Last active
August 16, 2024 08:45
-
-
Save ChuanyuXue/3a377f7c1629b0ce68bc6b393340d0fb to your computer and use it in GitHub Desktop.
Morandi Palette: A palette with 18 colors inspired by Giorgio Morandi
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from collections import defaultdict | |
from gurobipy import Model, GRB | |
from PIL import Image | |
colors = [ | |
'#686789', '#B77F70', '#E5E2B9', '#BEB1A8', '#A79A89', '#8A95A9', | |
'#ECCED0', '#7D7465', '#E8D3C0', '#7A8A71', '#789798', '#B57C82', | |
'#9FABB9', '#B0B1B6', '#99857E', '#88878D', '#91A0A5', '#9AA690' | |
] | |
def hex_to_rgb(value): | |
"""Convert a hex color to an RGB tuple.""" | |
value = value.lstrip("#") | |
return tuple(int(value[i : i + 2], 16) for i in (0, 2, 4)) | |
def rgb_to_hex(rgb): | |
return "#{:02x}{:02x}{:02x}".format(rgb[0], rgb[1], rgb[2]) | |
def euclidean_distance(color1, color2): | |
"""Calculate the Euclidean distance between two RGB colors.""" | |
return int(sum((c1 - c2) ** 2 for c1, c2 in zip(color1, color2))) | |
def find_next_color(palette, remaining_colors): | |
"""Find the color from remaining_colors that maximizes the average distance to the current palette.""" | |
max_avg_distance = 0 | |
next_color = None | |
for color in remaining_colors: | |
print(color, palette) | |
avg_distance = sum( | |
euclidean_distance(hex_to_rgb(color), hex_to_rgb(p)) for p in palette | |
) / len(palette) | |
if avg_distance > max_avg_distance: | |
max_avg_distance = avg_distance | |
next_color = color | |
return next_color | |
def sort_colors(colors): | |
"""This is only to demonstrate the algorithm to get the ordered colors.""" | |
current_palette = colors[:6] | |
remaining_colors = [color for color in colors if color not in current_palette] | |
for _ in range(len(remaining_colors)): | |
next_color = find_next_color(current_palette, remaining_colors) | |
current_palette.append(next_color) | |
remaining_colors.remove(next_color) | |
return current_palette | |
def get_colors(dir: str, num: int = 18, delta: int = 1500): | |
"""Get a list of colors from the Morandi palette.""" | |
if dir is None: | |
return colors[:num] | |
color_counts = defaultdict(int) | |
for filename in os.listdir(dir): | |
if filename.endswith(".jpg") or filename.endswith(".png"): | |
filepath = os.path.join(dir, filename) | |
print(f"Processing {filepath}") | |
with Image.open(filepath) as img: | |
img = img.resize((100, 100)) | |
img = img.convert("RGB") | |
color_sig = img.getcolors(img.size[0] * img.size[1]) | |
for count, color in color_sig: | |
matched = False | |
for existing_color in color_counts: | |
distance = euclidean_distance(existing_color, color) | |
if distance < delta: | |
color_counts[existing_color] += count | |
matched = True | |
break | |
if not matched: | |
color_counts[color] = count | |
top_colors = sorted(color_counts.items(), key=lambda x: x[1], reverse=True)[:num] | |
top_colors_hex = [(rgb_to_hex(color), count) for color, count in top_colors] | |
return [color for color, _ in top_colors_hex] | |
def group_colors(colors, num_per_group): | |
"""Group colors into groups of fixed size such that the sum of the distances between each pair of colors in the same group is maximized.""" | |
# Create a new model | |
m = Model("color_grouping") | |
# Create variables | |
x = [ | |
[m.addVar(vtype=GRB.BINARY, name=f"{i}-{j}") for j in range(len(num_per_group))] | |
for i in range(len(colors)) | |
] | |
# Set objective | |
objective = 0 | |
for i in range(len(colors)): | |
for j in range(i + 1, len(colors)): | |
for k in range(len(num_per_group)): | |
objective += ( | |
x[i][k] | |
* x[j][k] | |
* euclidean_distance(hex_to_rgb(colors[i]), hex_to_rgb(colors[j])) | |
) | |
m.setObjective(objective, GRB.MAXIMIZE) | |
m.setParam("TimeLimit", 5 * 60) | |
# Add constraints | |
for i in range(len(colors)): | |
m.addConstr(sum(x[i]) <= 1) # each color can only be at most in one group | |
for j in range(len(num_per_group)): | |
m.addConstr( | |
sum(x[i][j] for i in range(len(colors))) == num_per_group[j] | |
) # each group has a fixed number of colors | |
# Optimize model | |
m.optimize() | |
# Check if a solution exists | |
if m.status in [GRB.OPTIMAL, GRB.SUBOPTIMAL, GRB.TIME_LIMIT]: | |
( | |
print("Warning: suboptimal solution found") | |
if m.status == GRB.SUBOPTIMAL | |
else None | |
) | |
result = [[] for _ in range(len(num_per_group))] | |
for i in range(len(colors)): | |
for k in range(len(num_per_group)): | |
if x[i][k].x == 1: | |
result[k].append(colors[i]) | |
return result | |
else: | |
raise Exception("No solution found") | |
if __name__ == "__main__": | |
## Example 1: getting ordered K-colors | |
colors = sort_colors(get_colors(None, 18)) | |
sns.palplot(colors) | |
plt.title("Giorgio Morandi's palette") | |
plt.show() | |
## Example 2: getting grouped K-colors | |
groups = group_colors(colors, [2, 2, 2, 1, 2, 2, 3, 2, 1]) | |
print("Grouped colors:", groups) | |
count, n = 0, len(groups) | |
fig, axes = plt.subplots(1, n, figsize=(15, 2)) | |
for ax, group in zip(axes, groups): | |
ax.imshow( | |
[[np.array(hex_to_rgb(color)) / 255.0 for color in group]], aspect="auto" | |
) | |
ax.set_title(f"Group-{count}") | |
ax.axis("off") | |
count += 1 | |
plt.show() |
Author
ChuanyuXue
commented
Aug 7, 2023
•
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment