Last active
December 13, 2024 18:54
-
-
Save AmosLewis/f1b0dcad2c9ee2381f19d5836df952ff to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
def nonzero(t): | |
print("t: ", t) # tensor([0, 0, 1, 1, 0, 0]) | |
# Flatten the input tensor | |
t_flat = t.flatten() # torch.flatten(t, 0, 0) | |
print( | |
"t_flat: ", t_flat | |
) # tensortensor([0, 0, 1, 1, 0, 0]), torch.Size([6]), #!torch.vtensor<[?],si64> | |
nonzero_mask = t_flat != 0 | |
nonzero_mask = nonzero_mask.int() | |
print( | |
"nonzero_mask: ", nonzero_mask | |
) # tensor([0, 0, 1, 1, 0, 0], dtype=torch.int32) | |
destination_indices = torch.cumsum(nonzero_mask.long(), 0) - 1 | |
print( | |
"destination_indices: ", destination_indices | |
) # tensor([-1, -1, 0, 1, 1, 1]) | |
destination_indices_clamp = torch.clamp(destination_indices, min=0) | |
print( | |
"destination_indices_clamp: ", destination_indices_clamp | |
) # tensor([0, 0, 0, 1, 1, 1]) | |
iota = torch.arange(t_flat.size(0)) * nonzero_mask | |
print("iota: ", iota) # tensor([0, 0, 2, 3, 0, 0]) | |
scatter_self = torch.zeros_like(t_flat, dtype=torch.int64) | |
print("scatter_self: ", scatter_self) # tensor([0, 0, 0, 0, 0, 0]) | |
# compacted = scatter_self.scatter_( | |
# dim=0, | |
# index=destination_indices_clamp, | |
# src=iota, | |
# reduce='add' | |
# ) | |
compacted = torch.scatter_add( | |
scatter_self, dim=0, index=destination_indices_clamp, src=iota | |
) | |
print("compacted: ", compacted) # tensor([2, 3, 0, 0, 0, 0]) | |
result_flat = compacted[: torch.sum(nonzero_mask)] | |
print("result_flat: ", result_flat) # tensor([2, 3]) | |
print("result_flat.shape: ", result_flat.shape) # torch.Size([2]) | |
# Convert flattened indices back to multi-dimensional indices using PyTorch operations | |
original_shape = t.shape | |
print( | |
"original_shape: ", original_shape | |
) # torch.Size([6]) , #!torch.vtensor<[1],si64> | |
input_shape_tensor = torch.tensor(original_shape) | |
print("dims: ", input_shape_tensor) # tensor([6]) | |
strides = torch.cumprod(torch.flip(input_shape_tensor, [0]), 0).flip( | |
0 | |
) #!torch.vtensor<[1],si64> | |
print("strides: ", strides) # tensor([6]) | |
strides = torch.cat([strides[1:-1], torch.tensor([1])]) | |
print("strides: ", strides) # tensor([1]) !torch.vtensor<[1],si64> | |
a = result_flat.unsqueeze(1) # tensor([[2], [3]]) torch.Size([2, 1]) | |
b = strides.unsqueeze(0) # tensor([[1]]) torch.Size([1, 1]) | |
c = a // b | |
# c: tensor([[2], [3]]) torch.Size([2, 1]) | |
multi_indices = c % input_shape_tensor | |
print("multi_indices: ", multi_indices) # tensor([ [2], [3] ]) torch.Size([2, 1]) | |
return multi_indices | |
def test(a): | |
a = torch.tensor(a) | |
myout = nonzero(a) | |
ptout = torch.nonzero(a) | |
print("myout: ", myout) # tensor([ [2], [3] ]) | |
print("myout.shape: ", myout.shape) # torch.Size([2, 1]) | |
print("ptout: ", ptout) # torch.Size([2, 1]) | |
print("ptout.shape: ", ptout.shape) # torch.Size([2, 1]) | |
myout_reshaped = myout.reshape(ptout.shape) | |
print("myout_reshaped: ", myout_reshaped) # tensor([ [2], [3] ]) | |
return myout_reshaped | |
test(torch.tensor([0, 0, 1, 1, 0, 0])) | |
# t = torch.tensor([0, 0, 1, 1, 0, 0]) | |
# t.size(0) | |
# def nonzero(t): | |
# print("t: ", t) # tensor([0, 0, 0, 1, 0, 0]) | |
# # Flatten the input tensor | |
# t_flat = t.flatten() # torch.flatten(t, 0, 0) | |
# print("t_flat: ", t_flat) # tensor([0, 0, 0, 1, 0, 0]), torch.Size([6]), #!torch.vtensor<[?],si64> | |
# nonzero_mask = (t_flat != 0) | |
# nonzero_mask = nonzero_mask.int() | |
# print("nonzero_mask: ", nonzero_mask) # tensor([0, 0, 0, 1, 0, 0], dtype=torch.int32) | |
# destination_indices = torch.cumsum(nonzero_mask, 0) - 1 | |
# print("destination_indices: ", destination_indices) # tensor([-1, -1, -1, 0, 0, 0]) | |
# destination_indices_clamp = torch.clamp(destination_indices, min=0) | |
# print("destination_indices_clamp: ", destination_indices_clamp) # tensor([0, 0, 0, 0, 0, 0]) | |
# iota = torch.arange(len(t_flat)) * nonzero_mask | |
# print("iota: ", iota) # tensor([0, 0, 0, 3, 0, 0]) | |
# scatter_self = torch.zeros_like(t_flat, dtype=torch.int64) | |
# print("scatter_self: ", scatter_self) # tensor([0, 0, 0, 0, 0, 0]) | |
# compacted = scatter_self.scatter_( | |
# dim=0, | |
# index=destination_indices_clamp, | |
# src=iota, | |
# reduce='add' | |
# ) | |
# print("compacted: ", compacted) # tensor([3, 0, 0, 0, 0, 0]) | |
# result_flat = compacted[:torch.sum(nonzero_mask)] | |
# print("result_flat: ", result_flat) # tensor([3]) | |
# print("result_flat.shape: ", result_flat.shape) # torch.Size([1]) | |
# # Convert flattened indices back to multi-dimensional indices using PyTorch operations | |
# original_shape = t.shape | |
# print("original_shape: ", original_shape) # torch.Size([6]) , #!torch.vtensor<[1],si64> | |
# input_shape_tensor = torch.tensor(original_shape) | |
# print("dims: ", input_shape_tensor) # tensor([6]) | |
# strides = torch.cumprod(torch.flip(input_shape_tensor, [0]), 0).flip(0) #!torch.vtensor<[1],si64> | |
# print("strides: ", strides) # tensor([6]) | |
# strides = torch.cat([strides[1:], torch.tensor([1])]) | |
# print("strides: ", strides) # tensor([1]) !torch.vtensor<[1],si64> | |
# multi_indices = (result_flat.unsqueeze(1) // strides.unsqueeze(0)) % input_shape_tensor | |
# print("multi_indices: ", multi_indices) # tensor([[3]]) | |
# return multi_indices | |
# def test(a): | |
# a = torch.tensor(a) | |
# myout = nonzero(a) | |
# ptout = torch.nonzero(a) | |
# print("myout: ", myout) # tensor([[3]]) | |
# print("ptout: ", ptout) # tensor([[3]]) | |
# myout_reshaped = myout.reshape(ptout.shape) | |
# print("myout_reshaped: ", myout_reshaped) # tensor([[3]]) | |
# return myout_reshaped | |
# test([0,0,0,1,0,0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment