Skip to content

Instantly share code, notes, and snippets.

View AutuanLiu's full-sized avatar
🐵
Focusing on Machine Learning

MoLiang AutuanLiu

🐵
Focusing on Machine Learning
View GitHub Profile
@AutuanLiu
AutuanLiu / tmux-cheatsheet.markdown
Last active April 28, 2019 10:10 — forked from ryerh/tmux-cheatsheet.markdown
Tmux 快捷键 & 速查表

注意:本文内容适用于 Tmux 2.3 及以上的版本,但是绝大部分的特性低版本也都适用,鼠标支持、VI 模式、插件管理在低版本可能会与本文不兼容。

Tmux 快捷键 & 速查表

启动新会话:

tmux [new -s 会话名 -n 窗口名]

恢复会话:

@AutuanLiu
AutuanLiu / conv.sh
Created April 15, 2019 03:09 — forked from akimach/conv.sh
Jupyter Notebook to docx(Word)
curl -O https://gist.githubusercontent.com/akimach/27e87cb7f97dc253921b9ea8b7b332b5/raw/fd112a66a3ca953dd7ad26098cccfe1d532ba0d7/binominal_confidience_interval.ipynb
jupyter-nbconvert binominal_confidience_interval.ipynb --to markdown
pandoc binominal_confidience_interval.ipynb -t docx -o binominal_confidience_interval.docx
@AutuanLiu
AutuanLiu / __init__.pyi
Created December 14, 2018 02:53 — forked from t-vi/__init__.pyi
PyTorch Type Hints work in progress (put into python3.x/dist-packages/torch/ directory to try)
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload
import builtins
import math
import pickle
class dtype: ...
_dtype = dtype
@AutuanLiu
AutuanLiu / min-char-rnn.py
Created September 26, 2018 01:53 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
@AutuanLiu
AutuanLiu / data_loader.py
Created April 5, 2018 06:47 — forked from kevinzakka/data_loader.py
Train, Validation and Test Split for torchvision Datasets
"""
Create train, valid, test iterators for CIFAR-10 [1].
Easily extended to MNIST, CIFAR-100 and Imagenet.
[1]: https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4
"""
import torch
import numpy as np