Last active
October 3, 2020 21:36
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.sql.{Dataset, Encoder, SparkSession} | |
import scala.reflect.runtime | |
import scala.reflect.runtime.universe._ | |
import scala.tools.reflect.ToolBox | |
object App { | |
lazy val spark = SparkSession.builder | |
.appName(getClass.getName) | |
.master("local") | |
.getOrCreate() | |
object schema { | |
case class Users(name: String, | |
favorite_color: String, | |
favorite_numbers: Array[Int]) | |
object Users { | |
// implicit val usersEnc: Encoder[Users] = spark.implicits.newProductEncoder[Users] | |
} | |
} | |
case class FileSystem[T: Encoder](inputPath: String, spark: SparkSession, saveMode: String, tableName: String) { | |
def provideData(metadata: Boolean, outputPath: String): Dataset[T] = spark.emptyDataset[T] | |
} | |
trait Loader[T] { | |
def Load: Dataset[T] | |
} | |
class Load[T <: Product: Encoder](val tableName: String, | |
val inputPath: String, | |
val spark: SparkSession, | |
val saveMode: String, | |
val outputPath: String, | |
val metadata: Boolean) | |
extends Loader[T] { | |
val fileSystemSourceInstance: FileSystem[T] = | |
new FileSystem[T](inputPath, spark, saveMode, tableName) | |
override def Load: Dataset[T] = | |
fileSystemSourceInstance.provideData(metadata, outputPath).as[T] | |
} | |
def main(args: Array[String]): Unit = { | |
val tableName = "tableName" | |
val inputPath = "inputPath" | |
val saveMode = "saveMode" | |
val outputPath = "outputPath" | |
val metadata = true | |
import spark.implicits._ | |
val dataset = new Load[schema.Users](tableName,inputPath,spark, | |
saveMode, | |
outputPath + tableName, | |
metadata).Load | |
println(dataset) //[name: string, favorite_color: string ... 1 more field] | |
val currentMirror = runtime.currentMirror | |
val loadType = typeOf[Load[_]] | |
val classSymbol = loadType.typeSymbol.asClass | |
val classMirror = currentMirror.reflectClass(classSymbol) | |
val constructorSymbol = loadType.decl(termNames.CONSTRUCTOR).asMethod | |
val constructorMirror = classMirror.reflectConstructor(constructorSymbol) | |
val toolbox = ToolBox(currentMirror).mkToolBox() | |
val className = "App.schema.Users" | |
val encoderInstance = toolbox.eval(toolbox.parse( | |
s"""import App.spark.implicits._ | |
|import org.apache.spark.sql.Encoder | |
|implicitly[Encoder[$className]]""".stripMargin)) | |
// val encoderType = appliedType( | |
// typeOf[Encoder[_]].typeConstructor.typeSymbol, | |
// currentMirror.staticClass(className).toType | |
// ) | |
// val encoderTree = toolbox.inferImplicitValue(encoderType, silent = false) | |
// val encoderInstance = toolbox.eval(toolbox.untypecheck(encoderTree)) | |
val dataset1 = constructorMirror(tableName,inputPath,spark, | |
saveMode, | |
outputPath + tableName, | |
metadata, encoderInstance).asInstanceOf[Load[_]].Load | |
println(dataset1)//[name: string, favorite_color: string ... 1 more field] | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment