Skip to content

Instantly share code, notes, and snippets.

@BrendanEich
Created June 11, 2013 00:36
Show Gist options
  • Save BrendanEich/5753666 to your computer and use it in GitHub Desktop.
Save BrendanEich/5753666 to your computer and use it in GitHub Desktop.
ES6 version of Peter Norvig's Sudoku solver originally written in Python
// XXX should be standard (and named clone, after Java?)
Object.prototype.copy = function () {
let o = {}
for (let i in this)
o[i] = this[i]
return o
}
// Containment testing for arrays and strings that should be coherent with their iterator.
Array.prototype.contains = String.prototype.contains = function (e) {
return this.indexOf(e) != -1
}
Array.prototype.repeat = String.prototype.repeat = function (n) {
let s = this.constructor()
for (let i = 0; i < n; i++)
s = s.concat(this)
return s
}
String.prototype.center = function (w) {
let n = this.length
if (w <= n)
return this
let m = Math.floor((w - n) / 2)
return ' '.repeat(m) + this + ' '.repeat(w - n - m)
}
Array.prototype.toString = Array.prototype.toSource
Object.prototype.toString = Object.prototype.toSource
// XXX thought spurred by the next two functions: array extras should default to identity function
function all(seq) {
for (let e of seq)
if (!e)
return false
return true
}
function some(seq) {
for (let e of seq)
if (e)
return e
return false
}
function cross(A, B) {
return [a+b for (a of A) for (b of B)]
}
function dict(A) {
let d = {}
for (let e of A)
d[e[0]] = e[1]
return d
}
function set(A) {
let s = []
for (let e in A)
if (!s.contains(e))
s.push(e)
return s
}
function zip(A, B) {
let z = []
let n = Math.min(A.length, B.length)
for (let i = 0; i < n; i++)
z.push([A[i], B[i]])
return z
}
rows = 'ABCDEFGHI'
cols = '123456789'
digits = '123456789'
squares = cross(rows, cols)
unitlist = [cross(rows, c) for (c in cols)]
.concat([cross(r, cols) for (r in rows)])
.concat([cross(rs, cs) for (rs in ['ABC','DEF','GHI']) for (cs in ['123','456','789'])])
units = dict([s, [u for (u of unitlist) if (u.contains(s))]]
for (s of squares))
peers = dict([s, set([s2 for (u of units[s]) for (s2 of u) if (s2 != s)])]
for (s of squares))
// Given a string of 81 digits (or . or 0 or -), return a dict of {cell:values}.
function parse_grid(grid) {
grid = [c for (c in grid) if ('0.-123456789'.contains(c))]
let values = dict([s, digits] for (s in squares))
for (let [s, d] of zip(squares, grid))
if (digits.contains(d) && !assign(values, s, d))
return false
return values
}
// Eliminate all the other values (except d) from values[s] and propagate.
function assign(values, s, d) {
if (all(eliminate(values, s, d2) for (d2 in values[s]) if (d2 != d)))
return values
return false
}
// Eliminate d from values[s]; propagate when values or places <= 2.
function eliminate(values, s, d) {
if (!values[s].contains(d))
return values // Already eliminated
values[s] = values[s].replace(d, '')
if (values[s].length == 0)
return false // Contradiction: removed last value
if (values[s].length == 1) {
// If there is only one value (d2) left in square, remove it from peers
let d2 = values[s][0]
if (!all(eliminate(values, s2, d2) for (s2 in peers[s])))
return false
}
// Now check the places where d appears in the units of s
for (let u in units[s]) {
let dplaces = [s for (s in u) if (values[s].contains(d))]
if (dplaces.length == 0)
return false
if (dplaces.length == 1)
// d can only be in one place in unit; assign it there
if (!assign(values, dplaces[0], d))
return false
}
return values
}
// Used for debugging.
function print_board(values) {
let width = 1 + Math.max.apply(Math, [values[s].length for (s in squares)])
let line = '\n' + ['-'.repeat(width*3)].repeat(3).join('+')
for (let r in rows)
print([values[r+c].center(width) + ('36'.contains(c) && '|' || '')
for (c in cols)].join('') + ('CF'.contains(r) && line || ''))
print()
}
easy = "..3.2.6..9..3.5..1..18.64....81.29..7.......8..67.82....26.95..8..2.3..9..5.1.3.."
print_board(parse_grid(easy))
// Using depth-first search and constraint propagation, try all possible values.
function search(values) {
if (!values)
return false // Failed earlier
if (all(values[s].length == 1 for (s in squares)))
return values // Solved!
// Choose the unfilled square s with the fewest possibilities
// XXX Math.min etc. should work with generator expressions and other iterators
// XXX Math.min etc. should work on arrays (lists or tuples in Python) as well as numbers
let a = [values[s].length + s for (s in squares) if (values[s].length > 1)].sort()
let s = a[0].slice(-2)
return some(search(assign(values.copy(), s, d)) for (d in values[s]))
}
hard = '4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......'
print_board(search(parse_grid(hard)))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment