Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
Tensorflow XLA benchmark
# '''
# A small Tensorflow XLA benchmark
#
# Original Author: Aymeric Damien
# Project: https://github.com/aymericdamien/TensorFlow-Examples/
# '''
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
from tensorflow.python.framework import dtypes
import time
# Import MINST data
from tensorflow.contrib.rnn.python.ops import core_rnn_cell_impl
from tensorflow.contrib.rnn.python.ops import fused_rnn_cell
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# '''
# To classify images using a reccurent neural network, we consider every image
# row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then
# handle 28 sequences of 28 steps for every sample.
# '''
# In[2]:
# Parameters
learning_rate = 0.001
training_iters = 10
batch_size = 128
display_step = 10
# Network Parameters
n_input = 28 # MNIST data input (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
# In[3]:
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(x, n_steps, 0)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
# In[4]:
def benchmark(use_xla, use_gpu):
# Launch the graph
config = tf.ConfigProto(
device_count = {'GPU': 0 if not use_gpu else 1}
)
if use_xla:
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
with tf.Session(config=config) as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
step += 1
# Calculate accuracy for 128 mnist test images
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
t_start = time.time()
total_steps = 500
for i in range(total_steps):
outs = sess.run(accuracy, feed_dict={x: test_data, y: test_label})
tdiff = time.time() - t_start
print( "{} inference steps took: {:.2f}".format(total_steps, tdiff))
benchmark(True, True)
benchmark(False, True)
benchmark(True, False)
benchmark(False, False)
# 500 inference steps took: 1.51
# 500 inference steps took: 2.20
# 500 inference steps took: 5.35
# 500 inference steps took: 5.35
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment