Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save ChadFulton/a9172cd6f41947333f47bd4842832619 to your computer and use it in GitHub Desktop.
Save ChadFulton/a9172cd6f41947333f47bd4842832619 to your computer and use it in GitHub Desktop.
Large dynamic factor models, forecasting, and nowcasting in Statsmodels
Display the source blob
Display the rendered blob
Raw
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@ChadFulton
Copy link
Author

Because it is a state space model, where the unobserved state has a defined transition equation, it can produce an estimate for the factor in April even if you had no data for the month (i.e. it just estimates April using its estimate for March combined with the definition of how the state transitions between periods). As you start to observe parts of the data for April, it updates its estimate using whatever data is available. A more detailed description of how this works can be found in, e.g., Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data

@lladamartin
Copy link

I'll see the paper! Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment