Skip to content

Instantly share code, notes, and snippets.

@Attila94
Created June 28, 2023 13:05
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save Attila94/cfbac3a4a716f7a1c7d9c8c450a38eab to your computer and use it in GitHub Desktop.
Save Attila94/cfbac3a4a716f7a1c7d9c8c450a38eab to your computer and use it in GitHub Desktop.
Receptive field computation for a PyTorch model. Note: only supports some layer types.
import torch
import torch.nn as nn
from torch.autograd import Variable
from collections import OrderedDict
import numpy as np
def check_same(stride):
if isinstance(stride, (list, tuple)):
assert len(stride) == 2 and stride[0] == stride[1]
stride = stride[0]
return stride
def receptive_field(model, input_size, batch_size=-1, device="cuda"):
"""
:parameter
'input_size': tuple of (Channel, Height, Width)
:return OrderedDict of `Layername`->OrderedDict of receptive field stats {'j':,'r':,'start':,'conv_stage':,'output_shape':,}
'j' for "jump" denotes how many pixels do the receptive fields of spatially neighboring units in the feature tensor
do not overlap in one direction.
i.e. shift one unit in this feature map == how many pixels shift in the input image in one direction.
'r' for "receptive_field" is the spatial range of the receptive field in one direction.
'start' denotes the center of the receptive field for the first unit (start) in on direction of the feature tensor.
Convention is to use half a pixel as the center for a range. center for `slice(0,5)` is 2.5.
"""
def register_hook(module):
implemented_rf_variant = [
"Conv2d",
"MaxPool2d",
"CoConvZ2",
"CoConvCo",
"GroupMaxPool2d",
"P4ConvZ2",
"P4ConvP4",
]
implemented_rf_invariant = [
"BatchNorm2d",
"BatchNorm3d",
"ReLU",
"Bottleneck",
"Dropout2d",
"GroupCosetMaxPool",
]
def hook(module, input, output):
class_name = str(module.__class__).split(".")[-1].split("'")[0]
module_idx = len(receptive_field)
m_key = "%i" % module_idx
p_key = "%i" % (module_idx - 1)
receptive_field[m_key] = OrderedDict()
if not receptive_field["0"]["conv_stage"]:
print("Enter in deconv_stage")
receptive_field[m_key]["j"] = 0
receptive_field[m_key]["r"] = 0
receptive_field[m_key]["start"] = 0
else:
p_j = receptive_field[p_key]["j"]
p_r = receptive_field[p_key]["r"]
p_start = receptive_field[p_key]["start"]
# Check layer type
if class_name in implemented_rf_variant: # Layers that do change rf
kernel_size = module.kernel_size
stride = module.stride
padding = module.padding
kernel_size, stride, padding = map(
check_same, [kernel_size, stride, padding]
)
receptive_field[m_key]["j"] = p_j * stride
receptive_field[m_key]["r"] = p_r + (kernel_size - 1) * p_j
receptive_field[m_key]["start"] = (
p_start + ((kernel_size - 1) / 2 - padding) * p_j
)
elif (
class_name in implemented_rf_invariant
): # Layers that do not change rf
receptive_field[m_key]["j"] = p_j
receptive_field[m_key]["r"] = p_r
receptive_field[m_key]["start"] = p_start
elif class_name == "ConvTranspose2d": # Special case
receptive_field["0"]["conv_stage"] = False
receptive_field[m_key]["j"] = 0
receptive_field[m_key]["r"] = 0
receptive_field[m_key]["start"] = 0
else: # Not implemented
raise NotImplementedError(
"Module {} not implemented.".format(class_name)
)
pass
receptive_field[m_key]["input_shape"] = list(input[0].size()) # only one
receptive_field[m_key]["input_shape"][0] = batch_size
if isinstance(output, (list, tuple)):
# list/tuple
receptive_field[m_key]["output_shape"] = [
[-1] + list(o.size())[1:] for o in output
]
else:
# tensor
receptive_field[m_key]["output_shape"] = list(output.size())
receptive_field[m_key]["output_shape"][0] = batch_size
if (
not isinstance(module, nn.Sequential)
and not isinstance(module, nn.ModuleList)
and not (module == model)
):
hooks.append(module.register_forward_hook(hook))
device = device.lower()
assert device in [
"cuda",
"cpu",
], "Input device is not valid, please specify 'cuda' or 'cpu'"
if device == "cuda" and torch.cuda.is_available():
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
# check if there are multiple inputs to the network
if isinstance(input_size[0], (list, tuple)):
x = [Variable(torch.rand(2, *in_size)).type(dtype) for in_size in input_size]
else:
x = Variable(torch.rand(2, *input_size)).type(dtype)
# create properties
receptive_field = OrderedDict()
receptive_field["0"] = OrderedDict()
receptive_field["0"]["j"] = 1.0
receptive_field["0"]["r"] = 1.0
receptive_field["0"]["start"] = 0.5
receptive_field["0"]["conv_stage"] = True
receptive_field["0"]["output_shape"] = list(x.size())
receptive_field["0"]["output_shape"][0] = batch_size
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
model(x)
# remove these hooks
for h in hooks:
h.remove()
print(
"------------------------------------------------------------------------------"
)
line_new = "{:>20} {:>10} {:>12} {:>10} {:>20} ".format(
"Layer (type)", "map size", "start", "jump", "receptive_field"
)
print(line_new)
print(
"=============================================================================="
)
total_params = 0
total_output = 0
trainable_params = 0
for layer in receptive_field:
# input_shape, output_shape, trainable, nb_params
assert "start" in receptive_field[layer], layer
# assert len(receptive_field[layer]["output_shape"]) == 4
line_new = "{:7} {:12} {:>12} {:>10} {:>10} {:>15} ".format(
"",
layer,
str(receptive_field[layer]["output_shape"][2:]),
str(receptive_field[layer]["start"]),
str(receptive_field[layer]["j"]),
format(str(receptive_field[layer]["r"])),
)
print(line_new)
print(
"=============================================================================="
)
# add input_shape
receptive_field["input_size"] = input_size
return receptive_field
def receptive_field_for_unit(receptive_field_dict, layer, unit_position, bound=True):
"""Utility function to calculate the receptive field for a specific unit in a layer
using the dictionary calculated above
:parameter
'layer': layer name, should be a key in the result dictionary
'unit_position': spatial coordinate of the unit (H, W)
```
alexnet = models.alexnet()
model = alexnet.features.to('cuda')
receptive_field_dict = receptive_field(model, (3, 224, 224))
receptive_field_for_unit(receptive_field_dict, "8", (6,6))
```
Out: [(62.0, 161.0), (62.0, 161.0)]
"""
input_shape = receptive_field_dict["input_size"]
if layer in receptive_field_dict:
rf_stats = receptive_field_dict[layer]
assert len(unit_position) == 2
if len(rf_stats["output_shape"]) == 4:
feat_map_lim = rf_stats["output_shape"][2:]
else:
feat_map_lim = rf_stats["output_shape"][3:]
if np.any(
[
unit_position[idx] < 0 or unit_position[idx] >= feat_map_lim[idx]
for idx in range(2)
]
):
raise Exception(
"Unit position outside spatial extent of the feature tensor ((H, W) = (%d, %d)) "
% tuple(feat_map_lim)
)
# X, Y = tuple(unit_position)
rf_range = [
(
rf_stats["start"] + idx * rf_stats["j"] - rf_stats["r"] / 2,
rf_stats["start"] + idx * rf_stats["j"] + rf_stats["r"] / 2,
)
for idx in unit_position
]
if len(input_shape) == 2:
limit = input_shape
else: # input shape is (channel, H, W)
limit = input_shape[1:3]
if bound:
rf_range = [
(
max(0, int(rf_range[axis][0])),
min(int(limit[axis]), int(rf_range[axis][1])),
)
for axis in range(2)
]
else:
rf_range = [
(int(rf_range[axis][0]), int(rf_range[axis][1])) for axis in range(2)
]
# print("Receptive field size for layer %s, unit_position %s, is \n %s" % (layer, unit_position, rf_range))
return rf_range
else:
raise KeyError("Layer name incorrect, or not included in the model.")
return rf_range
if __name__ == "__main__":
# Example use:
model = nn.Sequential(
nn.Conv2d(3, 6, kernel_size=1, stride=1, padding=0),
nn.MaxPool2d(kernel_size=1, stride=2, padding=0),
nn.Conv2d(6, 16, kernel_size=1, stride=1, padding=0),
nn.MaxPool2d(kernel_size=1, stride=2, padding=0),
nn.Conv2d(16, 120, kernel_size=1, stride=1, padding=0),
)
receptive_field_dict = receptive_field(model, (3, 224, 224))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment