Last active
August 20, 2021 12:58
-
-
Save Balaje/fa9769bff8fc29945e1220aa29e93afa to your computer and use it in GitHub Desktop.
Interpolation Algorithm in Gridap
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Pkg | |
Pkg.add("Gridap") | |
Pkg.add("StaticArrays") | |
Pkg.add("Random") | |
using Gridap | |
using Gridap.Algebra | |
using Gridap.CellData | |
using Gridap.Fields | |
using Gridap.Arrays | |
using Gridap.FESpaces | |
using Gridap.Geometry | |
using Gridap.ReferenceFEs | |
using StaticArrays | |
using Random | |
# Create computational domain | |
domain = (0,1,0,1) | |
partition = (5,5) | |
model = CartesianDiscreteModel(domain, partition) | |
# Sample points | |
pt = Point(rand(2)) | |
pts = [Point(rand(2)) for i in 1:3] | |
""" | |
Example 1a: Evaluating FEFunction on arbitrary points. PR#523 | |
""" | |
f₁(x) = x[1] + x[2] | |
reffe₁ = ReferenceFE(lagrangian, Float64, 1) # Lagrangian ReferenceFE | |
V₁ = FESpace(model, reffe₁) # Build the FESpace | |
fₕ = interpolate_everywhere(f₁,V₁) # Finite dimensional version of f on V₁ | |
# Evaluating fₕ on a single point | |
print("\nTest evaluate Lagrange FESpaces:\n") | |
@show fₕ(pt) | |
@show f₁(pt) | |
@show fₕ.(pts) | |
@show f₁.(pts) | |
@show fₕ(pt) ≈ f₁(pt) # Same as evaluate(fₕ, pt) ≈ evaluate(f, pt) | |
@show fₕ.(pts) ≈ f₁.(pts) # Array of Points | |
""" | |
Example 1b: Evaluating Raviart-Thomas FEFunction on arbitrary points | |
""" | |
reffe₂ = ReferenceFE(raviart_thomas, Float64, 1) # Raviart Thomas ReferenceFE | |
f₂(x) = VectorValue([x[1], x[2]]) # ∵ RT is a Vectorial FESpace | |
V₂ = FESpace(model, reffe₂) | |
fₕ = interpolate_everywhere(f₂, V₂) # Finite dimensional version of f on V₂ | |
# Evaluating RT Function on arbitrary points. Fixed after PR#628 | |
print("\nTest RT FESpaces:\n") | |
@show fₕ(pt) | |
@show f₂(pt) | |
@show fₕ.(pts) | |
@show f₂.(pts) | |
@show fₕ(pt) ≈ f₂(pt) | |
@show fₕ.(pts) ≈ f₂.(pts) | |
""" | |
Example 2a: Interpolation between Lagrange FESpaces | |
""" | |
# Define a target computational domain | |
domain = (0,1,0,1) | |
partition = (20,20) | |
model = CartesianDiscreteModel(domain,partition) | |
W₁ = FESpace(model, reffe₁) | |
fₕ = interpolate_everywhere(f₁,V₁) | |
ifₕ = Interpolable(fₕ) | |
gₕ = interpolate_everywhere(ifₕ,W₁) # Interpolate fₕ ∈ V₁ on to W₁ | |
print("\nTest Interpolation on Lagrange Elements:\n") | |
@show gₕ(pt) | |
@show f₁(pt) | |
@show gₕ(pt) ≈ fₕ(pt) ≈ f₁(pt) | |
""" | |
Example 2b: Interpolation between RT FESpaces | |
""" | |
domain = (0,1,0,1) | |
partition = (20,20) | |
model = CartesianDiscreteModel(domain,partition) | |
W₂ = FESpace(model, reffe₂) | |
fₕ = interpolate_everywhere(f₂,V₂) | |
ifₕ = Interpolable(fₕ) | |
gₕ = interpolate_everywhere(ifₕ,W₂) # Interpolate fₕ ∈ V₂ on to W₂ | |
print("\nTest Interpolation on RT Elements:\n") | |
@show gₕ(pt) | |
@show f₂(pt) | |
@show gₕ(pt) ≈ fₕ(pt) ≈ f₂(pt) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment