Skip to content

Instantly share code, notes, and snippets.

@DrEricEbert
DrEricEbert / CSharpRecipe.cs
Created January 24, 2022 07:32 — forked from jacobslusser/CSharpRecipe.cs
ScintillaNET C# Automatic Syntax Highlighting
// For an explanation of this code visit:
// https://github.com/jacobslusser/ScintillaNET/wiki/Automatic-Syntax-Highlighting
// Configuring the default style with properties
// we have common to every lexer style saves time.
scintilla.StyleResetDefault();
scintilla.Styles[Style.Default].Font = "Consolas";
scintilla.Styles[Style.Default].Size = 10;
scintilla.StyleClearAll();
@DrEricEbert
DrEricEbert / Install PyQt5 on Ubuntu with python3 .md
Created February 19, 2020 18:21 — forked from r00tdaemon/Install PyQt5 on Ubuntu with python3 .md
Install PyQt5 on Ubuntu with python3. Steps to set up PyQt5 (ubuntu). With python code generation

Installation

pip3 install --user pyqt5  
sudo apt-get install python3-pyqt5  
sudo apt-get install pyqt5-dev-tools
sudo apt-get install qttools5-dev-tools

Configuring to run from terminal

@DrEricEbert
DrEricEbert / detect_marker.py
Created February 13, 2019 10:02 — forked from ksasao/detect_marker.py
ZOZOSUITのマーカーのIDを読み取るコードです。公開されている画像を元に独自に解析しているので、公式ではこのように処理しているかどうかは不明です。仕様等については https://twitter.com/ksasao/status/990779583682170881 のスレッドも参照してください。全身を読み取るコード https://twitter.com/ksasao/status/989842844243279872 ライセンスは Apache License 2.0 です。
import numpy as np
import random
import math
import cv2
from PIL import Image
import sys
def detect_markers(im):
markers = []
# 輪郭線抽出のための二値化
@DrEricEbert
DrEricEbert / set-ntfs-ro.ps1
Created February 2, 2018 09:28 — forked from mmdemirbas/set-ntfs-ro.ps1
PowerShell script to set or clear NTFS read-only flag of a volume by volume label
#########################################################################
# #
# Script to set or clear read-only flag of an NTFS volume. #
# #
# Usage: .\set-ntfs-ro.ps1 set "MY DISK LABEL" #
# .\set-ntfs-ro.ps1 clear "MY DISK LABEL" #
# #
# Author: Muhammed Demirbas, mmdemirbas at gmail dot com #
# Date : 2013-03-23 #
# #
##########################################
# To run:
# curl -sSL https://gist.githubusercontent.com/sirkkalap/e87cd580a47b180a7d32/raw/d9c9ebae4f5cf64eed4676e8aedac265b5a51bfa/Install-Docker-on-Linux-Mint.sh | bash -x
##########################################
# Check that HTTPS transport is available to APT
if [ ! -e /usr/lib/apt/methods/https ]; then
sudo apt-get update
sudo apt-get install -y apt-transport-https
fi
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@DrEricEbert
DrEricEbert / PythonRecipe.cs
Created December 15, 2017 10:03 — forked from jacobslusser/PythonRecipe.cs
ScintillaNET Python Configuration
// Reset the styles
scintilla.StyleResetDefault();
scintilla.Styles[Style.Default].Font = "Consolas";
scintilla.Styles[Style.Default].Size = 10;
scintilla.StyleClearAll(); // i.e. Apply to all
// Set the lexer
scintilla.Lexer = Lexer.Python;
// Known lexer properties: