If you are trying to prove the independence of
Consider the transformation
, where
Then,
Clearly,
If you are trying to prove the independence of
Consider the transformation
, where
Then,
Clearly,
Countries and areas | Total | Male | Female | |
---|---|---|---|---|
Afghanistan | 21 | 23 | 20 | |
Albania | 3 | 4 | 3 | |
Algeria | 4 | 5 | 4 | |
Andorra | ||||
Angola | 19 | 17 | 20 | |
Anguilla | ||||
Antigua and Barbuda | ||||
Argentina | ||||
Armenia | 4 | 5 | 3 |
index | place | 2001 | 2011 | 1971 | 1981 | 1991 | 2001 | |
---|---|---|---|---|---|---|---|---|
1 | Andaman & Nicobar Island | 1960 | 999 | 572 | 1309 | 1265 | 1960 | |
2 | Andhra Pradesh | 1363339 | 404851 | 1627492 | 1951312 | 1661940 | 1363339 | |
3 | Arunachal Pradesh | 18482 | 5766 | 17925 | 17950 | 12395 | 18482 | |
4 | Assam | 351416 | 99512 | 239349 | 327598 | 351416 |
import 'package:flutter/material.dart'; | |
void main() => runApp(MyApp()); | |
class MyApp extends StatelessWidget { | |
@override | |
Widget build(BuildContext context) { |
void main() { | |
print("hi"); | |
dynamic x = 1; | |
print(x); | |
x = "hi 2"; | |
print(x); |
from tensorflow import keras | |
model = keras.model.load_model("./model.h5") | |
age = int(input("age: input age(only numbers) ")) | |
sex = int(input("sex: input 1 for female and 0 for male(only numbers ")) | |
cp = int(input("cp: input 0 for Asymptomatic, 1 for Atypical Angina, 2 for Nonanginal Pain, 3 for Typical Angina(only numbers) ")) | |
trestbps = int(input("trestbps: input trestbps(only numbers) ")) | |
chol = int(input("chol: input cholesterol(only numbers) ")) | |
fbs= int(input("fbs: input 1 for True and 0 for False(only numbers ")) | |
restecg=int(input("restecg: input 0 for Having ST-T wave abnormal, 1 for Hypertrophy, 2 for Normal(only numbers) ")) | |
thalach = int(input("thalach: input thalach(only numbers) ")) |
import datetime | |
welcome = "welcome to Urja Flower Wallet" | |
import hashlib | |
import time | |
class Block: |
import hashlib | |
import time | |
class Block: | |
def __init__(self, index, proof_no, prev_hash, data, timestamp=None): | |
self.index = index |
{\"class_name\": \"Sequential\", \"config\": {\"name\": \"sequential\", \"layers\": [{\"class_name\": \"Model\", \"config\": {\"name\": \"vgg16\", \"layers\": [{\"class_name\": \"InputLayer\", \"config\": {\"batch_input_shape\": [null, 512, 512, 3], \"dtype\": \"float32\", \"sparse\": false, \"ragged\": false, \"name\": \"input_1\"}, \"name\": \"input_1\", \"inbound_nodes\": []}, {\"class_name\": \"Conv2D\", \"config\": {\"name\": \"block1_conv1\", \"trainable\": false, \"dtype\": \"float32\", \"filters\": 64, \"kernel_size\": [3, 3], \"strides\": [1, 1], \"padding\": \"same\", \"data_format\": \"channels_last\", \"dilation_rate\": [1, 1], \"activation\": \"relu\", \"use_bias\": true, \"kernel_initializer\": {\"class_name\": \"GlorotUniform\", \"config\": {\"seed\": null}}, \"bias_initializer\": {\"class_name\": \"Zeros\", \"config\": {}}, \"kernel_regularizer\": null, \"bias_regularizer\": null, \"activity_regularizer\": null, \"kernel_constraint\": null, \"bias_constraint\": null}, \"name\": \"block1_conv1\ |
"""VGG16 model for Keras. | |
# Reference | |
- [Very Deep Convolutional Networks for Large-Scale Image Recognition]( | |
https://arxiv.org/abs/1409.1556) (ICLR 2015) | |
""" | |
from __future__ import absolute_import | |
from __future__ import division |