Last active
June 3, 2019 03:47
-
-
Save CodaFi/73bd0d67c8c7dc25b9af to your computer and use it in GitHub Desktop.
A small propositional logic proof tree generator and prover.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
indirect enum Formula : CustomStringConvertible { | |
case Var(String) | |
case Or(Formula, Formula) | |
case And(Formula, Formula) | |
case Imply(Formula, Formula) | |
case BiImply(Formula, Formula) | |
case Negate(Formula) | |
var description : String { | |
switch self { | |
case .Var(let p): | |
return p | |
case .And(let p, let q): | |
return "(\(p) /\\ \(q))" | |
case .Or(let p, let q): | |
return "(\(p) \\/ \(q))" | |
case let .Imply(.Imply(ss, sr), t2): | |
return "(\(ss) -> \(sr)) -> \(t2)" | |
case .Imply(let p, let q): | |
return "(\(p) -> \(q))" | |
case .BiImply(let p, let q): | |
return "(\(p) <-> \(q))" | |
case .Negate(let p): | |
return "¬\(p)" | |
} | |
} | |
} | |
indirect enum Tree : CustomStringConvertible { | |
case Invalid | |
case Proved | |
case Derive([Formula], Tree) | |
case Split(left : ([Formula], Tree), right : ([Formula], Tree)) | |
var description : String { | |
switch self { | |
case .Invalid: | |
return "🚫" | |
case .Proved: | |
return "✅" | |
default: | |
return "..." | |
} | |
} | |
} | |
enum Prop { | |
case True(String) | |
case False(String) | |
} | |
func prove(_ flst : [Formula], r : Formula) -> Tree { | |
let sig = [.Negate(r)] + flst | |
var props = [Prop]() | |
return .Derive(sig, deriveTree(sig, props: &props)) | |
} | |
func contradictionExists(_ p : Prop, props : [Prop]) -> Bool { | |
return props.first { q in | |
switch (p, q) { | |
case let (.True(a), .False(b)): | |
return a == b | |
case let (.False(a), .True(b)): | |
return a == b | |
default: | |
return false | |
} | |
} != nil | |
} | |
func deriveTree(_ assumptions : [Formula], props : inout [Prop]) -> Tree { | |
guard let t = assumptions.first else { | |
return .Proved | |
} | |
let rest = Array(assumptions.dropFirst()) | |
switch t { | |
case let .And(p, q): | |
return .Derive([p, q], deriveTree([p, q] + rest, props: &props)) | |
case let .Or(p, q): | |
return .Split(left: ([p], deriveTree([p] + rest, props: &props)), right: ([q], deriveTree([q] + rest, props: &props))) | |
case let .Imply(p, q): | |
return .Split(left: ([.Negate(p)], deriveTree([.Negate(p)] + rest, props: &props)), right: ([q], deriveTree([q] + rest, props: &props))) | |
case let .BiImply(p, q): | |
return .Split(left: ([p, q], deriveTree([p, q] + rest, props: &props)), right: ([.Negate(p), .Negate(q)], deriveTree([.Negate(p), .Negate(q)] + rest, props: &props))) | |
case .Negate(.And(let p, let q)): | |
return .Split(left: ([.Negate(p)], deriveTree([.Negate(p)] + rest, props: &props)), right: ([.Negate(q)], deriveTree([.Negate(q)] + rest, props: &props))) | |
case .Negate(.Or(let p, let q)): | |
return .Derive([.Negate(p), .Negate(q)], deriveTree([.Negate(p), .Negate(q)] + rest, props: &props)) | |
case .Negate(.Imply(let p, let q)): | |
return .Derive([p, .Negate(q)], deriveTree([p, .Negate(q)] + rest, props: &props)) | |
case .Negate(.BiImply(let p, let q)): | |
return .Split(left: ([p, .Negate(q)], deriveTree([p, .Negate(q)] + rest, props: &props)), right: ([.Negate(p), q], deriveTree([.Negate(p), q] + rest, props: &props))) | |
case .Negate(.Negate(let p)): | |
return .Derive([p], deriveTree([p] + rest, props: &props)) | |
case let .Var(p): | |
guard !contradictionExists(.True(p), props: props) else { | |
return .Invalid | |
} | |
props.append(.True(p)) | |
return deriveTree(rest, props: &props) | |
case .Negate(.Var(let p)): | |
guard !contradictionExists(.False(p), props: props) else { | |
return .Invalid | |
} | |
props.append(.False(p)) | |
return deriveTree(rest, props: &props) | |
} | |
} | |
let or : Formula = .Or(.Var("P"), .Negate(.Var("P"))) | |
let contra : Formula = .And(.Var("P"), .Negate(.Var("P"))) | |
dump(prove([], r: or)) | |
dump(prove([], r: contra)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment