Skip to content

Instantly share code, notes, and snippets.

Chongye Wang ChongyeWang

Block or report user

Report or block ChongyeWang

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View perspective_and_affine_transforms.py
import cv2
import numpy as np
import matplotlib.pyplot as plt
image = cv2.imread('images/scan.jpg')
cv2.imshow('Original', image)
cv2.waitKey(0)
# Cordinates of the 4 corners of the original image
View edge_detection_image_gradients.py
import cv2
import numpy as np
image = cv2.imread('images/input.jpg',0)
height, width = image.shape
# Extract Sobel Edges
sobel_x = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)
sobel_y = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)
View dilation_erosion_opening_and_closing.py
import cv2
import numpy as np
image = cv2.imread('images/opencv_inv.png', 0)
cv2.imshow('Original', image)
cv2.waitKey(0)
# Let's define our kernel size
kernel = np.ones((5,5), np.uint8)
View thresholding_binarization_adaptive_thresholding.py
import cv2
import numpy as np
# Load our image as greyscale
image = cv2.imread('images/gradient.jpg',0)
cv2.imshow('Original', image)
# Values below 127 goes to 0 (black, everything above goes to 255 (white)
ret,thresh1 = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('1 Threshold Binary', thresh1)
View date_recognizer.py
# -*- coding: utf-8 -*-
import re
with open('input.txt', 'r') as f:
data = f.read()
normal = "(\d+/\d+/\d+)"
normal_month_date = "(\d+/\d+)"
normal_year = '[0-9][0-9][0-9][0-9]'
View subsets2.py
class Solution(object):
def subsetsWithDup(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
nums = sorted(nums)
result = []
temp = []
self.backtrack(nums, result, temp, 0)
View subsets.py
class Solution(object):
def subsets(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
nums = sorted(nums)
result = []
temp = []
self.backtrack(nums, result, temp, 0)
View sharpening.py
import cv2
import numpy as np
image = cv2.imread('images/input.jpg')
cv2.imshow('Original', image)
# Create our shapening kernel, we don't normalize since the
# the values in the matrix sum to 1
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
View convolutions_and_blurring.py
import cv2
import numpy as np
image = cv2.imread('images/elephant.jpg')
cv2.imshow('Original Image', image)
cv2.waitKey(0)
# Creating our 3 x 3 kernel
kernel_3x3 = np.ones((3, 3), np.float32) / 9
View bitwise_operations_and_masking.py
import cv2
import numpy as np
# If you're wondering why only two dimensions, well this is a grayscale image,
# if we doing a colored image, we'd use
# rectangle = np.zeros((300, 300, 3),np.uint8)
# Making a sqare
square = np.zeros((300, 300), np.uint8)
cv2.rectangle(square, (50, 50), (250, 250), 255, -2)
You can’t perform that action at this time.