Skip to content

Instantly share code, notes, and snippets.

@Andrew-Pynch
Created June 11, 2020 16:31
Show Gist options
  • Save Andrew-Pynch/286f73737bb3c36b505315653d1f916b to your computer and use it in GitHub Desktop.
Save Andrew-Pynch/286f73737bb3c36b505315653d1f916b to your computer and use it in GitHub Desktop.
import cv2
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
REBUILD_DATA = False # set to true to one once, then back to false unless you want to change something in your training data.
class DogsVSCats():
IMG_SIZE = 50
CATS = "PetImages/Cat"
DOGS = "PetImages/Dog"
TESTING = "PetImages/Testing"
LABELS = {CATS: 0, DOGS: 1}
training_data = []
catcount = 0
dogcount = 0
def make_training_data(self):
for label in self.LABELS:
print(label)
for f in tqdm(os.listdir(label)):
if "jpg" in f:
try:
path = os.path.join(label, f)
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (self.IMG_SIZE, self.IMG_SIZE))
self.training_data.append([np.array(img), np.eye(2)[self.LABELS[label]]]) # do something like print(np.eye(2)[1]), just makes one_hot
#print(np.eye(2)[self.LABELS[label]])
if label == self.CATS:
self.catcount += 1
elif label == self.DOGS:
self.dogcount += 1
except Exception as e:
pass
#print(label, f, str(e))
np.random.shuffle(self.training_data)
np.save("training_data.npy", self.training_data)
print('Cats:',dogsvcats.catcount)
print('Dogs:',dogsvcats.dogcount)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.conv3 = nn.Conv2d(64, 128, 5)
x = torch.randn(50,50).view(-1,1,50,50)
self._to_linear = None
self.convs(x)
self.fc1 = nn.Linear(self._to_linear, 512)
self.fc2 = nn.Linear(512, 2)
def convs(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2,2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2,2))
x = F.max_pool2d(F.relu(self.conv3(x)), (2,2))
if self._to_linear is None:
self._to_linear = x[0].shape[0]*x[0].shape[1]*x[0].shape[2]
return x
def forward(self, x):
x = self.convs(x)
x = x.view(-1, self._to_linear)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.softmax(x, dim=1)
if torch.cuda.is_available():
device = torch.device("cuda:0") # you can continue going on here, like cuda:1 cuda:2....etc.
print("Running on the GPU")
else:
device = torch.device("cpu")
print("Running on the CPU")
net = Net().to(device)
if REBUILD_DATA:
dogsvcats = DogsVSCats()
dogsvcats.make_training_data()
training_data = np.load("training_data.npy", allow_pickle=True)
print(len(training_data))
optimizer = optim.Adam(net.parameters(), lr=0.001)
loss_function = nn.MSELoss()
X = torch.Tensor([i[0] for i in training_data]).view(-1, 50, 50)
X = X/255.0
y = torch.Tensor([i[1] for i in training_data])
VAL_PCT = 0.1
val_size = int(len(X)*VAL_PCT)
print(val_size)
train_X = X[:-val_size]
train_y = y[:-val_size]
test_X = X[-val_size:]
test_y = y[-val_size:]
print(len(train_X))
print(len(test_X))
def train(net):
BATCH_SIZE = 100
EPOCHS = 3
for epoch in range(EPOCHS):
for i in tqdm(range(0, len(train_X), BATCH_SIZE)):
batch_X = train_X[i:i+BATCH_SIZE].view(-1,1,50,50)
batch_y = train_y[i:i+BATCH_SIZE]
batch_X, batch_y = batch_X.to(device), batch_y.to(device)
net.zero_grad()
outputs = net(batch_X)
loss = loss_function(outputs, batch_y)
loss.backward()
optimizer.step()
print(loss)
def test(net):
correct = 0
total = 0
with torch.no_grad():
for i in tqdm(range(len(test_X))):
real_class = torch.argmax(test_y[i]).to(device)
net_out = net(test_X[i].view(-1, 1, 50, 50).to(device))[0]
predicted_class = torch.argmax(net_out)
if predicted_class == real_class:
correct += 1
total += 1
print("Accuracy:", round(correct/total,3))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment