Skip to content

Instantly share code, notes, and snippets.

@hollance
hollance / Compressing-MobileNet.ipynb
Created September 26, 2017 12:47
Jupyter notebook for compressing MobileNet (work in progress)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@dansileshi
dansileshi / conv3dnet.py
Created August 11, 2016 00:24 — forked from akors/conv3dnet.py
Example of 3D convolutional network with TensorFlow
import tensorflow as tf
import numpy as np
FC_SIZE = 1024
DTYPE = tf.float32
def _weight_variable(name, shape):
return tf.get_variable(name, shape, DTYPE, tf.truncated_normal_initializer(stddev=0.1))
@awjuliani
awjuliani / rl-tutorial-1.ipynb
Last active February 2, 2020 05:04
Reinforcement Learning Tutorial 1 (Two-armed bandit problem)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@fchollet
fchollet / classifier_from_little_data_script_2.py
Last active February 26, 2025 01:37
Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@tomokishii
tomokishii / mnist_cnn_bn.py
Last active December 14, 2023 03:55
MNIST using Batch Normalization - TensorFlow tutorial
#
# mnist_cnn_bn.py date. 5/21/2016
# date. 6/2/2017 check TF 1.1 compatibility
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
@xlvector
xlvector / py
Created May 24, 2016 16:17
multi input multi obj mxnet
# pylint: disable=C0111,too-many-arguments,too-many-instance-attributes,too-many-locals,redefined-outer-name,fixme
# pylint: disable=superfluous-parens, no-member, invalid-name
import sys, datetime, math, random
sys.path.insert(0, "../../python")
import mxnet as mx
import numpy as np
from io import BytesIO
class Batch(object):
def __init__(self, data_names, data, label_names, label):
@stewartpark
stewartpark / xor.py
Created October 12, 2015 08:17
Simple XOR learning with keras
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
import numpy as np
X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0],[1],[1],[0]])
model = Sequential()
model.add(Dense(8, input_dim=2))