concepts
- forward and backward propagation
- vanishing gradient
- image convolution operation
- feature map, filter/kernel
- receptive field
- embedding
- translation invariance
| import random | |
| import streamlit as st | |
| from streamlit.ReportThread import get_report_ctx | |
| from streamlit.server.Server import Server | |
| from threading import Thread | |
| from time import sleep | |
| def main(): | |
| st.line_chart(random.sample(range(100), 20)) |
| version: '2' | |
| services: | |
| watchtower: | |
| image: containrrr/watchtower | |
| volumes: | |
| - /var/run/docker.sock:/var/run/docker.sock | |
| - /root/.docker/config.json:/config.json | |
| command: nginx-proxy nginx-proxy-le |
| #!/usr/bin/env python | |
| """ | |
| A quick, partial implementation of ENet (https://arxiv.org/abs/1606.02147) using PyTorch. | |
| The original Torch ENet implementation can process a 480x360 image in ~12 ms (on a P2 AWS | |
| instance). TensorFlow takes ~35 ms. The PyTorch implementation takes ~25 ms, an improvement | |
| over TensorFlow, but worse than the original Torch. | |
| """ | |
| from __future__ import absolute_import |