Created
September 2, 2023 15:31
-
-
Save Birch-san/b1abfb7001d0b27fc042b7204ef5c490 to your computer and use it in GitHub Desktop.
Tester for neighbourhood_mask, perimeter_mask
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Optional, NamedTuple | |
from torch import BoolTensor, arange, meshgrid, clamp | |
import torch | |
class Dimensions(NamedTuple): | |
height: int | |
width: int | |
def make_neighbourhood_mask(size: Dimensions, size_orig: Dimensions, device='cpu') -> BoolTensor: | |
h, w = size | |
h_orig, w_orig = size_orig | |
h_ramp = arange(h, device=device) | |
w_ramp = arange(w, device=device) | |
h_pos, w_pos = meshgrid(h_ramp, w_ramp, indexing="ij") | |
# Compute start_h and end_h | |
start_h = clamp(h_pos - h_orig // 2, 0, h - h_orig)[..., None, None] | |
end_h = start_h + h_orig | |
# Compute start_w and end_w | |
start_w = clamp(w_pos - w_orig // 2, 0, w - w_orig)[..., None, None] | |
end_w = start_w + w_orig | |
# Broadcast and create the mask | |
h_range = h_ramp.reshape(1, 1, h, 1) | |
w_range = w_ramp.reshape(1, 1, 1, w) | |
mask = (h_range >= start_h) & (h_range < end_h) & (w_range >= start_w) & (w_range < end_w) | |
return mask.view(h * w, h * w) | |
def make_perimeter_mask(size: Dimensions, canvas_edge: Optional[int] = None, device='cpu') -> BoolTensor: | |
h, w = size | |
h_ramp = arange(h, device=device) | |
w_ramp = arange(w, device=device) | |
# Broadcast and create the mask | |
h_range = h_ramp.reshape(h, 1) | |
w_range = w_ramp.reshape(1, w) | |
mask: BoolTensor = (h_range < canvas_edge) | (h_range >= h-canvas_edge) | (w_range < canvas_edge) | (w_range >= w-canvas_edge) | |
return mask.flatten() | |
torch.set_printoptions(threshold=10_000, linewidth=200) | |
spatial = Dimensions(8, 8) | |
pref = Dimensions(4, 4) | |
perimeter = 1 | |
pref_shaved = Dimensions(pref.height-perimeter*2, pref.width-perimeter*2) | |
attn_mask = make_neighbourhood_mask(spatial, pref_shaved) | |
attn_mask |= make_perimeter_mask(spatial, perimeter) | |
attn_mask.int().reshape(*spatial, *spatial)[spatial.height//2,spatial.width//2] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment