Created
March 28, 2020 17:11
-
-
Save AmirAlahmedy/190fa7de980fbfdedb7be86e84d8c3c2 to your computer and use it in GitHub Desktop.
Simulation of some modulation techniques using Python.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
from numpy import arange, cos, sin, fft | |
from math import pi | |
from scipy.signal import hilbert | |
# Givens | |
t = arange(0, 1e-2, 1/2e4) | |
f = fft.fftfreq(t.shape[-1]) | |
f_m, f_c = 1e3, 1e6 | |
A_c = 10 | |
modulatingSignal = cos(2*pi*f_m*t) | |
# DSB-SC | |
unmodulatedCarrier = A_c*cos(2*pi*t*f_c) | |
modulatedSignal = modulatingSignal*unmodulatedCarrier | |
spectrum = fft.fft(modulatedSignal) | |
plt.plot(f, spectrum.real, f, spectrum.imag) | |
plt.title('Spectrum of the DSB-SC modulated signal') | |
plt.show() | |
line1, = plt.plot(t, modulatingSignal, 'r') | |
line2, = plt.plot(t, modulatedSignal, 'b') | |
plt.legend((line1, line2), ('modulating signal','modulated signal')) | |
plt.title('Double Side Band Suppressed Carrier') | |
plt.show() | |
# DSB-LC | |
modulatedSignal = (A_c + modulatingSignal)*cos(2*pi*t*f_c) | |
spectrum = fft.fft(modulatedSignal) | |
plt.plot(f, spectrum.real, f, spectrum.imag) | |
plt.title('Spectrum of the DSB-LC modulated signal') | |
plt.show() | |
line1, = plt.plot(t, modulatingSignal, 'r') | |
line2, = plt.plot(t, modulatedSignal, 'b') | |
plt.legend((line1, line2), ('modulating signal','modulated signal')) | |
plt.title('Double Side Band Large Carrier') | |
plt.show() | |
# SSB | |
modulatingSignal_h = hilbert(modulatingSignal) | |
USB = modulatingSignal*cos(2*pi*f_c*t) - modulatingSignal_h*sin(2*pi*f_c*t) | |
LSB = modulatingSignal*cos(2*pi*f_c*t) + modulatingSignal_h*sin(2*pi*f_c*t) | |
# Frequency Domain | |
specFig = plt.figure() | |
plt.title('Single Side Band Spectrum') | |
u_spectrum = fft.fft(USB) | |
ax0 = specFig.add_subplot(211) | |
ax0.plot(f, u_spectrum.real, f, u_spectrum.imag) | |
l_spectrum = fft.fft(LSB) | |
ax1 = specFig.add_subplot(212) | |
ax1.plot(f, l_spectrum.real, f, l_spectrum.imag) | |
# Time Domain | |
fig = plt.figure() | |
plt.title('Single Side Band') | |
ax0 = fig.add_subplot(211) | |
ax0.plot(t, USB, 'y', label='USB') | |
ax0.legend() | |
ax1 = fig.add_subplot(212) | |
ax1.plot(t, LSB, 'c', label='LSB') | |
ax1.legend() | |
plt.show() | |
# FM and PM | |
b = 3 # modulation index | |
modulatedSignal = A_c*cos(f_c*t + b*sin(f_m*t)) | |
spectrum = fft.fft(modulatedSignal) | |
plt.plot(f, spectrum.real, f, spectrum.imag) | |
plt.title('Spectrum of the frequency modulated signal') | |
plt.show() | |
plt.plot(t, modulatedSignal, 'g') | |
plt.title('Frequency Modulation') | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Here is a description of the implemented modulation techniques.