Last active
August 29, 2015 14:20
Multiclass SVM for digit recognition
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// using https://github.com/Bekbolatov/spark/commit/463d73323d5f08669d5ae85dc9791b036637c966 | |
import org.apache.spark.mllib.classification.SVMMultiClassWithSGD | |
import org.apache.spark.mllib.regression.LabeledPoint | |
import org.apache.spark.mllib.linalg.Vectors | |
import breeze.linalg.DenseVector | |
val digits_train = sc.textFile("/data/pendigits.tra").map(line => DenseVector(line.split(",").map(_.trim().toDouble))).map( v => LabeledPoint(v(-1),Vectors.dense(v(0 to 15).toArray))).cache() | |
val digits_test = sc.textFile("/data/pendigits.tes").map(line => DenseVector(line.split(",").map(_.trim().toDouble))).map( v => LabeledPoint(v(-1),Vectors.dense(v(0 to 15).toArray))) | |
val model = SVMMultiClassWithSGD.train(digits_train, 100) | |
val predictionAndLabel = digits_test.map(p => (model.predict(p.features), p.label)) | |
val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / digits_test.count() | |
val scoreAndLabels = digits_test.map { point => | |
val score = model.predict(point.features) | |
(score, point.label) | |
} | |
scoreAndLabels.take(5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment