Skip to content

Instantly share code, notes, and snippets.

@Catley94
Created July 4, 2018 07:27
Show Gist options
  • Save Catley94/b7a65dc6c744c55352c2c227bdc3ed56 to your computer and use it in GitHub Desktop.
Save Catley94/b7a65dc6c744c55352c2c227bdc3ed56 to your computer and use it in GitHub Desktop.
Created using remix-ide: Realtime Ethereum Contract Compiler and Runtime. Load this file by pasting this gists URL or ID at https://remix.ethereum.org/#version=soljson-v0.4.24+commit.e67f0147.js&optimize=false&gist=
pragma solidity ^0.4.18;
import "./Power.sol";
import "./SafeMath.sol";
/**
* @title Bancor formula by Bancor
* @dev Modified from the original by Slava Balasanov
* https://github.com/bancorprotocol/contracts
* Split Power.sol out from BancorFormula.sol and replace SafeMath formulas with zeppelin's SafeMath
* Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements;
* and to You under the Apache License, Version 2.0. "
*/
contract BancorFormula is Power {
using SafeMath for uint256;
string public version = "0.3";
uint32 private constant MAX_WEIGHT = 1000000;
/**
* @dev given a token supply, connector balance, weight and a deposit amount (in the connector token),
* calculates the return for a given conversion (in the main token)
*
* Formula:
* Return = _supply * ((1 + _depositAmount / _connectorBalance) ^ (_connectorWeight / 1000000) - 1)
*
* @param _supply token total supply
* @param _connectorBalance total connector balance
* @param _connectorWeight connector weight, represented in ppm, 1-1000000
* @param _depositAmount deposit amount, in connector token
*
* @return purchase return amount
*/
function calculatePurchaseReturn(
uint256 _supply,
uint256 _connectorBalance,
uint32 _connectorWeight,
uint256 _depositAmount) public constant returns (uint256)
{
// validate input
require(_supply > 0 && _connectorBalance > 0 && _connectorWeight > 0 && _connectorWeight <= MAX_WEIGHT);
// special case for 0 deposit amount
if (_depositAmount == 0) {
return 0;
}
// special case if the weight = 100%
if (_connectorWeight == MAX_WEIGHT) {
return _supply.mul(_depositAmount).div(_connectorBalance);
}
uint256 result;
uint8 precision;
uint256 baseN = _depositAmount.add(_connectorBalance);
(result, precision) = power(baseN, _connectorBalance, _connectorWeight, MAX_WEIGHT);
uint256 temp = _supply.mul(result) >> precision;
return temp - _supply;
}
/**
* @dev given a token supply, connector balance, weight and a sell amount (in the main token),
* calculates the return for a given conversion (in the connector token)
*
* Formula:
* Return = _connectorBalance * (1 - (1 - _sellAmount / _supply) ^ (1 / (_connectorWeight / 1000000)))
*
* @param _supply token total supply
* @param _connectorBalance total connector
* @param _connectorWeight constant connector Weight, represented in ppm, 1-1000000
* @param _sellAmount sell amount, in the token itself
*
* @return sale return amount
*/
function calculateSaleReturn(uint256 _supply, uint256 _connectorBalance, uint32 _connectorWeight, uint256 _sellAmount) public constant returns (uint256) {
// validate input
require(_supply > 0 && _connectorBalance > 0 && _connectorWeight > 0 && _connectorWeight <= MAX_WEIGHT && _sellAmount <= _supply);
// special case for 0 sell amount
if (_sellAmount == 0) {
return 0;
}
// special case for selling the entire supply
if (_sellAmount == _supply) {
return _connectorBalance;
}
// special case if the weight = 100%
if (_connectorWeight == MAX_WEIGHT) {
return _connectorBalance.mul(_sellAmount).div(_supply);
}
uint256 result;
uint8 precision;
uint256 baseD = _supply - _sellAmount;
(result, precision) = power(_supply, baseD, MAX_WEIGHT, _connectorWeight);
uint256 oldBalance = _connectorBalance.mul(result);
uint256 newBalance = _connectorBalance << precision;
return oldBalance.sub(newBalance).div(result);
}
}
pragma solidity ^0.4.24;
import "./ERC20Basic.sol";
import "./SafeMath.sol";
/**
* @title Basic token
* @dev Basic version of StandardToken, with no allowances.
*/
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) public balance;
uint256 totalSupply_;
/**
* @dev Total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
/**
* @dev Transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balance[msg.sender]);
balance[msg.sender] = balance[msg.sender].sub(_value);
balance[_to] = balance[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public view returns (uint256) {
return balance[_owner];
}
}
pragma solidity ^0.4.18;
import "./StandardToken.sol";
import "./Ownable.sol";
import "./BancorFormula.sol";
/**
* @title Bonding Curve
* @dev Bonding curve contract based on Bacor formula
* inspired by bancor protocol and simondlr
* https://github.com/bancorprotocol/contracts
* https://github.com/ConsenSys/curationmarkets/blob/master/CurationMarkets.sol
*/
contract BondingCurve is StandardToken, BancorFormula, Ownable {
/**
* @dev Available balance of reserve token in contract
*/
uint256 public poolBalance;
/*
* @dev reserve ratio, represented in ppm, 1-1000000
* 1/3 corresponds to y= multiple * x^2
* 1/2 corresponds to y= multiple * x
* 2/3 corresponds to y= multiple * x^1/2
* multiple will depends on contract initialization,
* specificallytotalAmount and poolBalance parameters
* we might want to add an 'initialize' function that will allow
* the owner to send ether to the contract and mint a given amount of tokens
*/
uint32 public reserveRatio;
/*
* - Front-running attacks are currently mitigated by the following mechanisms:
* TODO - minimum return argument for each conversion provides a way to define a minimum/maximum price for the transaction
* - gas price limit prevents users from having control over the order of execution
*/
uint256 public gasPrice = 0 wei; // maximum gas price for bancor transactions
/**
* @dev default function
* gas ~ 91645
*/
function() public payable {
buy();
}
/**
* @dev Buy tokens
* gas ~ 77825
* TODO implement maxAmount that helps prevent miner front-running
*/
function buy() validGasPrice public payable returns(bool) {
require(msg.value > 0);
uint256 tokensToMint = calculatePurchaseReturn(totalSupply_, poolBalance, reserveRatio, msg.value);
totalSupply_ = totalSupply_.add(tokensToMint);
balance[msg.sender] = balance[msg.sender].add(tokensToMint);
poolBalance = poolBalance.add(msg.value);
emit LogMint(tokensToMint, msg.value);
return true;
}
/**
* @dev Sell tokens
* gas ~ 86936
* @param sellAmount Amount of tokens to withdraw
* TODO implement maxAmount that helps prevent miner front-running
*/
function sell(uint256 sellAmount) validGasPrice public returns(bool) {
require(sellAmount > 0 && balance[msg.sender] >= sellAmount);
uint256 ethAmount = calculateSaleReturn(totalSupply_, poolBalance, reserveRatio, sellAmount);
msg.sender.transfer(ethAmount);
poolBalance = poolBalance.sub(ethAmount);
balance[msg.sender] = balance[msg.sender].sub(sellAmount);
totalSupply_ = totalSupply_.sub(sellAmount);
emit LogWithdraw(sellAmount, ethAmount);
return true;
}
// verifies that the gas price is lower than the universal limit
modifier validGasPrice() {
assert(tx.gasprice <= gasPrice);
_;
}
/**
* @dev Allows the owner to update the gas price limit
* @param _gasPrice The new gas price limit
*/
function setGasPrice(uint256 _gasPrice) onlyOwner public {
require(_gasPrice > 0);
gasPrice = _gasPrice;
}
event LogMint(uint256 amountMinted, uint256 totalCost);
event LogWithdraw(uint256 amountWithdrawn, uint256 reward);
event LogBondingCurve(string logString, uint256 value);
}
pragma solidity ^0.4.24;
import "./BasicToken.sol";
/**
* @title Burnable Token
* @dev Token that can be irreversibly burned (destroyed).
*/
contract BurnableToken is BasicToken {
event Burn(address indexed burner, uint256 value);
/**
* @dev Burns a specific amount of tokens.
* @param _value The amount of token to be burned.
*/
function burn(uint256 _value) public {
_burn(msg.sender, _value);
}
function _burn(address _who, uint256 _value) internal {
require(_value <= balance[_who]);
// no need to require value <= totalSupply, since that would imply the
// sender's balance is greater than the totalSupply, which *should* be an assertion failure
balance[_who] = balance[_who].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
emit Burn(_who, _value);
emit Transfer(_who, address(0), _value);
}
}
pragma solidity ^0.4.24;
import "./ERC20.sol";
import "./SafeMath.sol";
import "./SafeERC20.sol";
/**
* @title Crowdsale
* @dev Crowdsale is a base contract for managing a token crowdsale,
* allowing investors to purchase tokens with ether. This contract implements
* such functionality in its most fundamental form and can be extended to provide additional
* functionality and/or custom behavior.
* The external interface represents the basic interface for purchasing tokens, and conform
* the base architecture for crowdsales. They are *not* intended to be modified / overriden.
* The internal interface conforms the extensible and modifiable surface of crowdsales. Override
* the methods to add functionality. Consider using 'super' where appropiate to concatenate
* behavior.
*/
contract Crowdsale {
using SafeMath for uint256;
using SafeERC20 for ERC20;
// The token being sold
ERC20 public token;
// Address where funds are collected
address public wallet;
// How many token units a buyer gets per wei.
// The rate is the conversion between wei and the smallest and indivisible token unit.
// So, if you are using a rate of 1 with a DetailedERC20 token with 3 decimals called TOK
// 1 wei will give you 1 unit, or 0.001 TOK.
uint256 public rate;
// Amount of wei raised
uint256 public weiRaised;
address public beneficiary;
/**
* Event for token purchase logging
* @param purchaser who paid for the tokens
* @param beneficiary who got the tokens
* @param value weis paid for purchase
* @param amount amount of tokens purchased
*/
event TokenPurchase(
address indexed purchaser,
address indexed beneficiary,
uint256 value,
uint256 amount
);
/**
* @param _rate Number of token units a buyer gets per wei
* @param _wallet Address where collected funds will be forwarded to
* @param _token Address of the token being sold
*/
constructor(uint256 _rate, address _wallet, ERC20 _token, address _beneficiary, address from) public {
require(_rate > 0);
require(_wallet != address(0));
require(_token != address(0));
beneficiary = _beneficiary;
_beneficiary = from;
rate = _rate;
wallet = _wallet;
token = _token;
}
// -----------------------------------------
// Crowdsale external interface
// -----------------------------------------
/**
* @dev fallback function ***DO NOT OVERRIDE***
*/
function () external payable {
buyTokens(msg.sender);
}
/**
* @dev low level token purchase ***DO NOT OVERRIDE***
* @param _beneficiary Address performing the token purchase
*/
function buyTokens(address _beneficiary) public payable {
uint256 weiAmount = msg.value;
_preValidatePurchase(_beneficiary, weiAmount);
// calculate token amount to be created
uint256 tokens = _getTokenAmount(weiAmount);
// update state
weiRaised = weiRaised.add(weiAmount);
_processPurchase(_beneficiary, tokens);
emit TokenPurchase(
msg.sender,
_beneficiary,
weiAmount,
tokens
);
_updatePurchasingState(_beneficiary, weiAmount);
_forwardFunds();
_postValidatePurchase(_beneficiary, weiAmount);
}
// -----------------------------------------
// Internal interface (extensible)
// -----------------------------------------
/**
* @dev Validation of an incoming purchase. Use require statements to revert state when conditions are not met. Use super to concatenate validations.
* @param _beneficiary Address performing the token purchase
* @param _weiAmount Value in wei involved in the purchase
*/
function _preValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
pure internal
{
require(_beneficiary != address(0));
require(_weiAmount != 0);
}
/**
* @dev Validation of an executed purchase. Observe state and use revert statements to undo rollback when valid conditions are not met.
* @param _beneficiary Address performing the token purchase
* @param _weiAmount Value in wei involved in the purchase
*/
function _postValidatePurchase(
address _beneficiary,
uint256 _weiAmount
)
pure internal
{
// optional override
}
/**
* @dev Source of tokens. Override this method to modify the way in which the crowdsale ultimately gets and sends its tokens.
* @param _beneficiary Address performing the token purchase
* @param _tokenAmount Number of tokens to be emitted
*/
function _deliverTokens(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
token.safeTransfer(_beneficiary, _tokenAmount);
}
/**
* @dev Executed when a purchase has been validated and is ready to be executed. Not necessarily emits/sends tokens.
* @param _beneficiary Address receiving the tokens
* @param _tokenAmount Number of tokens to be purchased
*/
function _processPurchase(
address _beneficiary,
uint256 _tokenAmount
)
internal
{
_deliverTokens(_beneficiary, _tokenAmount);
}
/**
* @dev Override for extensions that require an internal state to check for validity (current user contributions, etc.)
* @param _beneficiary Address receiving the tokens
* @param _weiAmount Value in wei involved in the purchase
*/
function _updatePurchasingState(
address _beneficiary,
uint256 _weiAmount
)
internal
{
// optional override
}
/**
* @dev Override to extend the way in which ether is converted to tokens.
* @param _weiAmount Value in wei to be converted into tokens
* @return Number of tokens that can be purchased with the specified _weiAmount
*/
function _getTokenAmount(uint256 _weiAmount)
internal view returns (uint256)
{
return _weiAmount.mul(rate);
}
/**
* @dev Determines how ETH is stored/forwarded on purchases.
*/
function _forwardFunds() internal {
wallet.transfer(msg.value);
}
}
pragma solidity ^0.4.24;
import "./BondingCurve.sol";
import "./Leaderboard.sol";
contract DevToken is BondingCurve, Leaderboard {
// solium-disable-next-line uppercase
string public constant name = "Developer Token";
string public constant symbol = "DEV"; // solium-disable-line uppercase
uint8 public constant decimals = 18; // solium-disable-line uppercase
}
pragma solidity ^0.4.24;
import "./ERC20Basic.sol";
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender)
public view returns (uint256);
function transferFrom(address from, address to, uint256 value)
public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
pragma solidity ^0.4.24;
/**
* @title ERC20Basic
* @dev Simpler version of ERC20 interface
* See https://github.com/ethereum/EIPs/issues/179
*/
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
pragma solidity ^0.4.24;
contract Leaderboard {
//Public call for leaderBoardPos (Position)
uint8 public leaderboardPos;
}
pragma solidity ^0.4.23;
contract Migrations {
address public owner;
uint public last_completed_migration;
constructor() public {
owner = msg.sender;
}
modifier restricted() {
if (msg.sender == owner) _;
}
function setCompleted(uint completed) public restricted {
last_completed_migration = completed;
}
function upgrade(address new_address) public restricted {
Migrations upgraded = Migrations(new_address);
upgraded.setCompleted(last_completed_migration);
}
}
pragma solidity ^0.4.24;
import "./StandardToken.sol";
import "./Ownable.sol";
/**
* @title Mintable token
* @dev Simple ERC20 Token example, with mintable token creation
* Based on code by TokenMarketNet: https://github.com/TokenMarketNet/ico/blob/master/contracts/MintableToken.sol
*/
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
modifier hasMintPermission() {
require(msg.sender == owner);
_;
}
/**
* @dev Function to mint tokens
* @param _to The address that will receive the minted tokens.
* @param _amount The amount of tokens to mint.
* @return A boolean that indicates if the operation was successful.
*/
function mint (
address _to,
uint256 _amount
)
hasMintPermission
canMint
internal
returns (bool)
{
totalSupply_ = totalSupply_.add(_amount);
balance[_to] = balance[_to].add(_amount);
emit Mint(_to, _amount);
emit Transfer(address(0), _to, _amount);
return true;
}
/**
* @dev Function to stop minting new tokens.
* @return True if the operation was successful.
*/
function finishMinting() onlyOwner canMint public returns (bool) {
mintingFinished = true;
emit MintFinished();
return true;
}
}
pragma solidity ^0.4.24;
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*/
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
constructor() public {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to relinquish control of the contract.
* @notice Renouncing to ownership will leave the contract without an owner.
* It will not be possible to call the functions with the `onlyOwner`
* modifier anymore.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param _newOwner The address to transfer ownership to.
*/
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
/**
* @dev Transfers control of the contract to a newOwner.
* @param _newOwner The address to transfer ownership to.
*/
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
pragma solidity ^0.4.18;
/**
* bancor formula by bancor
* https://github.com/bancorprotocol/contracts
* Modified from the original by Slava Balasanov
* Split Power.sol out from BancorFormula.sol
* Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements;
* and to You under the Apache License, Version 2.0. "
*/
contract Power {
string public version = "0.3";
uint256 private constant ONE = 1;
uint32 private constant MAX_WEIGHT = 1000000;
uint8 private constant MIN_PRECISION = 32;
uint8 private constant MAX_PRECISION = 127;
/**
The values below depend on MAX_PRECISION. If you choose to change it:
Apply the same change in file 'PrintIntScalingFactors.py', run it and paste the results below.
*/
uint256 private constant FIXED_1 = 0x080000000000000000000000000000000;
uint256 private constant FIXED_2 = 0x100000000000000000000000000000000;
uint256 private constant MAX_NUM = 0x1ffffffffffffffffffffffffffffffff;
/**
The values below depend on MAX_PRECISION. If you choose to change it:
Apply the same change in file 'PrintLn2ScalingFactors.py', run it and paste the results below.
*/
uint256 private constant LN2_MANTISSA = 0x2c5c85fdf473de6af278ece600fcbda;
uint8 private constant LN2_EXPONENT = 122;
/**
The values below depend on MIN_PRECISION and MAX_PRECISION. If you choose to change either one of them:
Apply the same change in file 'PrintFunctionBancorFormula.py', run it and paste the results below.
*/
uint256[128] private maxExpArray;
constructor() public {
// maxExpArray[ 0] = 0x6bffffffffffffffffffffffffffffffff;
// maxExpArray[ 1] = 0x67ffffffffffffffffffffffffffffffff;
// maxExpArray[ 2] = 0x637fffffffffffffffffffffffffffffff;
// maxExpArray[ 3] = 0x5f6fffffffffffffffffffffffffffffff;
// maxExpArray[ 4] = 0x5b77ffffffffffffffffffffffffffffff;
// maxExpArray[ 5] = 0x57b3ffffffffffffffffffffffffffffff;
// maxExpArray[ 6] = 0x5419ffffffffffffffffffffffffffffff;
// maxExpArray[ 7] = 0x50a2ffffffffffffffffffffffffffffff;
// maxExpArray[ 8] = 0x4d517fffffffffffffffffffffffffffff;
// maxExpArray[ 9] = 0x4a233fffffffffffffffffffffffffffff;
// maxExpArray[ 10] = 0x47165fffffffffffffffffffffffffffff;
// maxExpArray[ 11] = 0x4429afffffffffffffffffffffffffffff;
// maxExpArray[ 12] = 0x415bc7ffffffffffffffffffffffffffff;
// maxExpArray[ 13] = 0x3eab73ffffffffffffffffffffffffffff;
// maxExpArray[ 14] = 0x3c1771ffffffffffffffffffffffffffff;
// maxExpArray[ 15] = 0x399e96ffffffffffffffffffffffffffff;
// maxExpArray[ 16] = 0x373fc47fffffffffffffffffffffffffff;
// maxExpArray[ 17] = 0x34f9e8ffffffffffffffffffffffffffff;
// maxExpArray[ 18] = 0x32cbfd5fffffffffffffffffffffffffff;
// maxExpArray[ 19] = 0x30b5057fffffffffffffffffffffffffff;
// maxExpArray[ 20] = 0x2eb40f9fffffffffffffffffffffffffff;
// maxExpArray[ 21] = 0x2cc8340fffffffffffffffffffffffffff;
// maxExpArray[ 22] = 0x2af09481ffffffffffffffffffffffffff;
// maxExpArray[ 23] = 0x292c5bddffffffffffffffffffffffffff;
// maxExpArray[ 24] = 0x277abdcdffffffffffffffffffffffffff;
// maxExpArray[ 25] = 0x25daf6657fffffffffffffffffffffffff;
// maxExpArray[ 26] = 0x244c49c65fffffffffffffffffffffffff;
// maxExpArray[ 27] = 0x22ce03cd5fffffffffffffffffffffffff;
// maxExpArray[ 28] = 0x215f77c047ffffffffffffffffffffffff;
// maxExpArray[ 29] = 0x1fffffffffffffffffffffffffffffffff;
// maxExpArray[ 30] = 0x1eaefdbdabffffffffffffffffffffffff;
// maxExpArray[ 31] = 0x1d6bd8b2ebffffffffffffffffffffffff;
maxExpArray[ 32] = 0x1c35fedd14ffffffffffffffffffffffff;
maxExpArray[ 33] = 0x1b0ce43b323fffffffffffffffffffffff;
maxExpArray[ 34] = 0x19f0028ec1ffffffffffffffffffffffff;
maxExpArray[ 35] = 0x18ded91f0e7fffffffffffffffffffffff;
maxExpArray[ 36] = 0x17d8ec7f0417ffffffffffffffffffffff;
maxExpArray[ 37] = 0x16ddc6556cdbffffffffffffffffffffff;
maxExpArray[ 38] = 0x15ecf52776a1ffffffffffffffffffffff;
maxExpArray[ 39] = 0x15060c256cb2ffffffffffffffffffffff;
maxExpArray[ 40] = 0x1428a2f98d72ffffffffffffffffffffff;
maxExpArray[ 41] = 0x13545598e5c23fffffffffffffffffffff;
maxExpArray[ 42] = 0x1288c4161ce1dfffffffffffffffffffff;
maxExpArray[ 43] = 0x11c592761c666fffffffffffffffffffff;
maxExpArray[ 44] = 0x110a688680a757ffffffffffffffffffff;
maxExpArray[ 45] = 0x1056f1b5bedf77ffffffffffffffffffff;
maxExpArray[ 46] = 0x0faadceceeff8bffffffffffffffffffff;
maxExpArray[ 47] = 0x0f05dc6b27edadffffffffffffffffffff;
maxExpArray[ 48] = 0x0e67a5a25da4107fffffffffffffffffff;
maxExpArray[ 49] = 0x0dcff115b14eedffffffffffffffffffff;
maxExpArray[ 50] = 0x0d3e7a392431239fffffffffffffffffff;
maxExpArray[ 51] = 0x0cb2ff529eb71e4fffffffffffffffffff;
maxExpArray[ 52] = 0x0c2d415c3db974afffffffffffffffffff;
maxExpArray[ 53] = 0x0bad03e7d883f69bffffffffffffffffff;
maxExpArray[ 54] = 0x0b320d03b2c343d5ffffffffffffffffff;
maxExpArray[ 55] = 0x0abc25204e02828dffffffffffffffffff;
maxExpArray[ 56] = 0x0a4b16f74ee4bb207fffffffffffffffff;
maxExpArray[ 57] = 0x09deaf736ac1f569ffffffffffffffffff;
maxExpArray[ 58] = 0x0976bd9952c7aa957fffffffffffffffff;
maxExpArray[ 59] = 0x09131271922eaa606fffffffffffffffff;
maxExpArray[ 60] = 0x08b380f3558668c46fffffffffffffffff;
maxExpArray[ 61] = 0x0857ddf0117efa215bffffffffffffffff;
maxExpArray[ 62] = 0x07ffffffffffffffffffffffffffffffff;
maxExpArray[ 63] = 0x07abbf6f6abb9d087fffffffffffffffff;
maxExpArray[ 64] = 0x075af62cbac95f7dfa7fffffffffffffff;
maxExpArray[ 65] = 0x070d7fb7452e187ac13fffffffffffffff;
maxExpArray[ 66] = 0x06c3390ecc8af379295fffffffffffffff;
maxExpArray[ 67] = 0x067c00a3b07ffc01fd6fffffffffffffff;
maxExpArray[ 68] = 0x0637b647c39cbb9d3d27ffffffffffffff;
maxExpArray[ 69] = 0x05f63b1fc104dbd39587ffffffffffffff;
maxExpArray[ 70] = 0x05b771955b36e12f7235ffffffffffffff;
maxExpArray[ 71] = 0x057b3d49dda84556d6f6ffffffffffffff;
maxExpArray[ 72] = 0x054183095b2c8ececf30ffffffffffffff;
maxExpArray[ 73] = 0x050a28be635ca2b888f77fffffffffffff;
maxExpArray[ 74] = 0x04d5156639708c9db33c3fffffffffffff;
maxExpArray[ 75] = 0x04a23105873875bd52dfdfffffffffffff;
maxExpArray[ 76] = 0x0471649d87199aa990756fffffffffffff;
maxExpArray[ 77] = 0x04429a21a029d4c1457cfbffffffffffff;
maxExpArray[ 78] = 0x0415bc6d6fb7dd71af2cb3ffffffffffff;
maxExpArray[ 79] = 0x03eab73b3bbfe282243ce1ffffffffffff;
maxExpArray[ 80] = 0x03c1771ac9fb6b4c18e229ffffffffffff;
maxExpArray[ 81] = 0x0399e96897690418f785257fffffffffff;
maxExpArray[ 82] = 0x0373fc456c53bb779bf0ea9fffffffffff;
maxExpArray[ 83] = 0x034f9e8e490c48e67e6ab8bfffffffffff;
maxExpArray[ 84] = 0x032cbfd4a7adc790560b3337ffffffffff;
maxExpArray[ 85] = 0x030b50570f6e5d2acca94613ffffffffff;
maxExpArray[ 86] = 0x02eb40f9f620fda6b56c2861ffffffffff;
maxExpArray[ 87] = 0x02cc8340ecb0d0f520a6af58ffffffffff;
maxExpArray[ 88] = 0x02af09481380a0a35cf1ba02ffffffffff;
maxExpArray[ 89] = 0x0292c5bdd3b92ec810287b1b3fffffffff;
maxExpArray[ 90] = 0x0277abdcdab07d5a77ac6d6b9fffffffff;
maxExpArray[ 91] = 0x025daf6654b1eaa55fd64df5efffffffff;
maxExpArray[ 92] = 0x0244c49c648baa98192dce88b7ffffffff;
maxExpArray[ 93] = 0x022ce03cd5619a311b2471268bffffffff;
maxExpArray[ 94] = 0x0215f77c045fbe885654a44a0fffffffff;
maxExpArray[ 95] = 0x01ffffffffffffffffffffffffffffffff;
maxExpArray[ 96] = 0x01eaefdbdaaee7421fc4d3ede5ffffffff;
maxExpArray[ 97] = 0x01d6bd8b2eb257df7e8ca57b09bfffffff;
maxExpArray[ 98] = 0x01c35fedd14b861eb0443f7f133fffffff;
maxExpArray[ 99] = 0x01b0ce43b322bcde4a56e8ada5afffffff;
maxExpArray[100] = 0x019f0028ec1fff007f5a195a39dfffffff;
maxExpArray[101] = 0x018ded91f0e72ee74f49b15ba527ffffff;
maxExpArray[102] = 0x017d8ec7f04136f4e5615fd41a63ffffff;
maxExpArray[103] = 0x016ddc6556cdb84bdc8d12d22e6fffffff;
maxExpArray[104] = 0x015ecf52776a1155b5bd8395814f7fffff;
maxExpArray[105] = 0x015060c256cb23b3b3cc3754cf40ffffff;
maxExpArray[106] = 0x01428a2f98d728ae223ddab715be3fffff;
maxExpArray[107] = 0x013545598e5c23276ccf0ede68034fffff;
maxExpArray[108] = 0x01288c4161ce1d6f54b7f61081194fffff;
maxExpArray[109] = 0x011c592761c666aa641d5a01a40f17ffff;
maxExpArray[110] = 0x0110a688680a7530515f3e6e6cfdcdffff;
maxExpArray[111] = 0x01056f1b5bedf75c6bcb2ce8aed428ffff;
maxExpArray[112] = 0x00faadceceeff8a0890f3875f008277fff;
maxExpArray[113] = 0x00f05dc6b27edad306388a600f6ba0bfff;
maxExpArray[114] = 0x00e67a5a25da41063de1495d5b18cdbfff;
maxExpArray[115] = 0x00dcff115b14eedde6fc3aa5353f2e4fff;
maxExpArray[116] = 0x00d3e7a3924312399f9aae2e0f868f8fff;
maxExpArray[117] = 0x00cb2ff529eb71e41582cccd5a1ee26fff;
maxExpArray[118] = 0x00c2d415c3db974ab32a51840c0b67edff;
maxExpArray[119] = 0x00bad03e7d883f69ad5b0a186184e06bff;
maxExpArray[120] = 0x00b320d03b2c343d4829abd6075f0cc5ff;
maxExpArray[121] = 0x00abc25204e02828d73c6e80bcdb1a95bf;
maxExpArray[122] = 0x00a4b16f74ee4bb2040a1ec6c15fbbf2df;
maxExpArray[123] = 0x009deaf736ac1f569deb1b5ae3f36c130f;
maxExpArray[124] = 0x00976bd9952c7aa957f5937d790ef65037;
maxExpArray[125] = 0x009131271922eaa6064b73a22d0bd4f2bf;
maxExpArray[126] = 0x008b380f3558668c46c91c49a2f8e967b9;
maxExpArray[127] = 0x00857ddf0117efa215952912839f6473e6;
}
/**
General Description:
Determine a value of precision.
Calculate an integer approximation of (_baseN / _baseD) ^ (_expN / _expD) * 2 ^ precision.
Return the result along with the precision used.
Detailed Description:
Instead of calculating "base ^ exp", we calculate "e ^ (ln(base) * exp)".
The value of "ln(base)" is represented with an integer slightly smaller than "ln(base) * 2 ^ precision".
The larger "precision" is, the more accurately this value represents the real value.
However, the larger "precision" is, the more bits are required in order to store this value.
And the exponentiation function, which takes "x" and calculates "e ^ x", is limited to a maximum exponent (maximum value of "x").
This maximum exponent depends on the "precision" used, and it is given by "maxExpArray[precision] >> (MAX_PRECISION - precision)".
Hence we need to determine the highest precision which can be used for the given input, before calling the exponentiation function.
This allows us to compute "base ^ exp" with maximum accuracy and without exceeding 256 bits in any of the intermediate computations.
*/
function power(uint256 _baseN, uint256 _baseD, uint32 _expN, uint32 _expD) internal constant returns (uint256, uint8) {
uint256 lnBaseTimesExp = ln(_baseN, _baseD) * _expN / _expD;
uint8 precision = findPositionInMaxExpArray(lnBaseTimesExp);
return (fixedExp(lnBaseTimesExp >> (MAX_PRECISION - precision), precision), precision);
}
/**
Return floor(ln(numerator / denominator) * 2 ^ MAX_PRECISION), where:
- The numerator is a value between 1 and 2 ^ (256 - MAX_PRECISION) - 1
- The denominator is a value between 1 and 2 ^ (256 - MAX_PRECISION) - 1
- The output is a value between 0 and floor(ln(2 ^ (256 - MAX_PRECISION) - 1) * 2 ^ MAX_PRECISION)
This functions assumes that the numerator is larger than or equal to the denominator, because the output would be negative otherwise.
*/
function ln(uint256 _numerator, uint256 _denominator) internal constant returns (uint256) {
assert(_numerator <= MAX_NUM);
uint256 res = 0;
uint256 x = _numerator * FIXED_1 / _denominator;
// If x >= 2, then we compute the integer part of log2(x), which is larger than 0.
if (x >= FIXED_2) {
uint8 count = floorLog2(x / FIXED_1);
x >>= count; // now x < 2
res = count * FIXED_1;
}
// If x > 1, then we compute the fraction part of log2(x), which is larger than 0.
if (x > FIXED_1) {
for (uint8 i = MAX_PRECISION; i > 0; --i) {
x = (x * x) / FIXED_1; // now 1 < x < 4
if (x >= FIXED_2) {
x >>= 1; // now 1 < x < 2
res += ONE << (i - 1);
}
}
}
return (res * LN2_MANTISSA) >> LN2_EXPONENT;
}
/**
Compute the largest integer smaller than or equal to the binary logarithm of the input.
*/
function floorLog2(uint256 _n) internal constant returns (uint8) {
uint8 res = 0;
uint256 n = _n;
if (n < 256) {
// At most 8 iterations
while (n > 1) {
n >>= 1;
res += 1;
}
} else {
// Exactly 8 iterations
for (uint8 s = 128; s > 0; s >>= 1) {
if (n >= (ONE << s)) {
n >>= s;
res |= s;
}
}
}
return res;
}
/**
The global "maxExpArray" is sorted in descending order, and therefore the following statements are equivalent:
- This function finds the position of [the smallest value in "maxExpArray" larger than or equal to "x"]
- This function finds the highest position of [a value in "maxExpArray" larger than or equal to "x"]
*/
function findPositionInMaxExpArray(uint256 _x) internal constant returns (uint8) {
uint8 lo = MIN_PRECISION;
uint8 hi = MAX_PRECISION;
while (lo + 1 < hi) {
uint8 mid = (lo + hi) / 2;
if (maxExpArray[mid] >= _x)
lo = mid;
else
hi = mid;
}
if (maxExpArray[hi] >= _x)
return hi;
if (maxExpArray[lo] >= _x)
return lo;
assert(false);
return 0;
}
/**
This function can be auto-generated by the script 'PrintFunctionFixedExp.py'.
It approximates "e ^ x" via maclaurin summation: "(x^0)/0! + (x^1)/1! + ... + (x^n)/n!".
It returns "e ^ (x / 2 ^ precision) * 2 ^ precision", that is, the result is upshifted for accuracy.
The global "maxExpArray" maps each "precision" to "((maximumExponent + 1) << (MAX_PRECISION - precision)) - 1".
The maximum permitted value for "x" is therefore given by "maxExpArray[precision] >> (MAX_PRECISION - precision)".
*/
function fixedExp(uint256 _x, uint8 _precision) internal constant returns (uint256) {
uint256 xi = _x;
uint256 res = 0;
xi = (xi * _x) >> _precision;
res += xi * 0x03442c4e6074a82f1797f72ac0000000; // add x^2 * (33! / 2!)
xi = (xi * _x) >> _precision;
res += xi * 0x0116b96f757c380fb287fd0e40000000; // add x^3 * (33! / 3!)
xi = (xi * _x) >> _precision;
res += xi * 0x0045ae5bdd5f0e03eca1ff4390000000; // add x^4 * (33! / 4!)
xi = (xi * _x) >> _precision;
res += xi * 0x000defabf91302cd95b9ffda50000000; // add x^5 * (33! / 5!)
xi = (xi * _x) >> _precision;
res += xi * 0x0002529ca9832b22439efff9b8000000; // add x^6 * (33! / 6!)
xi = (xi * _x) >> _precision;
res += xi * 0x000054f1cf12bd04e516b6da88000000; // add x^7 * (33! / 7!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000a9e39e257a09ca2d6db51000000; // add x^8 * (33! / 8!)
xi = (xi * _x) >> _precision;
res += xi * 0x0000012e066e7b839fa050c309000000; // add x^9 * (33! / 9!)
xi = (xi * _x) >> _precision;
res += xi * 0x0000001e33d7d926c329a1ad1a800000; // add x^10 * (33! / 10!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000002bee513bdb4a6b19b5f800000; // add x^11 * (33! / 11!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000003a9316fa79b88eccf2a00000; // add x^12 * (33! / 12!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000048177ebe1fa812375200000; // add x^13 * (33! / 13!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000005263fe90242dcbacf00000; // add x^14 * (33! / 14!)
xi = (xi * _x) >> _precision;
res += xi * 0x0000000000057e22099c030d94100000; // add x^15 * (33! / 15!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000000057e22099c030d9410000; // add x^16 * (33! / 16!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000000000052b6b54569976310000; // add x^17 * (33! / 17!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000000000004985f67696bf748000; // add x^18 * (33! / 18!)
xi = (xi * _x) >> _precision;
res += xi * 0x0000000000000003dea12ea99e498000; // add x^19 * (33! / 19!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000000000000031880f2214b6e000; // add x^20 * (33! / 20!)
xi = (xi * _x) >> _precision;
res += xi * 0x0000000000000000025bcff56eb36000; // add x^21 * (33! / 21!)
xi = (xi * _x) >> _precision;
res += xi * 0x0000000000000000001b722e10ab1000; // add x^22 * (33! / 22!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000000000000001317c70077000; // add x^23 * (33! / 23!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000000000000000000cba84aafa00; // add x^24 * (33! / 24!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000000000000000000082573a0a00; // add x^25 * (33! / 25!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000000000000000000005035ad900; // add x^26 * (33! / 26!)
xi = (xi * _x) >> _precision;
res += xi * 0x0000000000000000000000002f881b00; // add x^27 * (33! / 27!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000000000000000000001b29340; // add x^28 * (33! / 28!)
xi = (xi * _x) >> _precision;
res += xi * 0x000000000000000000000000000efc40; // add x^29 * (33! / 29!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000000000000000000000007fe0; // add x^30 * (33! / 30!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000000000000000000000000420; // add x^31 * (33! / 31!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000000000000000000000000021; // add x^32 * (33! / 32!)
xi = (xi * _x) >> _precision;
res += xi * 0x00000000000000000000000000000001; // add x^33 * (33! / 33!)
return res / 0x688589cc0e9505e2f2fee5580000000 + _x + (ONE << _precision); // divide by 33! and then add x^1 / 1! + x^0 / 0!
}
}
pragma solidity ^0.4.24;
import "./ERC20Basic.sol";
import "./ERC20.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
function safeTransfer(ERC20Basic token, address to, uint256 value) internal {
require(token.transfer(to, value));
}
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 value
)
internal
{
require(token.transferFrom(from, to, value));
}
function safeApprove(ERC20 token, address spender, uint256 value) internal {
require(token.approve(spender, value));
}
}
pragma solidity ^0.4.24;
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
// Gas optimization: this is cheaper than asserting 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
// uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return a / b;
}
/**
* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
pragma solidity ^0.4.24;
import "./BasicToken.sol";
import "./ERC20.sol";
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* https://github.com/ethereum/EIPs/issues/20
* Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint256 the amount of tokens to be transferred
*/
function transferFrom(
address _from,
address _to,
uint256 _value
)
public
returns (bool)
{
require(_to != address(0));
require(_value <= balance[_from]);
require(_value <= allowed[_from][msg.sender]);
balance[_from] = balance[_from].sub(_value);
balance[_to] = balance[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment