Created
June 11, 2020 16:31
-
-
Save Andrew-Pynch/286f73737bb3c36b505315653d1f916b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
from tqdm import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
REBUILD_DATA = False # set to true to one once, then back to false unless you want to change something in your training data. | |
class DogsVSCats(): | |
IMG_SIZE = 50 | |
CATS = "PetImages/Cat" | |
DOGS = "PetImages/Dog" | |
TESTING = "PetImages/Testing" | |
LABELS = {CATS: 0, DOGS: 1} | |
training_data = [] | |
catcount = 0 | |
dogcount = 0 | |
def make_training_data(self): | |
for label in self.LABELS: | |
print(label) | |
for f in tqdm(os.listdir(label)): | |
if "jpg" in f: | |
try: | |
path = os.path.join(label, f) | |
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) | |
img = cv2.resize(img, (self.IMG_SIZE, self.IMG_SIZE)) | |
self.training_data.append([np.array(img), np.eye(2)[self.LABELS[label]]]) # do something like print(np.eye(2)[1]), just makes one_hot | |
#print(np.eye(2)[self.LABELS[label]]) | |
if label == self.CATS: | |
self.catcount += 1 | |
elif label == self.DOGS: | |
self.dogcount += 1 | |
except Exception as e: | |
pass | |
#print(label, f, str(e)) | |
np.random.shuffle(self.training_data) | |
np.save("training_data.npy", self.training_data) | |
print('Cats:',dogsvcats.catcount) | |
print('Dogs:',dogsvcats.dogcount) | |
class Net(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.conv1 = nn.Conv2d(1, 32, 5) | |
self.conv2 = nn.Conv2d(32, 64, 5) | |
self.conv3 = nn.Conv2d(64, 128, 5) | |
x = torch.randn(50,50).view(-1,1,50,50) | |
self._to_linear = None | |
self.convs(x) | |
self.fc1 = nn.Linear(self._to_linear, 512) | |
self.fc2 = nn.Linear(512, 2) | |
def convs(self, x): | |
x = F.max_pool2d(F.relu(self.conv1(x)), (2,2)) | |
x = F.max_pool2d(F.relu(self.conv2(x)), (2,2)) | |
x = F.max_pool2d(F.relu(self.conv3(x)), (2,2)) | |
if self._to_linear is None: | |
self._to_linear = x[0].shape[0]*x[0].shape[1]*x[0].shape[2] | |
return x | |
def forward(self, x): | |
x = self.convs(x) | |
x = x.view(-1, self._to_linear) | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return F.softmax(x, dim=1) | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") # you can continue going on here, like cuda:1 cuda:2....etc. | |
print("Running on the GPU") | |
else: | |
device = torch.device("cpu") | |
print("Running on the CPU") | |
net = Net().to(device) | |
if REBUILD_DATA: | |
dogsvcats = DogsVSCats() | |
dogsvcats.make_training_data() | |
training_data = np.load("training_data.npy", allow_pickle=True) | |
print(len(training_data)) | |
optimizer = optim.Adam(net.parameters(), lr=0.001) | |
loss_function = nn.MSELoss() | |
X = torch.Tensor([i[0] for i in training_data]).view(-1, 50, 50) | |
X = X/255.0 | |
y = torch.Tensor([i[1] for i in training_data]) | |
VAL_PCT = 0.1 | |
val_size = int(len(X)*VAL_PCT) | |
print(val_size) | |
train_X = X[:-val_size] | |
train_y = y[:-val_size] | |
test_X = X[-val_size:] | |
test_y = y[-val_size:] | |
print(len(train_X)) | |
print(len(test_X)) | |
def train(net): | |
BATCH_SIZE = 100 | |
EPOCHS = 3 | |
for epoch in range(EPOCHS): | |
for i in tqdm(range(0, len(train_X), BATCH_SIZE)): | |
batch_X = train_X[i:i+BATCH_SIZE].view(-1,1,50,50) | |
batch_y = train_y[i:i+BATCH_SIZE] | |
batch_X, batch_y = batch_X.to(device), batch_y.to(device) | |
net.zero_grad() | |
outputs = net(batch_X) | |
loss = loss_function(outputs, batch_y) | |
loss.backward() | |
optimizer.step() | |
print(loss) | |
def test(net): | |
correct = 0 | |
total = 0 | |
with torch.no_grad(): | |
for i in tqdm(range(len(test_X))): | |
real_class = torch.argmax(test_y[i]).to(device) | |
net_out = net(test_X[i].view(-1, 1, 50, 50).to(device))[0] | |
predicted_class = torch.argmax(net_out) | |
if predicted_class == real_class: | |
correct += 1 | |
total += 1 | |
print("Accuracy:", round(correct/total,3)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment