Benchmarking different methods for creating empty dataframes from scratch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import perfplot | |
def append(n): | |
df = pd.DataFrame(columns=['A', 'B', 'C']) | |
for _ in range(n): | |
df = df.append({'A': 1, 'B': 12.3, 'C': 'xyz'}, ignore_index=True) # yuck | |
return df | |
def list_append(n): | |
data = [] | |
for _ in range(n): | |
data.append([1, 12.3, 'xyz']) | |
return pd.DataFrame(data, columns=['A', 'B', 'C']) | |
def loc_append(n): | |
df = pd.DataFrame(columns=['A', 'B', 'C']) | |
for _ in range(n): | |
df.loc[len(df)] = [1, 12.3, 'xyz'] | |
return df | |
kernels = [append, list_append, loc_append] | |
perfplot.show( | |
setup=lambda n: n, | |
kernels=kernels, | |
labels=[k.__name__ for k in kernels], | |
n_range=[i for i in range(0, 1000, 50)], | |
xlabel='N', | |
logx=True, | |
logy=True, | |
equality_check=None) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment