Skip to content

Instantly share code, notes, and snippets.

@DanyshMushtaq
Last active July 9, 2019 17:05
Embed
What would you like to do?
Connect to RedShift and S3 from Python with credentials in .env
import os
from dotenv import load_dotenv, find_dotenv
import psycopg2
import pandas as pd
import boto3
class Redshift:
def __init__(self):
''' Constructor for this class. '''
# Create some members
# find .env automagically by walking up directories until it's found
dotenv_path = find_dotenv()
# load up the entries as environment variables
load_dotenv(dotenv_path)
#credentials
self.database_endpoint = os.environ.get("DATABASE_ENDPOINT")
self.database_name = os.environ.get("DATABASE_NAME")
self.database_user = os.environ.get("DATABASE_USER")
self.database_password = os.environ.get("DATABASE_PASSWORD")
self.port = os.environ.get("PORT")
def connect(self):
#connect using psycopg2
connection = psycopg2.connect(dbname=self.database_name, host=self.database_endpoint,
port=self.port, user=self.database_user, password=self.database_password)
return connection
class S3:
def __init__(self):
''' Constructor for this class. '''
# Create some members
# find .env automagically by walking up directories until it's found
dotenv_path = find_dotenv()
# load up t`he entries as environment variables
load_dotenv(dotenv_path)
#credentials
self.AWS_KEY = os.environ.get("AWS_ACCESS_KEY")
self.AWS_SECRET = os.environ.get("AWS_SECRET_ACCESS_KEY")
self.AWS_BUCKET = os.environ.get("AWS_BUCKET")
def connect(self):
client = boto3.client('s3', aws_access_key_id=self.AWS_ACCESS_KEY,aws_secret_access_key=self.AWS_SECRET_ACCESS_KEY)
return client
def read_file(self,file_name):
client = self.connect()
file_nm=client.get_object(Bucket=self.AWS_BUCKET, Key=file_name)
df=pd.read_csv(file_nm['Body'],header=0)
return df
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment