public
Last active

IPython notebook py2tex

  • Download Gist
py2tex.py
Python
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
"""
Module for IPython to display code with TeX representation.
 
This makes for example the following workflow possible:
 
.. sourcecode:: ipython
 
In [1]: %load_ext py2tex
 
In [2]: from math import *
 
In [3]: %tex (1+sqrt(5))/2
(1+sqrt(5))/2 = 1.618
 
In [4]: %%tex a = 1.0
...: b=3.0
...: c = sqrt(a**2+b**2)
...:
a = 1.0
b=3.0
c = sqrt(a**2+b**2) = 3.162
 
In [5]: %texformat %.3e
 
In [6]: %tex e**10
e**10 = 2.203 \cdot 10^{4}
 
In [7]: %texnr c = sqrt(a**2+b**2)
c = sqrt(a**2+b**2)
 
 
When IPython TeX rendering is enabled, the results are displayed with TeX !!!
 
Usage
=====
 
The following magic commands are provided:
 
``%tex``
 
One line TeX conversion with result output.
 
``%%tex``
 
Multi line TeX conversion with result output.
 
``%texnr``
 
One line TeX conversion without result output.
 
``%%texnr``
 
Multi line TeX conversion without result output.
 
``%texformat``
 
Set the output format. (e.g. %.3f)
 
Notes
=====
 
- Only true mathematical lines are supported for now
 
- Usage of underscores in variable names will result in subscript.
First _ will be subscript, all other _ will be converted to a ,
 
- greek letters as variable name are converted to their TeX equivalent
 
- Usage of the Unum class for unit-ware calculations is supported.
(https://bitbucket.org/kiv/unum/src)
 
- when unum objects are used, %%tex detects when the expression must be printed
eg. v = 10*m/s is not displayed like v = 10*m/s = 10 m/s as in previous versions
 
Version history
===============
release 0.2:
- units in expressions are not displayed with italic font
- variable are always italic font
- %%tex knows when the expression is an assignment with units only
 
release 0.1:
- initial version
"""
import ast
from IPython.core.display import Latex
from IPython.core.magic import (Magics, magics_class, line_magic,
cell_magic, line_cell_magic)
from IPython.core.displaypub import publish_display_data
import re
import unum #
 
#-----------------------------------------------------------------------------
#Version: 0.2
#
#License:
# All GPLv3 except the class LatexVisitor which is cc by-sa 3.0 as it is based
# upon a snippet from stackoverflow (http://creativecommons.org/licenses/by-sa/3.0/)
#
#Hosted as a Gist:
# https://gist.github.com/4032651
#
#Author:
# Beke, J.
#-----------------------------------------------------------------------------
 
 
 
 
@magics_class
class PrettyPrint(Magics):
"""Defines IPython magic function for LaTeX output of simple expressions"""
outputFormat = "%.3f"
greekLetters = {'Alpha': '\\Alpha',
'Beta': '\\Beta',
'Chi': '\\Chi',
'Delta': '\\Delta',
'Epsilon': '\\Epsilon',
'Eta': '\\Eta',
'Gamma': '\\Gamma',
'Iota': '\\Iota',
'Kappa': '\\Kappa',
'Lambda': '\\Lambda',
'Mu': '\\Mu',
'Nu': '\\Nu',
'Omega': '\\Omega',
'Phi': '\\Phi',
'Pi': '\\Pi',
'Psi': '\\Psi',
'Rho': '\\Rho',
'Sigma': '\\Sigma',
'Tau': '\\Tau',
'Theta': '\\Theta',
'Upsilon': '\\Upsilon',
'Xi': '\\Xi',
'Zeta': '\\Zeta',
'alpha': '\\alpha',
'beta': '\\beta',
'chi': '\\chi',
'delta': '\\delta',
'epsilon': '\\epsilon',
'eta': '\\eta',
'gamma': '\\gamma',
'varphi': '\\varphi',
'iota': '\\iota',
'kappa': '\\kappa',
'lambda': '\\lambda',
'mu': '\\mu',
'nu': '\\nu',
'omega': '\\omega',
'phi': '\\phi',
'pi': '\\pi',
'psi': '\\psi',
'rho': '\\rho',
'sigma': '\\sigma',
'tau': '\\tau',
'theta': '\\theta',
'upsilon': '\\upsilon',
'varepsilon': '\\varepsilon',
'varkappa': '\\varkappa',
'varphi': '\\varphi',
'varpi': '\\varpi',
'varrho': '\\varrho',
'varsigma': '\\varsigma',
'vartheta': '\\vartheta',
'xi': '\\xi',
'zeta': '\\zeta'}
def __init__(self, shell):
super(PrettyPrint, self).__init__(shell)
@line_cell_magic
def tex(self, line, cell= None):
"""Cell and line magic %tex"""
#always do first line
self.doLine(line)
#in case of cellmagic (with %%tex)
if not (cell is None):
for cline in cell.split("\n"):
if len(cline)>0:
self.doLine(cline)
@line_cell_magic
def texnr(self, line, cell= None):
"""Cell and line magic %texnr"""
#always do first line
self.doLine(line,True)
#in case of cellmagic (with %%tex)
if not (cell is None):
for cline in cell.split("\n"):
if len(cline)>0:
self.doLine(cline,True)
@line_magic
def texformat(self, line):
"""cell magic to set the result format string"""
arg = line.strip(" \t")
try:
temp = arg % 3.1415
self.outputFormat = line.strip(" \t")
except ValueError:
raise ValueError(arg + " is not supported")
 
def doLine(self,line,no_result = False):
"""Method to convert and print one line
"""
#check for assignment
i = line.find("=")
if i<0 or line[i+1]=='=':
# no assignment : print expression = result
result = self.shell.ev(line)
publish_display_data('PrettyPrint',
{'text/latex': "$$"+self.py2tex(line)+" = "+self.numericToString(result)+"$$",
'text/plain': line+" = "+self.numericToString(result)})
else:
# expression was assignment
variable = line[:i].strip()
expression = line[i+1:].strip()
result = self.shell.ev(expression)
self.shell.push({variable: result})
temp = re.findall('[-+]?\d*\.\d+[eE][-+]?\d+|[-+]?\d*\.\d+|[-+]?\d+', expression.strip())
try:
temp=float(expression)
# assignment: variable = number
publish_display_data('PrettyPrint',
{'text/latex': "$$"+self.parseVariable(variable.strip())+" = "+self.py2tex(expression)+"$$",
'text/plain': line})
except ValueError:
if no_result:
# assignment: variable = expression
publish_display_data('PrettyPrint',
{'text/latex': "$$"+self.parseVariable(variable.strip())+" = "+self.py2tex(expression)+"$$",
'text/plain': line})
else:
# assignment: variable = expression = number
# unit is always an expression so test first
if self.isUnumAssignment(expression):
#unit assignment, print only result
publish_display_data('PrettyPrint',
{'text/latex': "$$"+self.parseVariable(variable.strip())+" = "+self.numericToString(self.shell.ev(expression))+"$$",
'text/plain': line+" = "+self.numericToString(self.shell.ev(variable.strip()))})
else:
# assignment: variable = expression = number
publish_display_data('PrettyPrint',
{'text/latex': "$$"+self.parseVariable(variable.strip())+" = "+self.py2tex(expression)+" = "+self.numericToString(self.shell.ev(variable.strip()))+"$$",
'text/plain': line+" = "+self.numericToString(self.shell.ev(variable.strip()))})
def numericToString(self, number):
"""Convert a number to the defined string representation"""
if type(number) == unum.Unum:
a = self.outputFormat % number._value
unit = "\\;\\:%s" % self.prettyUnumUnit(number) #number.strUnit()[1:-1]
else:
a = self.outputFormat % number
unit = ''
a = a.split("e")
if len(a)==1:
return a[0] + unit
else:
if int(a[1]) != 0:
return "%s \\cdot 10^{%s} %s" % (a[0], int(a[1]), unit)
else:
return a[0] + unit
def py2tex(self, expr):
"""Actual expression to TeX conversion"""
pt = ast.parse(expr)
return LatexVisitor().visit(pt.body[0].value)
def parseVariable(self, name):
"""Convert a variable to greek letters and parse the _ to subscript or comma"""
#parse greek letters
name = name.split("_")
for i in range(len(name)):
if self.greekLetters.has_key(name[i]):
name[i] = self.greekLetters[name[i]]
#first part as mbox
#if name[0].find("\\") < 0:
# name[0] = "\\mbox{%s}" % name[0]
#parse underscore and comma
if len(name)>1:
return name[0]+"_{"+','.join(name[1:])+"}"
return name[0]
def prettyUnumUnit(self,unum):
"""Pretty print a Unum unit object"""
n = ''
d = ''
for name,power in sorted(unum._unit.items()):
if power < 0:
if power ==-1:
d += "$\\mbox{%s}" % (name)
else:
d += "$\\mbox{%s}^{%d}" % (name, power*-1)
else:
if power == 1:
n += "$\\mbox{%s}" % (name)
else:
n += "$\\mbox{%s}^{%d}" % (name, power)
if n=='':
n ='1'
n=n.strip("$").replace("$","\\cdot")
d=d.strip("$").replace("$","\\cdot")
if d =='':
if n=='1':
return ''
else:
return n
else:
return n+"/"+d
def isUnumAssignment(self,expression):
""" Check if the expression is an Unum assignment """
pos = expression.find("*")
if pos>=1:
number = expression[0:pos]
unit = expression[pos+1:]
# test if number is really a number
try:
float(number)
except ValueError:
# no unit assignment
return False
# try if unit part evaluated is of type unum and _value=1
result = self.shell.ev(unit)
if type(result)==unum.Unum:
if result._value!=1:
# no unit assignment
return False
else:
# no unit assignment
return False
else:
# no * so no unit
return False
# if reached this statement, must be unum assignment
return True
 
 
 
class LatexVisitor(ast.NodeVisitor):
# based on source: http://stackoverflow.com/questions/3867028/converting-a-python-numeric-expression-to-latex
greekLetters = PrettyPrint.greekLetters
functions = {'arccos': '\\arccos',
'arcsin': '\\arcsin',
'arctan': '\\arctan',
'cos': '\\cos',
'cosh': '\\cosh',
'cot': '\\cot',
'coth': '\\coth',
'csc': '\\csc',
'ln': '\\ln',
'log': '\\log',
'max': '\\max',
'min': '\\min',
'sec': '\\sec',
'sin': '\\sin',
'sinh': '\\sinh',
'tan': '\\tan',
'tanh': '\\tanh'}
def prec(self, n):
return getattr(self, 'prec_'+n.__class__.__name__, getattr(self, 'generic_prec'))(n)
 
def visit_Call(self, n):
func = self.visit(n.func)
args = ', '.join(map(self.visit, n.args))
if func == 'sqrt':
return '\sqrt{%s}' % args
else:
# parse know LaTeX functions
if self.functions.has_key(func):
return r'%s\left(%s\right)' % (self.functions[func], args)
else:
return r'\mbox{%s}\left(%s\right)' % (func, args)
 
def prec_Call(self, n):
return 1000
 
def visit_Name(self, n):
#test if unum
result = get_ipython().ev(n.id)
if type(result) == unum.Unum:
if result._value==1:
return "\\mbox{%s}" % n.id
#parse greek letters
name = n.id.split("_")
for i in range(len(name)):
if self.greekLetters.has_key(name[i]):
name[i] = self.greekLetters[name[i]]
#parse underscore and comma
if len(name)>1:
return name[0]+"_{"+','.join(name[1:])+"}"
return name[0]
 
def prec_Name(self, n):
return 1000
 
def visit_UnaryOp(self, n):
if self.prec(n.op) > self.prec(n.operand):
return r'%s \left(%s\right)' % (self.visit(n.op), self.visit(n.operand))
else:
return r'%s %s' % (self.visit(n.op), self.visit(n.operand))
 
def prec_UnaryOp(self, n):
return self.prec(n.op)
 
def visit_BinOp(self, n):
if self.prec(n.op) > self.prec(n.left):
left = r'\left(%s\right)' % self.visit(n.left)
else:
left = self.visit(n.left)
if self.prec(n.op) > self.prec(n.right):
right = r'\left(%s\right)' % self.visit(n.right)
else:
right = self.visit(n.right)
if isinstance(n.op, ast.Div):
return r'\frac{%s}{%s}' % (self.visit(n.left), self.visit(n.right))
elif isinstance(n.op, ast.FloorDiv):
return r'\left\lfloor\frac{%s}{%s}\right\rfloor' % (self.visit(n.left), self.visit(n.right))
elif isinstance(n.op, ast.Pow):
return r'%s^{%s}' % (left, self.visit(n.right))
else:
return r'%s %s %s' % (left, self.visit(n.op), right)
 
def prec_BinOp(self, n):
return self.prec(n.op)
 
def visit_Sub(self, n):
return '-'
 
def prec_Sub(self, n):
return 300
 
def visit_Add(self, n):
return '+'
 
def prec_Add(self, n):
return 300
 
def visit_Mult(self, n):
return '\\cdot'
 
def prec_Mult(self, n):
return 400
 
def visit_Mod(self, n):
return '\\bmod'
 
def prec_Mod(self, n):
return 500
 
def prec_Pow(self, n):
return 700
 
def prec_Div(self, n):
return 400
 
def prec_FloorDiv(self, n):
return 400
 
def visit_LShift(self, n):
return '\\mbox{shiftLeft}'
 
def visit_RShift(self, n):
return '\\mbox{shiftRight}'
 
def visit_BitOr(self, n):
return '\\mbox{or}'
 
def visit_BitXor(self, n):
return '\\mbox{xor}'
 
def visit_BitAnd(self, n):
return '\\mbox{and}'
 
def visit_Invert(self, n):
return '\\mbox{invert}'
 
def prec_Invert(self, n):
return 800
 
def visit_Not(self, n):
return '\\neg'
 
def prec_Not(self, n):
return 800
 
def visit_UAdd(self, n):
return '+'
 
def prec_UAdd(self, n):
return 800
 
def visit_USub(self, n):
return '-'
 
def prec_USub(self, n):
return 800
def visit_Num(self, n):
#TODO: convert forms with e03 !
return str(n.n)
 
def prec_Num(self, n):
return 1000
 
def generic_visit(self, n):
#walk ???
if isinstance(n, ast.AST):
return r'' % (n.__class__.__name__, ', '.join(map(self.visit, [getattr(n, f) for f in n._fields])))
else:
return str(n)
 
def generic_prec(self, n):
return 0
def load_ipython_extension(ip):
#register magic to hold state
magicPrettyPrint = PrettyPrint(ip)
ip.register_magics(magicPrettyPrint)
 
# code below to be uncommented for testing code with
# simple "import py2tex" statement
#ip=get_ipython()
#magicPrettyPrint = PrettyPrint(ip)
#ip.register_magics(magicPrettyPrint)

Please sign in to comment on this gist.

Something went wrong with that request. Please try again.