-
-
Save AysadKozanoglu/34ffd1a05eaa47bc0c46a6084ffb0dca to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?php | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* AES implementation in PHP */ | |
/* (c) Chris Veness 2005-2011 www.movable-type.co.uk/scripts */ | |
/* Right of free use is granted for all commercial or non-commercial use providing this */ | |
/* copyright notice is retainded. No warranty of any form is offered. */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
class Aes { | |
/** | |
* AES Cipher function: encrypt 'input' with Rijndael algorithm | |
* | |
* @param input message as byte-array (16 bytes) | |
* @param w key schedule as 2D byte-array (Nr+1 x Nb bytes) - | |
* generated from the cipher key by keyExpansion() | |
* @return ciphertext as byte-array (16 bytes) | |
*/ | |
public static function cipher($input, $w) { // main cipher function [§5.1] | |
$Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) | |
$Nr = count($w)/$Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys | |
$state = array(); // initialise 4xNb byte-array 'state' with input [§3.4] | |
for ($i=0; $i<4*$Nb; $i++) $state[$i%4][floor($i/4)] = $input[$i]; | |
$state = self::addRoundKey($state, $w, 0, $Nb); | |
for ($round=1; $round<$Nr; $round++) { // apply Nr rounds | |
$state = self::subBytes($state, $Nb); | |
$state = self::shiftRows($state, $Nb); | |
$state = self::mixColumns($state, $Nb); | |
$state = self::addRoundKey($state, $w, $round, $Nb); | |
} | |
$state = self::subBytes($state, $Nb); | |
$state = self::shiftRows($state, $Nb); | |
$state = self::addRoundKey($state, $w, $Nr, $Nb); | |
$output = array(4*$Nb); // convert state to 1-d array before returning [§3.4] | |
for ($i=0; $i<4*$Nb; $i++) $output[$i] = $state[$i%4][floor($i/4)]; | |
return $output; | |
} | |
private static function addRoundKey($state, $w, $rnd, $Nb) { // xor Round Key into state S [§5.1.4] | |
for ($r=0; $r<4; $r++) { | |
for ($c=0; $c<$Nb; $c++) $state[$r][$c] ^= $w[$rnd*4+$c][$r]; | |
} | |
return $state; | |
} | |
private static function subBytes($s, $Nb) { // apply SBox to state S [§5.1.1] | |
for ($r=0; $r<4; $r++) { | |
for ($c=0; $c<$Nb; $c++) $s[$r][$c] = self::$sBox[$s[$r][$c]]; | |
} | |
return $s; | |
} | |
private static function shiftRows($s, $Nb) { // shift row r of state S left by r bytes [§5.1.2] | |
$t = array(4); | |
for ($r=1; $r<4; $r++) { | |
for ($c=0; $c<4; $c++) $t[$c] = $s[$r][($c+$r)%$Nb]; // shift into temp copy | |
for ($c=0; $c<4; $c++) $s[$r][$c] = $t[$c]; // and copy back | |
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): | |
return $s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf | |
} | |
private static function mixColumns($s, $Nb) { // combine bytes of each col of state S [§5.1.3] | |
for ($c=0; $c<4; $c++) { | |
$a = array(4); // 'a' is a copy of the current column from 's' | |
$b = array(4); // 'b' is a•{02} in GF(2^8) | |
for ($i=0; $i<4; $i++) { | |
$a[$i] = $s[$i][$c]; | |
$b[$i] = $s[$i][$c]&0x80 ? $s[$i][$c]<<1 ^ 0x011b : $s[$i][$c]<<1; | |
} | |
// a[n] ^ b[n] is a•{03} in GF(2^8) | |
$s[0][$c] = $b[0] ^ $a[1] ^ $b[1] ^ $a[2] ^ $a[3]; // 2*a0 + 3*a1 + a2 + a3 | |
$s[1][$c] = $a[0] ^ $b[1] ^ $a[2] ^ $b[2] ^ $a[3]; // a0 * 2*a1 + 3*a2 + a3 | |
$s[2][$c] = $a[0] ^ $a[1] ^ $b[2] ^ $a[3] ^ $b[3]; // a0 + a1 + 2*a2 + 3*a3 | |
$s[3][$c] = $a[0] ^ $b[0] ^ $a[1] ^ $a[2] ^ $b[3]; // 3*a0 + a1 + a2 + 2*a3 | |
} | |
return $s; | |
} | |
/** | |
* Key expansion for Rijndael cipher(): performs key expansion on cipher key | |
* to generate a key schedule | |
* | |
* @param key cipher key byte-array (16 bytes) | |
* @return key schedule as 2D byte-array (Nr+1 x Nb bytes) | |
*/ | |
public static function keyExpansion($key) { // generate Key Schedule from Cipher Key [§5.2] | |
$Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) | |
$Nk = count($key)/4; // key length (in words): 4/6/8 for 128/192/256-bit keys | |
