Created
August 23, 2018 12:50
-
-
Save EniasCailliau/9da7fabc438a369e2d97bb6b87e531a3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import tensorflow as tf | |
from tensorflow.python.estimator.model_fn import ModeKeys as Modes | |
from sagemaker_tensorflow import PipeModeDataset | |
from tensorflow.contrib.data import map_and_batch | |
INPUT_TENSOR_NAME = 'inputs' | |
SIGNATURE_NAME = 'predictions' | |
PREFETCH_SIZE = 10 | |
BATCH_SIZE = 128 | |
NUM_PARALLEL_BATCHES = 10 | |
MAX_EPOCHS = 20 | |
def _conv_pool(inputs, kernel_shape, kernel_count, padding_type): | |
# Convolutional Layer | |
conv = tf.layers.conv2d( | |
inputs=inputs, | |
filters=kernel_count, | |
kernel_size=kernel_shape, | |
padding=padding_type, | |
activation=tf.nn.relu) | |
# Pooling Layer | |
pool = tf.layers.max_pooling2d(inputs=conv, pool_size=[2, 2], strides=2) | |
return pool | |
def model_fn(features, labels, mode, params): | |
learning_rate = params.get("learning_rate", 0.1) | |
dropout_rate = params.get("dropout_rate", 0.8) | |
nw_depth = params.get("nw_depth", 2) | |
optimizer_type = params.get("optimizer_type", 'adam') | |
# Input Layer | |
X = tf.reshape(features[INPUT_TENSOR_NAME], [-1, 28, 28, 1]) | |
# Series of convolutional layers | |
for i in range(nw_depth): | |
X = _conv_pool(X, [5,5], 2^(5+i), 'same') | |
# Dense Layer | |
X_flat = tf.layers.flatten(X) | |
dense = tf.layers.dense(inputs=X_flat, units=1024, activation=tf.nn.relu) | |
dropout = tf.layers.dropout( | |
inputs=dense, rate=dropout_rate, training=mode == tf.estimator.ModeKeys.TRAIN) | |
# Logits Layer | |
logits = tf.layers.dense(inputs=dropout, units=10) # default activation is linear combination | |
predictions = { | |
"classes": tf.argmax(input=logits, axis=1), | |
"probabilities": tf.nn.softmax(logits) | |
} | |
if mode == tf.estimator.ModeKeys.PREDICT: | |
export_outputs = { | |
SIGNATURE_NAME: tf.estimator.export.PredictOutput(predictions) | |
} | |
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, export_outputs=export_outputs) | |
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) | |
tf.summary.scalar('loss', loss) | |
if mode == tf.estimator.ModeKeys.TRAIN: | |
if optimizer_type == 'adam': | |
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) | |
elif optimizer_type == 'sgd': | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) | |
train_op = optimizer.minimize( | |
loss=loss, | |
global_step=tf.train.get_global_step()) | |
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) | |
if mode == tf.estimator.ModeKeys.EVAL: | |
eval_metric_ops = { | |
"accuracy": tf.metrics.accuracy( | |
labels=labels, predictions=predictions["classes"])} | |
return tf.estimator.EstimatorSpec( | |
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) | |
def _input_fn(channel): | |
"""Returns a Dataset for reading from a SageMaker PipeMode channel.""" | |
features={ | |
'image_raw': tf.FixedLenFeature([], tf.string), | |
'label': tf.FixedLenFeature([], tf.int64), | |
'height': tf.FixedLenFeature([], tf.int64), | |
'width': tf.FixedLenFeature([], tf.int64), | |
'channels': tf.FixedLenFeature([], tf.int64) | |
} | |
def parse(record): | |
parsed = tf.parse_single_example(record, features) | |
image = tf.decode_raw(parsed['image_raw'], tf.uint8) | |
image.set_shape([784]) | |
image = tf.cast(image, tf.float32) * (1. / 255) | |
label = tf.cast(parsed['label'], tf.int32) | |
return ({INPUT_TENSOR_NAME: image}, label) | |
ds = PipeModeDataset(channel=channel, record_format='TFRecord') | |
ds = ds.repeat(MAX_EPOCHS) | |
ds = ds.prefetch(PREFETCH_SIZE) | |
ds = ds.map(parse, num_parallel_calls=NUM_PARALLEL_BATCHES) | |
ds = ds.batch(BATCH_SIZE) | |
return ds | |
def train_input_fn(training_dir, params): | |
"""Returns input function that would feed the model during training""" | |
return _input_fn('train') | |
def eval_input_fn(training_dir, params): | |
"""Returns input function that would feed the model during evaluation""" | |
return _input_fn('eval') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment