-
-
Save Balaje/a487594a59bf2ccd609d851ce4882c27 to your computer and use it in GitHub Desktop.
Program to Interpolate onto different mesh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### INTERPOLATION ON A RANDOMLY PERTURBED MESH #### | |
using Gridap | |
using Gridap.Algebra | |
using Gridap.CellData | |
using Gridap.Fields | |
using Gridap.Arrays | |
using Gridap.FESpaces | |
using Gridap.Geometry | |
using Gridap.MultiField | |
using Gridap.ReferenceFEs | |
using Gridap.Visualization | |
using StaticArrays | |
using Random | |
domain = (0,1,0,1) | |
partition = (20,20) | |
reffe = ReferenceFE(lagrangian, Float64, 2) | |
# Construct a solution in the Cartesian Space. | |
model = CartesianDiscreteModel(domain, partition) | |
Ω1 = Triangulation(model) | |
V1 = FESpace(model, reffe) | |
f(x) = x[1]^2 + x[2]^2 | |
fh = interpolate_everywhere(f, V1) # Old FEFunction | |
writevtk(Ω1,"source",cellfields=["fh"=>fh]) | |
# Second FE Space | |
function rndm(p::Point, D=pt_to_rand) | |
r, s = p | |
Random.seed!(get(D,p,1234)) | |
x = (r ≈ 1.0 || r ≈ 0.0) ? r : r + 0.012*rand() | |
y = (s ≈ 1.0 || s ≈ 0.0) ? s : s + 0.012*rand() | |
Point(x,y) | |
end | |
partition=(40,40) | |
# Construct a uniform partition first to build the perturbation | |
model = CartesianDiscreteModel(domain,partition) | |
# Random permutation of indices | |
pt_to_ind = randperm(num_nodes(model)) | |
# Build a dictionary with random indices for points | |
pt_to_rand = Dict(zip(get_node_coordinates(model),pt_to_ind)); | |
# Use the dictionary to seed points | |
model2 = CartesianDiscreteModel(domain,partition; map=rndm) | |
Ω2 = Triangulation(model2) | |
V2 = FESpace(model2, reffe) | |
# Main Solution | |
phys_point = get_cell_points(get_fe_dof_basis(V2)).cell_phys_point | |
fh_phys_coords(x) = evaluate!(fh, x) | |
phys_point_fx = lazy_map(fh_phys_coords, phys_point) | |
gh = CellField( V2, phys_point_fx ) | |
# Write the solution | |
writevtk(get_triangulation(gh),"target_rndm",cellfields=["fh"=>gh]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### INTERPOLATION ON A SINUSOIDAL MESH #### | |
using Gridap | |
using Gridap.Algebra | |
using Gridap.CellData | |
using Gridap.Fields | |
using Gridap.Arrays | |
using Gridap.FESpaces | |
using Gridap.Geometry | |
using Gridap.MultiField | |
using Gridap.ReferenceFEs | |
using Gridap.Visualization | |
using StaticArrays | |
using Random | |
domain = (0,1,0,1) | |
partition = (20,20) | |
reffe = ReferenceFE(lagrangian, Float64, 2) | |
# Construct a solution in the Cartesian Space. | |
model = CartesianDiscreteModel(domain, partition) | |
Ω1 = Triangulation(model) | |
V1 = FESpace(model, reffe) | |
f(x) = x[1]^2 + x[2]^2 | |
fh = interpolate_everywhere(f, V1) # Old FEFunction | |
writevtk(Ω1,"source",cellfields=["fh"=>fh]) | |
# Second FE Space | |
function rndm(p::Point) | |
r, s = p | |
x = r + 0.1*sin(2π*r)*sin(2π*s) | |
y = s + 0.1*sin(2π*r)*sin(2π*s) | |
Point(x,y) | |
end | |
partition=(40,40) | |
model2 = CartesianDiscreteModel(domain,partition; map=rndm) | |
Ω2 = Triangulation(model2) | |
V2 = FESpace(model2, reffe) | |
# Main Solution | |
phys_point = get_cell_points(get_fe_dof_basis(V2)).cell_phys_point | |
fh_phys_coords(x) = evaluate!(fh, x) | |
gh = CellField( V2, lazy_map(fh_phys_coords, phys_point) ) | |
# Write the solution | |
writevtk(get_triangulation(gh),"target_sin",cellfields=["fh"=>gh]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment