Instantly share code, notes, and snippets.

What would you like to do?
Generate random words based on markov chains rather than random sentences.
#!/usr/bin/env python
import random
class Markov:
def __init__(self, file, size):
self.size = size
self.starts = []
self.cache = {}
def file_to_words(self, file):
data =
self.words = data.split("\n")
def tuples(self, word):
if len(word) < self.size - 1:
word = word + "\n"
for i in range(len(word) - self.size):
yield (word[i:i+self.size], word[i+self.size])
def parse_words(self):
for word in self.words:
for key, next in self.tuples(word):
if key in self.cache:
self.cache[key] = [next]
def generate_word(self):
key = random.choice(self.starts)
word = key
next = random.choice(self.cache[key])
while next != "\n":
word = word + next
key = key[1:] + next
next = random.choice(self.cache[key])
return word
from optparse import OptionParser
def main():
parser = OptionParser()
parser.add_option('-p', type='int', dest='prev_num', default=3,
help='number of previous letters to base chain on')
parser.add_option('-n', type='int', dest='num', default=5,
help='number of generated words')
parser.add_option('-s', '--source-text', type='string',
default='wordlist-en.txt', dest='source',
help='file to use as basis for generating the words')
(options, args) = parser.parse_args()
file = open(options.source)
markov = Markov(file, options.prev_num)
for i in range(options.num):
print markov.generate_word()
if __name__ == '__main__':

This comment has been minimized.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment