "text"
    },
    "source": [
    "#Meshing\n",
    "use the --pipeline argument to provide a path to the meshfile you created/uploaded"
    "List Input contents"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "AZWyk461sxGI",
    "id": "RcIHvaherrAb",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!mkdir ./buddha_out\n",
    "!./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./dataset_buddha/buddha --output ./buddha_out\n"
    "!ls"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "7wwo3nPyd0-w",
    "id": "QMspCFLAs_K7",
    "colab_type": "text"
    },
    "source": [
    "#Download\n",
    "Navigate back to content folder"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "2TywJh4lsNDK",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "%cd ../\n",
    "!ls"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "4E_kAx-2wq3O",
    "colab_type": "text"
    },
    "source": [
    "\n",
    "Meshing\n",
    "\n",
    "use the --pipeline argument to provide a path to the meshfile you created/uploaded\n",
    "Note: the node temp files are stored in the temp folder out is only for the final result"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "3GimHqrGwsmu",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!mkdir ./out\n",
    "!./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./input --output ./out\n"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "_EZJtblswuZy",
    "colab_type": "text"
    },
    "source": [
    "\n",
    "Download\n",
    "\n",
    "Use the prefered download format\n"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "SPEdzNMo5fV6",
    "id": "IirusdKJwz-6",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!tar -czvf meshbuddha.tar.gz ./buddha_out\n",
    "!tar -czvf out.tar.gz ./out\n",
    "from google.colab import files\n",
    "\n",
    "\n",
    "files.download('meshbuddha.tar.gz')"
    "files.download('out.tar.gz')"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "rAXWX6SX8J_q",
    "id": "VQ8F_rxPw4dK",
    "colab_type": "code",
    "colab": {
    "base_uri": "https://localhost:8080/",
    "height": 85
    },
    "outputId": "168b3acd-bd30-47c7-ca77-b6870306dd78"
    "colab": {}
    },
    "source": [
    "!zip -r meshbuddha.zip ./buddha_out\n",
    "files.download('meshbuddha.zip')"
    "!zip -r out.zip ./out\n",
    "files.download('out.zip')"
    ],
    "execution_count": 19,
    "outputs": [
    {
    "output_type": "stream",
    "text": [
    " adding: buddha_out/ (stored 0%)\n",
    " adding: buddha_out/texture_0.png (deflated 0%)\n",
    " adding: buddha_out/texturedMesh.obj (deflated 72%)\n",
    " adding: buddha_out/texturedMesh.mtl (deflated 28%)\n"
    ],
    "name": "stdout"
    }
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "NNzXTKPYwwl3",
    "colab_type": "text"
    },
    "source": [
    ""
    ]
    }
    ]
  5. @donmahallem donmahallem revised this gist Jul 8, 2019. 1 changed file with 69 additions and 2 deletions.
    71 changes: 69 additions & 2 deletions MeshroomCollab.ipynb
    Original file line number Diff line number Diff line change
    @@ -14,6 +14,17 @@
    "accelerator": "GPU"
    },
    "cells": [
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "RD3eZSm6d6NZ",
    "colab_type": "text"
    },
    "source": [
    "#Setup\n",
    "Download Meshroom and Data\n"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    @@ -30,6 +41,48 @@
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "zTI6AlUXd-_M",
    "colab_type": "text"
    },
    "source": [
    "#Upload data\n",
    "Optional upload of pipline file and image source files\n"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "9_BfARNUdd_a",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "from google.colab import files\n",
    "\n",
    "# optional upload for the meshfile\n",
    "\n",
    "uploaded = files.upload()\n",
    "\n",
    "for fn in uploaded.keys():\n",
    " print('User uploaded file \"{name}\" with length {length} bytes'.format( name=fn, length=len(uploaded[fn])))\n"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "xA_XKpKqdoqb",
    "colab_type": "text"
    },
    "source": [
    "#Meshing\n",
    "use the --pipeline argument to provide a path to the meshfile you created/uploaded"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    @@ -39,11 +92,22 @@
    },
    "source": [
    "!mkdir ./buddha_out\n",
    "!./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./dataset_buddha/buddha --output ./buddha_out --scale 2"
    "!./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./dataset_buddha/buddha --output ./buddha_out\n"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "markdown",
    "metadata": {
    "id": "7wwo3nPyd0-w",
    "colab_type": "text"
    },
    "source": [
    "#Download\n",
    "Use the prefered download format\n"
    ]
    },
    {
    "cell_type": "code",
    "metadata": {
    @@ -81,7 +145,10 @@
    {
    "output_type": "stream",
    "text": [
    ""
    " adding: buddha_out/ (stored 0%)\n",
    " adding: buddha_out/texture_0.png (deflated 0%)\n",
    " adding: buddha_out/texturedMesh.obj (deflated 72%)\n",
    " adding: buddha_out/texturedMesh.mtl (deflated 28%)\n"
    ],
    "name": "stdout"
    }
  6. @donmahallem donmahallem revised this gist Jul 8, 2019. 1 changed file with 91 additions and 21 deletions.
    112 changes: 91 additions & 21 deletions MeshroomCollab.ipynb
    Original file line number Diff line number Diff line change
    @@ -1,21 +1,91 @@
    !git clone https://github.com/alicevision/dataset_buddha
    !wget -N https://github.com/alicevision/meshroom/releases/download/v2019.1.0/Meshroom-2019.1.0-linux.tar.gz
    !mkdir meshroom
    !tar xzf Meshroom-2019.1.0-linux.tar.gz -C ./meshroom
    from google.colab import files
    # optional upload for the meshfile
    uploaded = files.upload()
    for fn in uploaded.keys():
    print('User uploaded file "{name}" with length {length} bytes'.format(
    name=fn, length=len(uploaded[fn])))

    for fn in uploaded.keys():
    print('User uploaded file "{name}" with length {length} bytes'.format(
    name=fn, length=len(uploaded[fn])))
    !mkdir ./buddha_out
    # use the --pipeline argument to provide a path to the meshfile you created
    !./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./dataset_buddha/buddha --output ./buddha_out
    !tar -czvf meshbuddha.tar.gz ./buddha_out


    files.download('meshbuddha.tar.gz')
    {
    "nbformat": 4,
    "nbformat_minor": 0,
    "metadata": {
    "colab": {
    "name": "meshroom_test.ipynb",
    "version": "0.3.2",
    "provenance": []
    },
    "kernelspec": {
    "name": "python3",
    "display_name": "Python 3"
    },
    "accelerator": "GPU"
    },
    "cells": [
    {
    "cell_type": "code",
    "metadata": {
    "id": "cQgXdvk-qUvi",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!git clone https://github.com/alicevision/dataset_buddha\n",
    "!wget -N https://github.com/alicevision/meshroom/releases/download/v2019.1.0/Meshroom-2019.1.0-linux.tar.gz\n",
    "!mkdir meshroom\n",
    "!tar xzf Meshroom-2019.1.0-linux.tar.gz -C ./meshroom"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "AZWyk461sxGI",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!mkdir ./buddha_out\n",
    "!./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./dataset_buddha/buddha --output ./buddha_out --scale 2"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "SPEdzNMo5fV6",
    "colab_type": "code",
    "colab": {}
    },
    "source": [
    "!tar -czvf meshbuddha.tar.gz ./buddha_out\n",
    "from google.colab import files\n",
    "\n",
    "\n",
    "files.download('meshbuddha.tar.gz')"
    ],
    "execution_count": 0,
    "outputs": []
    },
    {
    "cell_type": "code",
    "metadata": {
    "id": "rAXWX6SX8J_q",
    "colab_type": "code",
    "colab": {
    "base_uri": "https://localhost:8080/",
    "height": 85
    },
    "outputId": "168b3acd-bd30-47c7-ca77-b6870306dd78"
    },
    "source": [
    "!zip -r meshbuddha.zip ./buddha_out\n",
    "files.download('meshbuddha.zip')"
    ],
    "execution_count": 19,
    "outputs": [
    {
    "output_type": "stream",
    "text": [
    ""
    ],
    "name": "stdout"
    }
    ]
    }
    ]
    }
  7. @donmahallem donmahallem created this gist Jul 8, 2019.
    21 changes: 21 additions & 0 deletions MeshroomCollab.ipynb
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,21 @@
    !git clone https://github.com/alicevision/dataset_buddha
    !wget -N https://github.com/alicevision/meshroom/releases/download/v2019.1.0/Meshroom-2019.1.0-linux.tar.gz
    !mkdir meshroom
    !tar xzf Meshroom-2019.1.0-linux.tar.gz -C ./meshroom
    from google.colab import files
    # optional upload for the meshfile
    uploaded = files.upload()
    for fn in uploaded.keys():
    print('User uploaded file "{name}" with length {length} bytes'.format(
    name=fn, length=len(uploaded[fn])))

    for fn in uploaded.keys():
    print('User uploaded file "{name}" with length {length} bytes'.format(
    name=fn, length=len(uploaded[fn])))
    !mkdir ./buddha_out
    # use the --pipeline argument to provide a path to the meshfile you created
    !./meshroom/Meshroom-2019.1.0/meshroom_photogrammetry --input ./dataset_buddha/buddha --output ./buddha_out
    !tar -czvf meshbuddha.tar.gz ./buddha_out


    files.download('meshbuddha.tar.gz')