$Nr = $Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys | |
$w = array(); | |
$temp = array(); | |
for ($i=0; $i<$Nk; $i++) { | |
$r = array($key[4*$i], $key[4*$i+1], $key[4*$i+2], $key[4*$i+3]); | |
$w[$i] = $r; | |
} | |
for ($i=$Nk; $i<($Nb*($Nr+1)); $i++) { | |
$w[$i] = array(); | |
for ($t=0; $t<4; $t++) $temp[$t] = $w[$i-1][$t]; | |
if ($i % $Nk == 0) { | |
$temp = self::subWord(self::rotWord($temp)); | |
for ($t=0; $t<4; $t++) $temp[$t] ^= self::$rCon[$i/$Nk][$t]; | |
} else if ($Nk > 6 && $i%$Nk == 4) { | |
$temp = self::subWord($temp); | |
} | |
for ($t=0; $t<4; $t++) $w[$i][$t] = $w[$i-$Nk][$t] ^ $temp[$t]; | |
} | |
return $w; | |
} | |
private static function subWord($w) { // apply SBox to 4-byte word w | |
for ($i=0; $i<4; $i++) $w[$i] = self::$sBox[$w[$i]]; | |
return $w; | |
} | |
private static function rotWord($w) { // rotate 4-byte word w left by one byte | |
$tmp = $w[0]; | |
for ($i=0; $i<3; $i++) $w[$i] = $w[$i+1]; | |
$w[3] = $tmp; | |
return $w; | |
} | |
// sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] | |
private static $sBox = array( | |
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, | |
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, | |
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, | |
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, | |
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, | |
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, | |
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, | |
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, | |
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, | |
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, | |
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, | |
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, | |
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, | |
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, | |
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, | |
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16); | |
// rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] | |
private static $rCon = array( | |
array(0x00, 0x00, 0x00, 0x00), | |
array(0x01, 0x00, 0x00, 0x00), | |
array(0x02, 0x00, 0x00, 0x00), | |
array(0x04, 0x00, 0x00, 0x00), | |
array(0x08, 0x00, 0x00, 0x00), | |
array(0x10, 0x00, 0x00, 0x00), | |
array(0x20, 0x00, 0x00, 0x00), | |
array(0x40, 0x00, 0x00, 0x00), | |
array(0x80, 0x00, 0x00, 0x00), | |
array(0x1b, 0x00, 0x00, 0x00), | |
array(0x36, 0x00, 0x00, 0x00) ); | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* AES counter (CTR) mode implementation in PHP */ | |
/* (c) Chris Veness 2005-2011 www.movable-type.co.uk/scripts */ | |
/* Right of free use is granted for all commercial or non-commercial use providing this */ | |
/* copyright notice is retainded. No warranty of any form is offered. */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
class AesCtr extends Aes { | |
/** | |
* Encrypt a text using AES encryption in Counter mode of operation | |
* - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf | |
* | |
* Unicode multi-byte character safe | |
* | |
* @param plaintext source text to be encrypted | |
* @param password the password to use to generate a key | |
* @param nBits number of bits to be used in the key (128, 192, or 256) | |
* @return encrypted text | |
*/ | |
public static function encrypt($plaintext, $password, $nBits) { | |
$blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES | |
if (!($nBits==128 || $nBits==192 || $nBits==256)) return ''; // standard allows 128/192/256 bit keys | |
// note PHP (5) gives us plaintext and password in UTF8 encoding! | |
// use AES itself to encrypt password to get cipher key (using plain password as source for | |
// key expansion) - gives us well encrypted key | |
$nBytes = $nBits/8; // no bytes in key | |
$pwBytes = array(); | |
for ($i=0; $i<$nBytes; $i++) $pwBytes[$i] = ord(substr($password,$i,1)) & 0xff; | |
$key = Aes::cipher($pwBytes, Aes::keyExpansion($pwBytes)); | |
$key = array_merge($key, array_slice($key, 0, $nBytes-16)); // expand key to 16/24/32 bytes long | |
// initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec, | |
// [2-3] = random, [4-7] = seconds, giving guaranteed sub-ms uniqueness up to Feb 2106 | |
$counterBlock = array(); | |
$nonce = floor(microtime(true)*1000); // timestamp: milliseconds since 1-Jan-1970 | |
$nonceMs = $nonce%1000; | |
$nonceSec = floor($nonce/1000); | |
$nonceRnd = floor(rand(0, 0xffff)); | |
for ($i=0; $i<2; $i++) $counterBlock[$i] = self::urs($nonceMs, $i*8) & 0xff; | |
for ($i=0; $i<2; $i++) $counterBlock[$i+2] = self::urs($nonceRnd, $i*8) & 0xff; | |
for ($i=0; $i<4; $i++) $counterBlock[$i+4] = self::urs($nonceSec, $i*8) & 0xff; | |
// and convert it to a string to go on the front of the ciphertext | |
$ctrTxt = ''; | |
for ($i=0; $i<8; $i++) $ctrTxt .= chr($counterBlock[$i]); | |
// generate key schedule - an expansion of the key into distinct Key Rounds for each round | |
$keySchedule = Aes::keyExpansion($key); | |
//print_r($keySchedule); | |
$blockCount = ceil(strlen($plaintext)/$blockSize); | |
$ciphertxt = array(); // ciphertext as array of strings | |
for ($b=0; $b<$blockCount; $b++) { | |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) | |
// done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) | |
for ($c=0; $c<4; $c++) $counterBlock[15-$c] = self::urs($b, $c*8) & 0xff; | |
for ($c=0; $c<4; $c++) $counterBlock[15-$c-4] = self::urs($b/0x100000000, $c*8); | |
$cipherCntr = Aes::cipher($counterBlock, $keySchedule); // -- encrypt counter block -- | |
// block size is reduced on final block | |
$blockLength = $b<$blockCount-1 ? $blockSize : (strlen($plaintext)-1)%$blockSize+1; | |
$cipherByte = array(); | |
for ($i=0; $i<$blockLength; $i++) { // -- xor plaintext with ciphered counter byte-by-byte -- | |
$cipherByte[$i] = $cipherCntr[$i] ^ ord(substr($plaintext, $b*$blockSize+$i, 1)); | |
$cipherByte[$i] = chr($cipherByte[$i]); | |
} | |
$ciphertxt[$b] = implode('', $cipherByte); // escape troublesome characters in ciphertext | |
} | |
// implode is more efficient than repeated string concatenation | |
$ciphertext = $ctrTxt . implode('', $ciphertxt); | |
$ciphertext = base64_encode($ciphertext); | |
return $ciphertext; | |
} | |
/** | |
* Decrypt a text encrypted by AES in counter mode of operation | |
* | |
* @param ciphertext source text to be decrypted | |
* @param password the password to use to generate a key | |
* @param nBits number of bits to be used in the key (128, 192, or 256) | |
* @return decrypted text | |
*/ | |
public static function decrypt($ciphertext, $password, $nBits) { | |
$blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES | |
if (!($nBits==128 || $nBits==192 || $nBits==256)) return ''; // standard allows 128/192/256 bit keys | |
$ciphertext = base64_decode($ciphertext); | |
// use AES to encrypt password (mirroring encrypt routine) | |
$nBytes = $nBits/8; // no bytes in key | |
$pwBytes = array(); | |
for ($i=0; $i<$nBytes; $i++) $pwBytes[$i] = ord(substr($password,$i,1)) & 0xff; | |
$key = Aes::cipher($pwBytes, Aes::keyExpansion($pwBytes)); | |
$key = array_merge($key, array_slice($key, 0, $nBytes-16)); // expand key to 16/24/32 bytes long | |
// recover nonce from 1st element of ciphertext | |
$counterBlock = array(); | |
$ctrTxt = substr($ciphertext, 0, 8); | |
for ($i=0; $i<8; $i++) $counterBlock[$i] = ord(substr($ctrTxt,$i,1)); | |
// generate key schedule | |
$keySchedule = Aes::keyExpansion($key); | |
// separate ciphertext into blocks (skipping past initial 8 bytes) | |
$nBlocks = ceil((strlen($ciphertext)-8) / $blockSize); | |
$ct = array(); | |
for ($b=0; $b<$nBlocks; $b++) $ct[$b] = substr($ciphertext, 8+$b*$blockSize, 16); | |
$ciphertext = $ct; // ciphertext is now array of block-length strings | |
// plaintext will get generated block-by-block into array of block-length strings | |
$plaintxt = array(); | |
for ($b=0; $b<$nBlocks; $b++) { | |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) | |
for ($c=0; $c<4; $c++) $counterBlock[15-$c] = self::urs($b, $c*8) & 0xff; | |
for ($c=0; $c<4; $c++) $counterBlock[15-$c-4] = self::urs(($b+1)/0x100000000-1, $c*8) & 0xff; | |
$cipherCntr = Aes::cipher($counterBlock, $keySchedule); // encrypt counter block | |
$plaintxtByte = array(); | |
for ($i=0; $i<strlen($ciphertext[$b]); $i++) { | |
// -- xor plaintext with ciphered counter byte-by-byte -- | |
$plaintxtByte[$i] = $cipherCntr[$i] ^ ord(substr($ciphertext[$b],$i,1)); | |
$plaintxtByte[$i] = chr($plaintxtByte[$i]); | |
} | |
$plaintxt[$b] = implode('', $plaintxtByte); | |
} | |
// join array of blocks into single plaintext string | |
$plaintext = implode('',$plaintxt); | |
return $plaintext; | |
} | |
/* | |
* Unsigned right shift function, since PHP has neither >>> operator nor unsigned ints | |
* | |
* @param a number to be shifted (32-bit integer) | |
* @param b number of bits to shift a to the right (0..31) | |
* @return a right-shifted and zero-filled by b bits | |
*/ | |
private static function urs($a, $b) { | |
$a &= 0xffffffff; $b &= 0x1f; // (bounds check) | |
if ($a&0x80000000 && $b>0) { // if left-most bit set | |
$a = ($a>>1) & 0x7fffffff; // right-shift one bit & clear left-most bit | |
$a = $a >> ($b-1); // remaining right-shifts | |
} else { // otherwise | |
$a = ($a>>$b); // use normal right-shift | |
} | |
return $a; | |
} | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* AES implementation in JavaScript (c) Chris Veness 2005-2012 */ | |
/* - see http://csrc.nist.gov/publications/PubsFIPS.html#197 */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
var Aes = {}; // Aes namespace | |
/** | |
* AES Cipher function: encrypt 'input' state with Rijndael algorithm | |
* applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage | |
* | |
* @param {Number[]} input 16-byte (128-bit) input state array | |
* @param {Number[][]} w Key schedule as 2D byte-array (Nr+1 x Nb bytes) | |
* @returns {Number[]} Encrypted output state array | |
*/ | |
Aes.cipher = function(input, w) { // main Cipher function [§5.1] | |
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) | |
var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys | |
var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4] | |
for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; | |
state = Aes.addRoundKey(state, w, 0, Nb); | |
for (var round=1; round<Nr; round++) { | |
state = Aes.subBytes(state, Nb); | |
state = Aes.shiftRows(state, Nb); | |
state = Aes.mixColumns(state, Nb); | |
state = Aes.addRoundKey(state, w, round, Nb); | |
} | |
state = Aes.subBytes(state, Nb); | |
state = Aes.shiftRows(state, Nb); | |
state = Aes.addRoundKey(state, w, Nr, Nb); | |
var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4] | |
for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; | |
return output; | |
} | |
/** | |
* Perform Key Expansion to generate a Key Schedule | |
* | |
* @param {Number[]} key Key as 16/24/32-byte array | |
* @returns {Number[][]} Expanded key schedule as 2D byte-array (Nr+1 x Nb bytes) | |
*/ | |
Aes.keyExpansion = function(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2] | |
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) | |
var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys | |
var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys | |
var w = new Array(Nb*(Nr+1)); | |
var temp = new Array(4); | |
for (var i=0; i<Nk; i++) { | |
var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]; | |
w[i] = r; | |
} | |
for (var i=Nk; i<(Nb*(Nr+1)); i++) { | |
w[i] = new Array(4); | |
for (var t=0; t<4; t++) temp[t] = w[i-1][t]; | |
if (i % Nk == 0) { | |
temp = Aes.subWord(Aes.rotWord(temp)); | |
for (var t=0; t<4; t++) temp[t] ^= Aes.rCon[i/Nk][t]; | |
} else if (Nk > 6 && i%Nk == 4) { | |
temp = Aes.subWord(temp); | |
} | |
for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; | |
} | |
return w; | |
} | |
/* | |
* ---- remaining routines are private, not called externally ---- | |
*/ | |
Aes.subBytes = function(s, Nb) { // apply SBox to state S [§5.1.1] | |
for (var r=0; r<4; r++) { | |
for (var c=0; c<Nb; c++) s[r][c] = Aes.sBox[s[r][c]]; | |
} | |
return s; | |
} | |
Aes.shiftRows = function(s, Nb) { // shift row r of state S left by r bytes [§5.1.2] | |
var t = new Array(4); | |
for (var r=1; r<4; r++) { | |
for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy | |
for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back | |
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): | |
return s; // see asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf | |
} | |
Aes.mixColumns = function(s, Nb) { // combine bytes of each col of state S [§5.1.3] | |
for (var c=0; c<4; c++) { | |
var a = new Array(4); // 'a' is a copy of the current column from 's' | |
var b = new Array(4); // 'b' is a•{02} in GF(2^8) | |
for (var i=0; i<4; i++) { | |
a[i] = s[i][c]; | |
b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; | |
} | |
// a[n] ^ b[n] is a•{03} in GF(2^8) | |
s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3 | |
s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3 | |
s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3 | |
s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3 | |
} | |
return s; | |
} | |
Aes.addRoundKey = function(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4] | |
for (var r=0; r<4; r++) { | |
for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; | |
} | |
return state; | |
} | |
Aes.subWord = function(w) { // apply SBox to 4-byte word w | |
for (var i=0; i<4; i++) w[i] = Aes.sBox[w[i]]; | |
return w; | |
} | |
Aes.rotWord = function(w) { // rotate 4-byte word w left by one byte | |
var tmp = w[0]; | |
for (var i=0; i<3; i++) w[i] = w[i+1]; | |
w[3] = tmp; | |
return w; | |
} | |
// sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] | |
Aes.sBox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, | |
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, | |
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, | |
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, | |
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, | |
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, | |
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, | |
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, | |
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, | |
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, | |
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, | |
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, | |
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, | |
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, | |
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, | |
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16]; | |
// rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] | |
Aes.rCon = [ [0x00, 0x00, 0x00, 0x00], | |
[0x01, 0x00, 0x00, 0x00], | |
[0x02, 0x00, 0x00, 0x00], | |
[0x04, 0x00, 0x00, 0x00], | |
[0x08, 0x00, 0x00, 0x00], | |
[0x10, 0x00, 0x00, 0x00], | |
[0x20, 0x00, 0x00, 0x00], | |
[0x40, 0x00, 0x00, 0x00], | |
[0x80, 0x00, 0x00, 0x00], | |
[0x1b, 0x00, 0x00, 0x00], | |
[0x36, 0x00, 0x00, 0x00] ]; | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* AES Counter-mode implementation in JavaScript (c) Chris Veness 2005-2012 */ | |
/* - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
Aes.Ctr = {}; // Aes.Ctr namespace: a subclass or extension of Aes | |
/** | |
* Encrypt a text using AES encryption in Counter mode of operation | |
* | |
* Unicode multi-byte character safe | |
* | |
* @param {String} plaintext Source text to be encrypted | |
* @param {String} password The password to use to generate a key | |
* @param {Number} nBits Number of bits to be used in the key (128, 192, or 256) | |
* @returns {string} Encrypted text | |
*/ | |
Aes.Ctr.encrypt = function(plaintext, password, nBits) { | |
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES | |
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys | |
plaintext = Utf8.encode(plaintext); | |
password = Utf8.encode(password); | |
//var t = new Date(); // timer | |
// use AES itself to encrypt password to get cipher key (using plain password as source for key | |
// expansion) - gives us well encrypted key (though hashed key might be preferred for prod'n use) | |
var nBytes = nBits/8; // no bytes in key (16/24/32) | |
var pwBytes = new Array(nBytes); | |
for (var i=0; i<nBytes; i++) { // use 1st 16/24/32 chars of password for key | |
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i); | |
} | |
var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); // gives us 16-byte key | |
key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long | |
// initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec, | |
// [2-3] = random, [4-7] = seconds, together giving full sub-millisec uniqueness up to Feb 2106 | |
var counterBlock = new Array(blockSize); | |
var nonce = (new Date()).getTime(); // timestamp: milliseconds since 1-Jan-1970 | |
var nonceMs = nonce%1000; | |
var nonceSec = Math.floor(nonce/1000); | |
var nonceRnd = Math.floor(Math.random()*0xffff); | |
for (var i=0; i<2; i++) counterBlock[i] = (nonceMs >>> i*8) & 0xff; | |
for (var i=0; i<2; i++) counterBlock[i+2] = (nonceRnd >>> i*8) & 0xff; | |
for (var i=0; i<4; i++) counterBlock[i+4] = (nonceSec >>> i*8) & 0xff; | |
// and convert it to a string to go on the front of the ciphertext | |
var ctrTxt = ''; | |
for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); | |
// generate key schedule - an expansion of the key into distinct Key Rounds for each round | |
var keySchedule = Aes.keyExpansion(key); | |
var blockCount = Math.ceil(plaintext.length/blockSize); | |
var ciphertxt = new Array(blockCount); // ciphertext as array of strings | |
for (var b=0; b<blockCount; b++) { | |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) | |
// done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) | |
for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff; | |
for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8) | |
var cipherCntr = Aes.cipher(counterBlock, keySchedule); // -- encrypt counter block -- | |
// block size is reduced on final block | |
var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1; | |
var cipherChar = new Array(blockLength); | |
for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter char-by-char -- | |
cipherChar[i] = cipherCntr[i] ^ plaintext.charCodeAt(b*blockSize+i); | |
cipherChar[i] = String.fromCharCode(cipherChar[i]); | |
} | |
ciphertxt[b] = cipherChar.join(''); | |
} | |
// Array.join is more efficient than repeated string concatenation in IE | |
var ciphertext = ctrTxt + ciphertxt.join(''); | |
ciphertext = Base64.encode(ciphertext); // encode in base64 | |
//alert((new Date()) - t); | |
return ciphertext; | |
} | |
/** | |
* Decrypt a text encrypted by AES in counter mode of operation | |
* | |
* @param {String} ciphertext Source text to be encrypted | |
* @param {String} password The password to use to generate a key | |
* @param {Number} nBits Number of bits to be used in the key (128, 192, or 256) | |
* @returns {String} Decrypted text | |
*/ | |
Aes.Ctr.decrypt = function(ciphertext, password, nBits) { | |
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES | |
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys | |
ciphertext = Base64.decode(ciphertext); | |
password = Utf8.encode(password); | |
//var t = new Date(); // timer | |
// use AES to encrypt password (mirroring encrypt routine) | |
var nBytes = nBits/8; // no bytes in key | |
var pwBytes = new Array(nBytes); | |
for (var i=0; i<nBytes; i++) { | |
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i); | |
} | |
var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); | |
key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long | |
// recover nonce from 1st 8 bytes of ciphertext | |
var counterBlock = new Array(8); | |
ctrTxt = ciphertext.slice(0, 8); | |
for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i); | |
// generate key schedule | |
var keySchedule = Aes.keyExpansion(key); | |
// separate ciphertext into blocks (skipping past initial 8 bytes) | |
var nBlocks = Math.ceil((ciphertext.length-8) / blockSize); | |
var ct = new Array(nBlocks); | |
for (var b=0; b<nBlocks; b++) ct[b] = ciphertext.slice(8+b*blockSize, 8+b*blockSize+blockSize); | |
ciphertext = ct; // ciphertext is now array of block-length strings | |
// plaintext will get generated block-by-block into array of block-length strings | |
var plaintxt = new Array(ciphertext.length); | |
for (var b=0; b<nBlocks; b++) { | |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) | |
for (var c=0; c<4; c++) counterBlock[15-c] = ((b) >>> c*8) & 0xff; | |
for (var c=0; c<4; c++) counterBlock[15-c-4] = (((b+1)/0x100000000-1) >>> c*8) & 0xff; | |
var cipherCntr = Aes.cipher(counterBlock, keySchedule); // encrypt counter block | |
var plaintxtByte = new Array(ciphertext[b].length); | |
for (var i=0; i<ciphertext[b].length; i++) { | |
// -- xor plaintxt with ciphered counter byte-by-byte -- | |
plaintxtByte[i] = cipherCntr[i] ^ ciphertext[b].charCodeAt(i); | |
plaintxtByte[i] = String.fromCharCode(plaintxtByte[i]); | |
} | |
plaintxt[b] = plaintxtByte.join(''); | |
} | |
// join array of blocks into single plaintext string | |
var plaintext = plaintxt.join(''); | |
plaintext = Utf8.decode(plaintext); // decode from UTF8 back to Unicode multi-byte chars | |
//alert((new Date()) - t); | |
return plaintext; | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* Base64 class: Base 64 encoding / decoding (c) Chris Veness 2002-2012 */ | |
/* note: depends on Utf8 class */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
var Base64 = {}; // Base64 namespace | |
Base64.code = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/="; | |
/** | |
* Encode string into Base64, as defined by RFC 4648 [http://tools.ietf.org/html/rfc4648] | |
* (instance method extending String object). As per RFC 4648, no newlines are added. | |
* | |
* @param {String} str The string to be encoded as base-64 | |
* @param {Boolean} [utf8encode=false] Flag to indicate whether str is Unicode string to be encoded | |
* to UTF8 before conversion to base64; otherwise string is assumed to be 8-bit characters | |
* @returns {String} Base64-encoded string | |
*/ | |
Base64.encode = function(str, utf8encode) { // http://tools.ietf.org/html/rfc4648 | |
utf8encode = (typeof utf8encode == 'undefined') ? false : utf8encode; | |
var o1, o2, o3, bits, h1, h2, h3, h4, e=[], pad = '', c, plain, coded; | |
var b64 = Base64.code; | |
plain = utf8encode ? str.encodeUTF8() : str; | |
c = plain.length % 3; // pad string to length of multiple of 3 | |
if (c > 0) { while (c++ < 3) { pad += '='; plain += '\0'; } } | |
// note: doing padding here saves us doing special-case packing for trailing 1 or 2 chars | |
for (c=0; c<plain.length; c+=3) { // pack three octets into four hexets | |
o1 = plain.charCodeAt(c); | |
o2 = plain.charCodeAt(c+1); | |
o3 = plain.charCodeAt(c+2); | |
bits = o1<<16 | o2<<8 | o3; | |
h1 = bits>>18 & 0x3f; | |
h2 = bits>>12 & 0x3f; | |
h3 = bits>>6 & 0x3f; | |
h4 = bits & 0x3f; | |
// use hextets to index into code string | |
e[c/3] = b64.charAt(h1) + b64.charAt(h2) + b64.charAt(h3) + b64.charAt(h4); | |
} | |
coded = e.join(''); // join() is far faster than repeated string concatenation in IE | |
// replace 'A's from padded nulls with '='s | |
coded = coded.slice(0, coded.length-pad.length) + pad; | |
return coded; | |
} | |
/** | |
* Decode string from Base64, as defined by RFC 4648 [http://tools.ietf.org/html/rfc4648] | |
* (instance method extending String object). As per RFC 4648, newlines are not catered for. | |
* | |
* @param {String} str The string to be decoded from base-64 | |
* @param {Boolean} [utf8decode=false] Flag to indicate whether str is Unicode string to be decoded | |
* from UTF8 after conversion from base64 | |
* @returns {String} decoded string | |
*/ | |
Base64.decode = function(str, utf8decode) { | |
utf8decode = (typeof utf8decode == 'undefined') ? false : utf8decode; | |
var o1, o2, o3, h1, h2, h3, h4, bits, d=[], plain, coded; | |
var b64 = Base64.code; | |
coded = utf8decode ? str.decodeUTF8() : str; | |
for (var c=0; c<coded.length; c+=4) { // unpack four hexets into three octets | |
h1 = b64.indexOf(coded.charAt(c)); | |
h2 = b64.indexOf(coded.charAt(c+1)); | |
h3 = b64.indexOf(coded.charAt(c+2)); | |
h4 = b64.indexOf(coded.charAt(c+3)); | |
bits = h1<<18 | h2<<12 | h3<<6 | h4; | |
o1 = bits>>>16 & 0xff; | |
o2 = bits>>>8 & 0xff; | |
o3 = bits & 0xff; | |
d[c/4] = String.fromCharCode(o1, o2, o3); | |
// check for padding | |
if (h4 == 0x40) d[c/4] = String.fromCharCode(o1, o2); | |
if (h3 == 0x40) d[c/4] = String.fromCharCode(o1); | |
} | |
plain = d.join(''); // join() is far faster than repeated string concatenation in IE | |
return utf8decode ? plain.decodeUTF8() : plain; | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* Utf8 class: encode / decode between multi-byte Unicode characters and UTF-8 multiple */ | |
/* single-byte character encoding (c) Chris Veness 2002-2012 */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
var Utf8 = {}; // Utf8 namespace | |
/** | |
* Encode multi-byte Unicode string into utf-8 multiple single-byte characters | |
* (BMP / basic multilingual plane only) | |
* | |
* Chars in range U+0080 - U+07FF are encoded in 2 chars, U+0800 - U+FFFF in 3 chars | |
* | |
* @param {String} strUni Unicode string to be encoded as UTF-8 | |
* @returns {String} encoded string | |
*/ | |
Utf8.encode = function(strUni) { | |
// use regular expressions & String.replace callback function for better efficiency | |
// than procedural approaches | |
var strUtf = strUni.replace( | |
/[\u0080-\u07ff]/g, // U+0080 - U+07FF => 2 bytes 110yyyyy, 10zzzzzz | |
function(c) { | |
var cc = c.charCodeAt(0); | |
return String.fromCharCode(0xc0 | cc>>6, 0x80 | cc&0x3f); } | |
); | |
strUtf = strUtf.replace( | |
/[\u0800-\uffff]/g, // U+0800 - U+FFFF => 3 bytes 1110xxxx, 10yyyyyy, 10zzzzzz | |
function(c) { | |
var cc = c.charCodeAt(0); | |
return String.fromCharCode(0xe0 | cc>>12, 0x80 | cc>>6&0x3F, 0x80 | cc&0x3f); } | |
); | |
return strUtf; | |
} | |
/** | |
* Decode utf-8 encoded string back into multi-byte Unicode characters | |
* | |
* @param {String} strUtf UTF-8 string to be decoded back to Unicode | |
* @returns {String} decoded string | |
*/ | |
Utf8.decode = function(strUtf) { | |
// note: decode 3-byte chars first as decoded 2-byte strings could appear to be 3-byte char! | |
var strUni = strUtf.replace( | |
/[\u00e0-\u00ef][\u0080-\u00bf][\u0080-\u00bf]/g, // 3-byte chars | |
function(c) { // (note parentheses for precence) | |
var cc = ((c.charCodeAt(0)&0x0f)<<12) | ((c.charCodeAt(1)&0x3f)<<6) | ( c.charCodeAt(2)&0x3f); | |
return String.fromCharCode(cc); } | |
); | |
strUni = strUni.replace( | |
/[\u00c0-\u00df][\u0080-\u00bf]/g, // 2-byte chars | |
function(c) { // (note parentheses for precence) | |
var cc = (c.charCodeAt(0)&0x1f)<<6 | c.charCodeAt(1)&0x3f; | |
return String.fromCharCode(cc); } | |
); | |
return strUni; | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment